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The free propagator of a massless mode in an expanding universe can be written as a sum of two terms, a
light cone and a tail part. The latter describes a subluminal (timelike) signal. We show that the inflationary
gravitational wave background, influencing cosmic microwave background polarization and routinely used
for constraining inflationary models through the so-called r ratio, originates exclusively from the tail part.
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I. INTRODUCTION

In four-dimensional flat spacetime, massless radiation
propagates along light cones. This means that the corre-
sponding retarded Green’s function is proportional to the
Dirac δ-function. On the other hand, in curved spacetime,
massless fields develop a so-called tail. This means that the
Green’s function is nonzero inside the light cone.
The appearance of a tail was first observed in a

mathematical analysis of second order partial differential
equations [1,2]. Subsequently, it has been studied in a
multitude of physical contexts [3–25], suggesting possible
observable signatures. However, so far there is no direct
observation of the tail.
A particularly relevant curved spacetime is the cosmo-

logical Friedmann-Lemaître-Robertson-Walker (FLRW)
universe. A fundamental observation from its late period
is the gravitational wave (GW) signal from mergers of
black holes [26]. The main signal arrives on the light cone
and is theoretically well understood [27]. The correspond-
ing tail has not yet been observed, but its magnitude has
been computed [24] (see also Refs. [19–23]). The tail signal
arrives long after the main merger signal, but its magnitude
is surprisingly large.
The FLRW universe also contains earlier periods. A

particularly important one is that of inflation, where the

seeds for structure formation, as well as the anisotropies
that are observed in the cosmic microwave background
(CMB) [28], are believed to have been generated. At linear
order these originate from so-called scalar perturbations,
but neither the scalar field driving inflation nor its pertur-
bations are massless. However, inflation also generates
tensor perturbations [29–32], which manifest themselves as
gravitational waves. The gravitational wave background
propagates until today, in a well-understood fashion [33],
and leads to potentially observable consequences, through
the polarization of the CMB photons [34]. In principle,
primordial GWs could also be observed directly, e.g., via
pulsar timing arrays [35–38], even if the sensitivity is not
sufficient for the simplest inflationary models [39].
As the spacetime curvature is large during inflation, we

may also anticipate a tail contribution from this epoch. We
now proceed to describing the computation of the infla-
tionary GW background, quantifying subsequently the
tail’s role in it.

II. GRAVITATIONAL WAVE BACKGROUND
FROM DE SITTER VACUUM FLUCTUATIONS

The way that the inflationary GW background is
computed is that we first consider the wave equation for
tensor perturbations in de Sitter spacetime. The time
dependence of the solution is easily found, but its nor-
malization needs also to be fixed. This can be done by
considering a fixed comoving momentum k. Thanks to the
expansion of the universe, the corresponding physical
wavelength is very small at early times. Therefore, it is
within a causally connected domain, “inside the horizon.”
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There its normalization can be fixed like in a Minkowskian
vacuum, a well-established problem in quantum field
theory.
Once the normalization and time evolution have been

found, we can follow the momenta until late times. At some
point, the modes “exit the horizon,” i.e. k ≪ aH (or, in
terms of physical momenta p≡ k=a, p ≪ H). Here H is
the Hubble rate, which is constant in de Sitter spacetime,
and a is the scale factor, which grows exponentially in
physical time.
Once the modes exit the horizon, they “freeze out,” i.e.

their amplitude becomes constant. Up to overall normali-
zation, the absolute value squared of the amplitude con-
stitutes the primordial tensor power spectrum that we are
interested in (PT).
The modes do not stay forever outside of the horizon. As

inflation ends, the Hubble constant starts to decrease, and
the scale factor grows less rapidly. At some point, a given
momentum mode reenters the horizon. Then it starts to
oscillate again. As a result, it carries energy density, which
is in principle observable. It also influences other modes
propagating through the cosmological history, notably
CMB photons. The determination of these postinflationary
features amounts to the determination of a “transfer
function” from the primordial to the current era [33]. We
will not concern ourselves with the complicated postinfla-
tionary physics, only the primordial power spectrum.
In order to compute PT, we find it illuminating to carry

out the computation with the formalism of stochastic
inflation [40]. As illustrated in Fig. 1, the full time evolution
is then divided into two parts. While the early part is
effectively the same as in the standard quantum-mechanical
analysis, the latter part is simpler, as it can be viewed as a
classical problem. This facilitates the identification of the
light cone and tail contributions to the final result.
The stochastic formalism is employed in different

variants in the literature. In the following, we implement
it in a way that is not an approximation but just a
mathematical reorganization of the usual quantum-
mechanical computation (cf., e.g., Refs. [41–43] and
references therein). Apart from a clear physical picture,
the advantage of this approach is that it introduces an
arbitrary parameter, denoted by ϵ, whose cancellation offers
a nice cross-check, analogously to the role played by the
gauge parameter in Yang-Mills theories.
Let h be a canonically normalized massless field.

Denoting by τ∈ ð−∞; 0Þ the conformal time, de Sitter
spacetime with a constant Hubble parameter H has the
scale factor a ¼ −1=ðHτÞ. The solution of the wave
equation h00 − 2

τ h
0 −∇2h ¼ 0 reads

h ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
�
wkhkðτÞ|ffl{zffl}eik·x
iHffiffiffiffi
2k3

p ð1þikτÞe−ikτ
þ H:c:

�
; ð1Þ

where k and x are a comoving momentum and coordinate,
respectively, wk is an annihilation operator of the distant-
past (Bunch-Davies) vacuum, and the canonical commu-
tation relation takes the form ½wk; w

†
l �≡ δð3Þðk − lÞ.

The mode h is now divided into short-distance (h<) and
long-distance parts (h>), h ¼ h> þ h<, by defining

h< ≡
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p WkðτÞ|fflffl{zfflffl}
θðkþϵ

τÞ

h
wkhkðτÞeik·x þ H:c:

i
; ð2Þ

where the window functionWk selects large momenta. The
parameter ϵ is arbitrary and must drop out from physical
results [44]. Inserting Eq. (2) into the equation of motion
yields

h00> −
2

τ
h0> −∇2h> ¼ ϱQ; ð3Þ

ϱQ ≡ −
�
∂
2
τ −

2

τ
∂τ −∇2

�
h<; ð4Þ

where the “quantum noise” has the form

0

k
min

k
max

k

-

h

h
hor

izo
n

cr
os
sin
g

FIG. 1. An illustration of the computation of the gravitational
wave background with the stochastic formalism, in the plane of
conformal time (τ) and comoving momentum (k). The quantum
mechanical solution at early times is denoted by h<. A chosen
“horizon crossing” hypersurface (whose position k ¼ −ϵ=τ
depends on a parameter ϵ that cancels from final results) is used
for matching h< onto a long-wavelength field h>. The latter can
be treated as a classical perturbation.
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ϱQðτ;xÞ ¼ −
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
�

wkfkðτÞ|ffl{zffl}eik·x
ðW00

k−
2
τW

0
kÞhkþ2W0

kh
0
k

þ H:c:

�
: ð5Þ

We note that, with Wk from Eq. (2), the function fk in
Eq. (5) contains the Dirac-δ or its derivative. Therefore, the
differential operator acting on h< amounts to a holographic
projection, localizing the information from early times onto
the horizon crossing hypersurface (cf. Fig. 1).
The long-wavelength mode h> can subsequently be

determined from Eq. (3) with a retarded Green’s function.
The Green’s function satisfies

�
∂
2
τ −

2

τ
∂τ −∇2

x

�
Gjx−zjðτ; τiÞ ¼ δðτ − τiÞδð3Þðx − zÞ; ð6Þ

with the boundary conditions

Gjx−zjðτ; τiÞ ¼τ≤τi 0; ð7Þ

lim
τ→τþi

∂τGjx−zjðτ; τiÞ ¼ δð3Þðx − zÞ: ð8Þ

Here τ and τi are the time arguments of observation and
source, respectively.
Given the Green’s function, we can determine the late-

time solution as

h>ðτ;xÞ ¼
Z
z

Z
τ

−∞
dτ1Gjx−zjðτ; τ1ÞϱQðτ1; zÞ; ð9Þ

where
R
z is a spatial integral over source locations. This can

be viewed as an antiholographic mapping, from the hyper-
surface unto late times. Our next task is then to specify the
properties of the Green’s function.

III. LIGHT CONE AND TAIL PARTS
OF THE GREEN’S FUNCTION

The Green’s function from Eqs. (6)–(8) is easily solved
by representing it in momentum space,

Gxðτ; τiÞ ¼
Z
k
eik·xGkðτ; τiÞ; ð10Þ

where
R
k ≡

R
d3k
ð2πÞ3. The momentum-space solution is split

up into two parts, called the light cone (lc) and the tail parts
(tail), defined as

Gkðτ; τiÞ ¼ θðτ − τiÞ
h
gk;lcðτ; τiÞ þ gk;tailðτ; τiÞ

i
; ð11Þ

gk;lcðτ; τiÞ≡ τ sin½kðτ − τiÞ�
kτi

; ð12Þ

gk;tailðτ;τiÞ≡ sin½kðτ− τiÞ�− kðτ− τiÞcos½kðτ− τiÞ�
k3τ2i

: ð13Þ

The rationale behind this nomenclature becomes clear
when we go back to configuration space. Then we obtain

gx;lcðτ; τiÞ ¼τ>τi
x>0

τδðτ − τi − xÞ
4πxτi

; ð14Þ

gx;tailðτ; τiÞ ¼τ>τi
x>0

θðτ − τi − xÞ
4πτ2i

: ð15Þ

The light cone part describes a signal arriving at the speed
of light, the tail part arrives later. It can be verified that the
sum of the two parts, though not the parts separately,
satisfies the s-wave equation

�
∂
2
τ −

2

τ
∂τ − ∂

2
x −

2

x
∂x

�
ðgx;lc þ gx;tailÞ ¼ 0: ð16Þ

The s-wave solution is the relevant one, because the source
in Eq. (6) is a monopole.

IV. COMPUTATION OF THE PRIMORDIAL
TENSOR POWER SPECTRUM

In cosmology, the fundamental objects are equal-time
2-point correlation functions, such as those of the temper-
ature of the CMB photons. What we are interested in here is
the 2-point correlator of the tensor perturbations. For the h>
field, from Eq. (9), evaluating the expectation value in
the distant-past vacuum, the equal-time correlator can be
expressed as

hh>ðτ;xÞh>ðτ; yÞi

¼
Z
z;w

Z
τ

−∞
dτ1

Z
τ

−∞
dτ2Gjx−zjðτ; τ1ÞGjy−vjðτ; τ2Þ

× h0jϱQðτ1; zÞϱQðτ2; vÞj0i: ð17Þ

The quantum mechanics of the problem is now hidden in
the autocorrelator of ϱQ. Inserting Eq. (5), it becomes

h0jϱQðτ1; zÞϱQðτ2; vÞj0i ¼
Z
k
eik·ðz−vÞfkðτ1Þf�kðτ2Þ: ð18Þ

The correlator of Eq. (17) is most easily evaluated in
comoving momentum space (the configuration space com-
putation is described in the Supplemental Material [45]).
After a Fourier transform, we obtain

hh>ðτ;kÞh>ðτ;qÞi

¼ �δðkþ qÞ
����
Z

τ

−∞
dτiGkðτ; τiÞfkðτiÞ

����
2

; ð19Þ

where
R
k
�δðkÞ≡ 1.

Making use of fk from Eq. (5) and carrying out a partial
integration, the integral in Eq. (19) can be expressed as
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Z
τ

−∞
dτiGkðτ; τiÞfkðτiÞ

¼
Z

τ

−∞
dτiW0

kðτiÞ
	
−∂τiGkðτ; τiÞhkðτiÞ

þGkðτ; τiÞ
�
h0kðτiÞ −

2

τi
hkðτiÞ

�

: ð20Þ

With W0
k ¼ − ϵ

τ2
δðkþ ϵ

τÞ, the light cone part yields

Z
τ

−∞
dτigk;lcðτ;τiÞfkðτiÞ

¼ iHkτffiffiffiffiffiffiffi
2k3

p eiϵ

ϵ

�
cosðkτþϵÞð1− iϵÞþsinðkτþϵÞ

�
1

ϵ
− i−ϵ

��
;

ð21Þ

whereas for the tail part we obtain

Z
τ

−∞
dτigk;tailðτ; τiÞfkðτiÞ

¼ iHkτffiffiffiffiffiffiffi
2k3

p eiϵ

ϵ

�
cosðkτ þ ϵÞ

�
−1 −

ϵ

kτ

�

þ sinðkτ þ ϵÞ
�
−
1

ϵ
þ iþ iϵ

kτ

��
: ð22Þ

Summing together, many terms cancel, and the remaining
ones can be factorized,

Z
τ

−∞
dτiGkðτ; τiÞfkðτiÞ

¼ iHkτffiffiffiffiffiffiffi
2k3

p ð−eiϵÞ
�
iþ 1

kτ

��
cosðkτ þ ϵÞ − i sinðkτ þ ϵÞ

�

¼ −
iHffiffiffiffiffiffiffi
2k3

p e−ikτð1þ ikτÞ: ð23Þ

In the equations above, an implicit factor θð1=τ þ k=ϵÞ has
been suppressed for simplicity of notation.
An important property of Eq. (23) is that it is indepen-

dent of the parameter ϵ and thus of the position of the
horizon crossing hypersurface in Fig. 1. That is, the
antiholographic mapping from the hypersurface onto late
times erases all memory of the hypersurface itself.
We note that Eq. (23) is just the standard result for

massless mode functions. The novelty of our computation
is that the first term in the parentheses, dominant on
superhorizon scales kjτj ≪ 1, is seen to come exclusively
from the tail, the second from the light cone.

For physical conclusions, we need the absolute value
squared of Eq. (23), according to Eq. (19). The corre-
sponding power spectrum is obtained by multiplying this
with the measure k3=ð2π2Þ, yielding

Ph ¼
�
H
2π

�
2

ð1þ k2τ2Þ: ð24Þ

After adding the normalization factors for tensor perturba-
tions and considering the limit kjτj ¼ k=ðaHÞ ≪ 1, valid
for momenta well outside of the horizon (these are the ones
having an observable effect today), this reduces to the
textbook tensor power spectrum,

PT ≈
kjτj≪1 16

π

�
H
mpl

�
2

; ð25Þ

where mpl ≡ 1.22091 × 1019 GeV is the Planck mass.
From the tensor power spectrum, once multiplied with

the transfer function [33], we can obtain the current-day
fractional gravitational energy density ΩGW. Measuring
this is an ongoing effort [35–38]. The ratio of the tensor
power spectrum to the curvature one, r≡ PT=PR, is
already strongly constrained by Planck data on CMB,
r < 0.056 [28].
We stress that the only terms left over in Eq. (25) are

the ones enhanced by 1=ðkτÞ in Eq. (22). In other words,
Eq. (25) arises exclusively from the tail contribution.
However, the light cone contribution is also conceptually
important, for it guarantees the independence of the result
of the parameter ϵ at finite values of kτ [46].

V. CONCLUSIONS

The purpose of this Letter has been to demonstrate that
the primordial tensor power spectrum, cf. Eq. (25), which
plays an important role in constraining inflationary models
through CMB data [28], originates from the 1=ðkτÞ-
enhanced terms in Eq. (22). In other words, the tails of
the gravitational waves that cross the horizon are respon-
sible for the physical phenomena observable today, imple-
menting thereby a remarkable memory effect.
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