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We present a strategy to obtain equations of general relativity for an irrotational dust continuum within a
flow-orthogonal foliation of spacetime from the equations of Newtonian gravitation, and vice versa,
without employing a weak field expansion or a limiting process on the speed of light. We argue that writing
Newton’s equations in a Lagrangian frame and relaxing integrability of vector gradients is sufficient to
obtain equations that are identical to Einstein’s equations in (3þ 1)-form when respecting the Lorentzian
signature of the time parametrization. We discuss implications and provide an outlook on how to extend the
obtained correspondence to more general spacetimes.
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Newtonian limits and weak fields: Is this subject settled?
The question of how to obtain the Newtonian limit of
general relativity enjoys various answers. Many of the
practical implementations of a Newtonian limit are heu-
ristic by, e.g., expanding Einstein’s equations with respect
to a flat background spacetime and keeping only linear
terms as perturbations of metric components (weak field
approximation) together with sending the causality con-
stant 1=c to zero, thus “opening up” the local light cones.
A systematic approach is the frame theory by Ehlers [1]
that comprises both theories in a single theory using the
causality constant as a parameter, built on earlier efforts
around the Newton-Cartan theory (for details and refer-
ences see Ehlers’work [1], the editorial to Ehlers’work [2],
and Ehlers’ investigation of examples [3]). Ellis [4] has
nicely compared the (1þ 3)-Einstein equations and their
correspondences in Newtonian gravitation. There are also
proposals of a dictionary between the theories for metric
perturbations to linear order [5,6] that have been applied
in the context of general-relativistic exact solutions and
numerical simulations [7,8]. All of these approaches imply
that both theories are substantially different and that one
has to neglect terms in Einstein’s equations to obtain back
the Newtonian equations of gravitation. It is, however, a
matter of definition of the Newtonian limit and the way the
Newtonian equations of gravitation are written.
In this Letter, we will investigate a two-step strategy for

arriving at Einstein’s field equations from Newton’s equa-
tions, in the context of an irrotational dust matter model,
that does not need elements of an approximation. As a first
step, we will demonstrate that the Newtonian equations
and Einstein’s equations in a flow-orthogonal foliation of
spacetime are algebraically correspondent, if the former are

written in the Lagrangian rest frame of the dust. As a
second step, we will show that the Newtonian equations
become identical to their relativistic counterparts, if an
integrability requirement of the resulting tensor coefficients
is relaxed in the Newtonian equations. These statements
extend to variables such as connection, Ricci and Weyl
curvatures, defined geometrically within general relativity
but are also algebraically present in the Newtonian equa-
tions, if written in the Lagrangian frame.
We organize this Letter as follows. The next section recalls

Newton’s equations for a self-gravitating continuum of dust.
It is then argued that the Lagrangian form of Newton’s
equations can be subjected to a “recipe” that follows an idea
by Einstein to “throw out the Euclidean embedding space”
and that employs Cartan coframes defining nonintegrable
deformations of the fluid. We so obtain Einstein’s equations
in a flow-orthogonal (3þ 1)-setting. The last section dis-
cusses the result and provides an outlook on how to general-
ize the obtained correspondence.

Notations: Bold notation will be used for vectors and forms.
The vector product is denoted by ×, while thewedge product
∧ denotes the antisymmetrized tensor product ⊗, with
components ða ⊗ bÞij ¼ aibj. We define symmetrization
and antisymmetrization of indices by vði;jÞ ¼ 1

2
ðvi;j þ vj;iÞ,

v½i;j� ¼ 1
2
ðvi;j − vj;iÞ, respectively; i; j; k… ¼ 1; 2; 3. Spatial

derivativeswith respect to Eulerian coordinates x are denoted
by a comma, while later spatial derivatives with respect to
Lagrangian coordinates X are denoted by a vertical slash;
an overdot will be used to represent the Lagrangian time
derivative; summation over repeated indices is understood.

Newtonian equations for a dust continuum.Wewill employ
a hydrodynamic picture and consider a self-gravitating
continuum of dust, i.e., pressureless matter with rest mass*buchert@ens-lyon.fr
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density ϱðx; tÞ and velocity field vðx; tÞ (the words “matter,”
“dust,” and “fluid” will be used interchangeably). Both
fields are represented in terms of Eulerian (inertial, non-
rotating) coordinates x and a time parameter t. The
acceleration field is equivalent to the gravitational field
strength gðx; tÞ due to the equivalence of inertial and
gravitational mass,

d
dt
v ¼ g;

d
dt

≔
∂

∂t

����
x
þ v · ∇ ¼ ∂

∂t

����
X
; ð1Þ

where we introduced the Lagrangian time derivative d=dt
that reduces to a partial time derivative in a Lagrangian
coordinate system X. In Eulerian coordinate components,
we write Euler’s equation (1) and its Eulerian spatial
derivative:

∂

∂t
vi þ vkvi;k ¼ gi;

d
dt
vi;j þ vi;kvk;j ¼ gi;j: ð2Þ

The Newtonian continuum theory of gravitation is a vector
theory, so that the sources of the curl and divergence of g
suffice to define the complete set of field equations (up to a
harmonic vector field):

∇ × g ¼ 0; ∇ · g ¼ Λ − 4πGϱ; ð3Þ

where G denotes Newton’s gravitational coupling constant;
for completeness we included the cosmological constant Λ
(here with dimension time−2). The rest mass density ϱ
obeys the continuity equation,

d
dt
ϱþ ϱ∇ · v ¼ 0: ð4Þ

The Euler-Newton system comprises (1), (3), and (4). This
overdetermined set of equations can be written as a set of
five equations for five variables (ϱ; vi;Φ) through intro-
duction of the gravitational potential, g≕ − ∇Φ.
In this Letter we will restrict ourselves to irrotational

flows, v½i;j� ¼ 0. For later considerations we add the
Newtonian gravitoelectric tidal tensor [inserting (2) and (3)
in the second line]:

Eij ≔ gði;jÞ −
1

3
δijgk;k;

¼ d
dt
vði;jÞ þ vk;ðivjÞ;k −

1

3
δijðΛ − 4πGϱÞ: ð5Þ

Realizing Einstein’s vision of a transition strategy. In his
Kyoto address in December 1922 [9], Albert Einstein
expressed an intuition of an interesting strategy that we
will freely interpret in this Letter. He said: “If all accel-
erated systems are equivalent, then Euclidean geometry
cannot hold in all of them. To throw out geometry [the
Euclidean embedding space] and keep [vectorial] physical

laws is equivalent to describing thoughts without words.
We must search for words before we can express thoughts
[...] This point remained unsoluble to me until 1912, when I
suddenly realized, that Gauß’s theory of surfaces holds the
key for unlocking this mystery.”
We have interpreted Einstein’s words [in brackets] to

infer that the writing of Newton’s equations in terms of
vectors as functions of inertial coordinates implies an
embedding into a global vector space. A modern strategy
to “throw out” this embedding space consists in (i) moving
to a Lagrangian representation of Newton’s equations,
introducing (intrinsic and noninertial) Lagrangian coordi-
nates, and (ii) relaxing integrability of the resulting ten-
sor coefficients, i.e., replacing exact gradients by general
1-form fields.
To achieve (i), we introduce a one-parameter family of

spatial diffeomorphisms to Lagrangian coordinates X,
labeling fluid parcels along their trajectories, identified
with their Eulerian positions at some initial time ti [10]

1:

ðX; tÞ ↦ ðx; tÞ ¼ ðf ðX; tÞ; tÞ; X ≔ f ðX; tiÞ: ð6Þ

We call f the field of trajectories and dfa ¼ fajkdXk the
Lagrangian deformation gradient, represented in the exact
Lagrangian basis. Lagrangian coordinates are intrinsic to
the fluid continuum and they can as well be used as
coordinates in a local chart around a point in a spatial
Riemannian manifold. Let us consider the following
bilinear metric form, the first representation of which we
call the Lagrangian metric,

3δ ≔ δabfajifbjjdXi ⊗ dXj ¼ δijdxi ⊗ dxj: ð7Þ

This metric is Euclidean, since we can find a one-parameter
family of diffeomorphisms, namely X ¼ hðx; tÞ, with
h ¼ f−1, that transforms the first representation into the
second.
A Riemannian 3-metric 3s can be written in terms of three

spatial Cartan coframes ηa that provide a more elementary
“reference body” than the metric,

3s ≔ δabηa ⊗ ηb ¼ δabη
a
iη

b
jdX

i ⊗ dXj: ð8Þ

We notice that the mapping

ηa ↦ dfa; ð9Þ

which we henceforth call Euclidean restriction, implies that
the Riemannian 3-metric reduces to the Euclidean metric in

1Henceforth, we use the indices a; b; c… as counters, while
i; j; k… remain coordinate indices referring to an exact basis. We
realize that the vector components fa are to be written with
counters, but if there exists an embedding space endowed with
coordinates xi ¼ fi≡a, then these counters are also coordinate
indices.
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the Lagrangian representation. In the integrable case of
exact 1-form fields dfa, the Lagrangian metric embodies
the geometry of the fluid, however, still embedded into
Euclidean space.
We henceforth use the wording integrable when we want

to express that the coefficient matrix ηai of ηa ¼ ηaidXi can
be obtained through spatial derivatives of vector compo-
nents fa, i.e., ηa are exact, and we say generalized gradient
when we mean relaxation of integrability that realizes step
(ii) of the outlined strategy.
In what follows we will apply the outlined two-step

strategy, where we first concentrate on kinematic properties
of the fluid. To this end we are going to find the analogy to
the Newtonian velocity gradient va;b, now written both with
counterindices, since there will no longer be a reference to
an exact Eulerian basis after relaxing integrability in the
sense of inverting (9). Relating this to the Lagrangian
gradient of v ¼ ḟ ðX; tÞ involves the inverse transformation
hðx; tÞ: va;b ¼ vajkhk;b ¼ ḟajkhk;b.
Moving to the nonintegrable form of the velocity

gradient, we have to introduce the inverse matrix to ηak.
We define three frame fields, eb (the Dreibein at the
worldlines of fluid parcels), being dual to Cartan’s coframe
fields. We express both in the respective local basis systems
(dXk for forms and ∂Xk for vectors):

ηa ¼ ηakdXk; eb ¼ ebk∂Xk ; ηakebk ¼ δab; ηakeal ¼ δk
l:

ð10Þ

Consequently, the nonintegrable form of the Newtonian
velocity gradient is represented by

Θa
b ≔ η̇akebk: ð11Þ

It is expressed in the nonexact basis (remember that the
velocity gradient has both Eulerian values and derivatives
with respect to Eulerian coordinates). We transform this
object into our local exact (Lagrangian) basis with the help
of the transformation matrices (10) and arrive at

Θi
j ≔ eaiηbjΘa

b ¼ eaiη̇aj: ð12aÞ

This field can be entirely expressed in terms of coframe
fields through the algebraic identity

eai ¼
1

2J
ϵabcϵ

iklηbkη
c
l; ð12bÞ

with the Levi-Cività symbol ϵabc, and the nonintegrable
analog of the Jacobian of the spatial diffeomorphism (6),

J ≔ detðηaiÞ ¼
1

6
ϵabcϵ

ijkηaiη
b
jη

c
k: ð12cÞ

We notice that the variable (12a) that generalizes the
Newtonian velocity gradient has mixed indices, which
holds true for the transformation of other Newtonian fields
too. The expansion tensor is then formed by lowering the
upper index using the nonintegrable form of the Lagrangian
metric (8), Θij ¼ δabη

a
iη

b
kΘk

j ¼ δabη
a
iη̇

b
j, with the rate

of expansion Θk
k ≕Θ. The vanishing of the vorticity,

v½i;j� ¼ 0, so translates to the symmetry condition Θ½ij� ¼ 0.
Turning now to dynamical properties of the dust fluid,

we introduce the nonintegrable form of the field strength
gradient along the above lines, ga;b ↦ F a

b ¼ η̈akebk,
F i

j ≔ eaiηbjF a
b ¼ eaiη̈aj, and F ij ¼ δabη

a
iη̈

b
j, yielding

the nonintegrable version of Euler’s equation (2):

F i
j ¼ Θ̇i

j þ Θi
kΘk

j: ð13aÞ

The field equations (3) generalize to the set

F k
k ¼ Λ − 4πGϱ; F ½ij� ¼ 0: ð13bÞ

In the integrable version of Newton’s equations, these are
enough to determine the gravitational field. However, in the
nonintegrable version the tracefree symmetric part must be
part of the gravitational field tensor. We therefore add the
nonintegrable form of the Newtonian tidal tensor (5)
(omitting here the redundant symmetrization):

−Ei
j ≔ F i

j −
1

3
F k

kδ
i
j;

¼ Θ̇i
j þ Θi

kΘk
j −

1

3
ðΛ − 4πGϱÞδij; ð13cÞ

where we introduced a sign convention that we will
explain below.
We now show that Eq. (13), together with the non-

integrable Lagrangian form of (4), ϱ̇þ Θϱ ¼ 0, are iden-
tical to Einstein’s equations in a fluid-orthogonal foliation
of spacetime via the definition of a new (from the
Newtonian point of view auxiliary) field:

−Ri
j ≔ Θ̇i

j þ ΘΘi
j − ðΛþ 4πGϱÞδij: ð14Þ

Equation (14) implies a key equation of the correspon-
dence: with (13a) we obtain a relation of the generalized
field strength gradient to this newly defined field:

F i
j ¼ −Ri

j þ ðΛþ 4πGϱÞδij þ Θi
kΘk

j − ΘΘi
j: ð15Þ

In the geometrical context of general relativity this field
is the spatial Ricci tensor, Rij ¼ δabη

a
iη

b
kRk

j, the key
equation (15) is known to emerge from the Gauß embed-
ding equation using the nonintegrable Euler equation (13a):
the components of the generalized Newtonian field strength
gradient form components of the spacetime Riemann
tensor, −F i

j ¼ 4Ri
0j0. Imposing the field equations (13b),
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the trace of (15) becomes the energy constraint, and the
antisymmetric part of (15) vanishes due to the vanishing
of the vorticity in a flow-orthogonal foliation: F ½ij� ¼
δabη

a½iη̈bj� ¼ ðδabηa½iη̇bj�Þ· ¼ 0. The nonintegrable form
of the Newtonian tidal tensor (13c) is the spatially projected
gravitoelectric part of the Weyl tensor [11]. It reduces to (5)
in the Euclidean restriction (9), up to a sign convention.2

For completeness we list the Einstein equations for an
irrotational dust fluid in a flow-orthogonal foliation of
spacetime in the usual (3þ 1)-representation3:

ϱ̇þ Θϱ ¼ 0; ð16aÞ

ṡij ¼ 2sikΘk
j; Θ½ij� ¼ 0; ð16bÞ

Θ̇i
j þ ΘΘi

j ¼ −Ri
j þ ðΛþ 4πGϱÞδij; ð16cÞ

Θ2 − Θi
jΘj

i ¼ −Rk
k þ 2Λþ 16πGϱ; ð16dÞ

Θk
jjjk − Θjjj ¼ 0: ð16eÞ

The first equation arises from Tμν ¼ ϱuμuν, with the con-
servation law Tμν

;ν ¼ 0, while the second defines the
expansion tensor (or minus the extrinsic curvature); the third
are its six evolution equations that are identical to the
nonintegrable Euler equation (13a) by redefining Ri

j

through (15), and the fourth is one of the four constraint
equations, the energy constraint, all—as shown—arising
from our strategy.
The momentum constraints (16e) seem to not directly

arise from the Newtonian system because their Euclidean
restriction (9) does not imply a constraint. This can be
traced back to the fact that the spatially projected grav-
itomagnetic part of the Weyl tensor Hij vanishes in the
Euclidean restriction (9), in the current setting:

−Hi
j ¼

1

J
ϵiklΘjkjjl ↦ 0; J ≠ 0; ð17Þ

H½ij� ¼ 0 implies (16e). This result is in agreement with the
Newtonian limit in Ehlers’ frame theory [11], and here
trivially follows via integrability that implies the commu-
tation of second derivatives, see Secs. III.A.3 and III.A.4
in [12].

We can derive (16e) by starting with the trivial Newtonian
identity that second derivatives of the velocity commute,
va;bc − va;cb ¼ 0. Calculating va;b ¼ vijjfajihj;b, trans-
forming the second derivatives to Lagrangian coordinates
and projecting onto the Lagrangian basis [step (i) of our
strategy] yields4:

ðva;bc − va;cbÞðhk;afbjnfcjlÞ ¼ vkjnl − vkjln
þ NΓj

lnvkjj − NΓj
nlvkjj

þ NΓk
livijn − NΓk

nivijl
¼ vkjnjjl − vkjljjn
¼ ϵinlϵ

ijmvkjjjjm: ð19Þ

Relaxing integrability [step (ii) of our strategy] then results
in the Peterson-Mainardi-Codazzi identity in the flow-
orthogonal foliation (Sec. 8.3 of [13]) [14] [using (17) in
the second equality]:

Θk
njjl − Θk

ljjn ¼ ϵinlϵ
ijmΘk

jjjm ¼ −JϵinlHik; ð20Þ

the trace of which (k ¼ l) is (16e). Note that the trace of the
gravitomagnetic part of the Weyl tensor vanishes due to the
symmetry condition Θ½pj� ¼ 0. In the integrable case both
sides are identically zero.
An important remark is in order here. Both steps (i) and

(ii) are crucial for our transformation strategy, but notice
that step (ii) produces a nonintegrable deformation leading
to a general description of spatial deformations in terms of
Cartan coframe fields. Therefore, following from step (ii),
we can derive all the elements of geometry like a non-
integrable connection and curvature via Cartan’s structure
equations in space, dηa ¼ −ωa

b ∧ ηb ≠ 0 and Ωa
b ≔

dωa
b þ ωa

c ∧ ωc
b ≠ 0, together with the spatial Bianchi

identities d2ηa ¼ 0 and d2ωa
b ¼ 0.

The final element of the correspondence arises when
constructing the spacetime metric. We notice that the
Newtonian equations and the (3þ 1)-Einstein equations
appear to be parametrized by the coordinate t: our

2The sign convention difference arises, since in the geometrical
context we consider Eij as (“passive”) curvature, while in
Newtonian theory the corresponding field is defined “actively”
in terms of gravitational acceleration. This remark also applies to
the extrinsic curvature Kij vs expansion Θij ¼ −Kij.

3The metric signature is taken to be ð−;þ;þ;þÞ, and the
speed of light c ¼ 1. Greek indices run through μ; ν… ¼
0; 1; 2; 3, and the semicolon denotes covariant derivative with
respect to the 4-metric, while a double vertical slash denotes
covariant spatial derivative with respect to the 3-metric 3s with
components sij.

4Notice that the (noncovariant) Christoffel connection coef-
ficients Γj

nl do not vanish in the Euclidean restriction (9): they
result in a Newtonian integrable connection (since the Lagrangian
coordinate system is noninertial):

Γj
ln ¼Γj

nl ↦ NΓj
nl ¼ hj;cfcjln ¼−hj;abfajlfb jn ¼ NΓj

ln ð18Þ

[both forms appear in the calculation of (19)]. However, the
Euclidean restriction of the (covariant) Cartan connection
dηa ≕ − ωa

b ∧ ηb vanishes, i.e., the covariant requirement of
integrability, d2fa ¼ 0, with d2 ≔ d ∘ d, holds. Notice also that,
starting with the transformation of the vector, va ¼ fa jivi, instead
of its gradient, will result in extra terms proportional to the
Lagrangian velocity vi ¼ 0, which consequently vanish in a
Lagrangian frame.
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two-step strategy produces the correct equations. However,
when constructing a four-dimensional spacetime, the
introduction of the Lorentzian signature in the 4-metric
is required: 4s ≔ −dt ⊗ dtþ δabη

a
iη

b
jdX

i ⊗ dXj. The
Euclidean restriction (9) is then extended to spacetime
and becomes the restriction to Minkowski spacetime. We
understand that the Lagrangian representation is a crucial
cornerstone of the correspondence: Lagrangian observers
are at rest and “do not see” the local light cone, since they
do not experience a boost. The Lagrangian observers have
just to be told that their distances in time-direction count
negatively in a causal four-dimensional spacetime.

Summary and discussion. We looked at the Newtonian
equations for self-gravitating systems in the Lagrangian
frame together with a generalization to a nonintegrable
form of the Newtonian deformation gradient dfa. We
restricted our investigation to the matter model of irrota-
tional dust. We argued that the nonintegrable form is
equivalent to Einstein’s equations in a flow-orthogonal
(3þ 1)-foliation of spacetime. We observe that there is no
weak field approximation and no limiting process to be
performed. None of the parts in Einstein’s equations are
neglected, which paints an alternative picture to the current
understanding of Newtonian and post-Newtonian dynam-
ics. Newton’s theory appears to be stronger than believed
by employing a modern interpretation. It will be interesting
to revisit predictions of general relativity where Newtonian
predictions in Eulerian representation appear to fall short.
We could furthermore argue that the integrable

(Lagrange-Newton) form is a measure-zero representation
of the general form that, from a pragmatic point of view,
can never be realized: any realization, e.g., a numerical
implementation of an exact gradient dfa, will be limited by
finite precision and generically produces a nonintegrable
field. Newtonian gradients form a measure zero set of fluid
deformations and meet the strong condition d2fa ¼ 0
(second derivatives commute). Hence, any realization will
instantly produce the nonintegrable form, and therefore a
nonintegrable connection and curvature via Cartan’s struc-
ture equations. A small perturbation of strict integrability
can lead to strong curvature without there being a smooth
limit to Euclidean space. As a pronounced summary: an
attempt to realize Newtonian dynamics in the Lagrangian
representation will, in practice, be a realization of general
relativity.
Mathematically, the requirement of integrability has

nevertheless interesting and important implications. We
think of the spatial integration of an integrable field vs a
nonintegrable field.5 Integrable parts will allow for a

transformation to surface integrals on the boundary of a
spatial domain, while nonintegrable parts remain in the
bulk. An example is the backreaction problem in cosmol-
ogy, i.e., the impact of inhomogeneities on global proper-
ties of world models [16,17]: in flat space, the relevant
terms describing a nonvanishing impact are divergences of
vector fields and as a result vanish for isolated systems and
for periodic boundary conditions corresponding to a 3-torus
topological architecture [18]. For nonflat spatial sections,
i.e., in the nonintegrable situation, backreaction terms in
general furnish a global contribution.
The reader may find examples where the proposed

correspondence has already been successfully employed
in the transition from Lagrangian perturbation solutions in
Newtonian theory to corresponding general-relativistic
perturbation solutions, see the series of papers following
[12] and the recent review paper [19]. We also point the
reader to the construction of exact solutions of general
relativity from Newtonian solutions, see Refs. [20,21] for
Szekeres class II solutions with their corresponding
Euclidean class [22], that appear as subclasses of first-
order Lagrangian perturbation solutions at a Friedmann-
Lemaître-Robertson-Walker background; for Szekeres
class I solutions see Ref. [23].
It is possible to extend the proposed strategy to more

general spacetimes. In order to describe, e.g., vortical flows
and more general fluids, we have to consider tilted flows
within a general Arnowitt-Deser-Misner foliation of space-
time. For this purpose we have to diffeomorph the exact
basis to obtain the general metric form (with lapse N and
shift Ni), below exemplified for a comoving description,
where the coordinate velocity is set to zero. The line
element reads:

4ds2 ¼ −
N2

γ2
dt2 þ 2NvidtdXi þ sijdXidXj; ð21Þ

with the covariant three velocity vi ¼ ðNi=NÞ, the induced
spatial metric components sij, and a four velocity that is
tilted with respect to the hypersurface normal [24]:

uμ ¼ γ

N
ð1; 0; 0; 0Þ; uμ ¼

�
−
N
γ
; γvi

�
: ð22Þ

In the general comoving setting the appearance of the
Lorentz factor γ resurrects the causality constant, while
the appearence of the lapse N makes the time deforma-
tion nonintegrable. Rendering the tilted four-velocity
Lagrangian, uμ ¼ ð1; 0; 0; 0Þ, as our strategy demands, a
proper-time foliation τ ¼ R ðN=γÞdt ¼ const, i.e. N ¼ γ,
investigated in [24], can be considered. A correspondence
in proper-time foliation can thus be set up in the spirit of
what has been said in this Letter. Its realization is the
subject of work in progress. In the tilted foliation, grav-
itomagnetic extensions of Newton’s theory, as proposed by

5The difference can be best seen by performing a Hodge
decomposition of Cartan forms into exact, coexact and harmonic
forms, for a component writing of 1-forms in this context, see
Ref. [15].
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Heaviside [25] (see also the comments in [2]), will become
relevant.

Acknowledgments. This work is part of a project that has
received funding from the European Research Council
under the European Union’s Horizon 2020 research and

innovation program (grant agreement ERC advanced
Grant No. 740021-ARTHUS, PI: TB). Thanks to Hamed
Barzegar, Henk van Elst, Asta Heinesen, and Pierre
Mourier for valuable remarks on the manuscript, and to
an anonymous referee for insightful and constructive
suggestions.

[1] J. Ehlers, Über den Newtonschen Grenzwert der
Einsteinschen Gravitationstheorie, edited by J. Nitsch, J.
Pfarr, and E.-W. Stachow, Grundlagenprobleme der mod-
ernen Physik: Festschrift für Peter Mittelstaedt zum 50.
Geburtstag (Bibliographisches Institut, Mannheim, Wien,
Zürich, 1981), pp. 65–84; Republication of: On the
Newtonian limit of Einstein’s theory of gravitation, Gen.
Relativ. Gravit. 51, 163 (2019).

[2] T. Buchert and T. Mädler, Editorial Note to: On the
Newtonian limit of Einstein’s theory of gravitation (by
Jürgen Ehlers), Gen. Relativ. Gravit. 51, 162 (2019).

[3] J. Ehlers, Examples of Newtonian limits of relativistic
space-times, Classical Quantum Gravity 14, A119 (1997).

[4] G. F. R. Ellis, Republication of: Relativistic cosmology,
Gen. Relativ. Gravit. 41, 581 (2009).

[5] N. E. Chisari and M. Zaldarriaga, Connection between
Newtonian simulations and general relativity, Phys.
Rev. D 83, 123505 (2011); Phys. Rev. D 84, 089901(E)
(2011).

[6] S. R. Green and R. M. Wald, Newtonian and relativistic
cosmologies, Phys. Rev. D 85, 063512 (2012).

[7] S. M. Koksbang and S. Hannestad, Methods for studying the
accuracy of light propagation in N-body simulations, Phys.
Rev. D 91, 043508 (2015).

[8] W. E. East, R. Wojtak, and T. Abel, Comparing fully general
relativistic and Newtonian calculations of structure forma-
tion, Phys. Rev. D 97, 043509 (2018).
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