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We demonstrate some shortcomings of “fixing the equations,” an increasingly popular remedy for time
evolution problems of effective field theories (EFTs). We compare the EFTs and their “fixed” versions to
the UV theories from which they can be derived in two cases: K-essence and nonlinear Proca theory. We
find that when an EFT breaks down due to loss of hyperbolicity, fixing does not approximate the UV theory
well if the UV solution does not quickly settle down to vacuum. We argue that this can be related to the EFT
approximation itself becoming invalid, which cannot be rectified by fixing.

DOI: 10.1103/PhysRevD.108.L101501

Introduction. Even though vector fields are ubiquitous in
physics, their self-interaction was only recently shown to
be highly problematic. This was originally discovered
in the context of cosmology [1], and more recently for
strong gravity [2–4]. A particularly interesting case is the
dynamical breakdown of the nonlinear generalization of
the Proca theory, for which initially healthy configurations
naturally evolve to a point where time evolution cannot be
continued [5–7].1 This is particularly unnerving since such
vector fields find a wide range of applications in many
areas of physics [1,10–36].
When taken at face value, the above problems are

sufficient to render self-interacting vectors unphysical,
but theories featuring them can also be viewed as effective
limits of more fundamental theories, typically called the
UV-complete (or simply the UV) theory. In such a view, the
failure of the effective field theory (EFT), only an approxi-
mation, is not necessarily surprising. Then, a central
question for nonlinear extensions of the Proca theory is
whether their problems can be explained this way, and if
so, how can one obtain a well-posed theory superseding
them?
It is already known that arguably the simplest example of

self-interacting vector field theories, the so-called non-
linear Proca theory (NPT), is indeed a limiting case of a
vector field that gains mass through the Abelian Higgs
mechanism for some, but not all, of its parameter space.
Hence, the above question seems to be answered in the
affirmative in a limited sense. However, this is not the only
suggested solution to the problem.

Here, we will address another proposal that aims to
continue the time evolution beyond the point where
the EFT breaks down: fixing the equations, or fixing in
short [37–44]. This is a formulaic but ad-hoc method of
modifying pathological field equations which are believed to
have a well-behaved mother theory, to arrive at some system
that, hopefully, better captures the true physics. In some
cases, the EFT is known to lack a well-posed time evolution
completely, and the fixing provides the said evolution. In
others, time evolution is possible but eventually breaks
down, and fixing avoids this problem while imitating the
EFT closely, we will focus on the latter. The idea goes back
to the formulation of relativistic hydrodynamics by Israel
and Stewart [37], and has more recently been adapted for
applications in more general EFTs by Cayuso et al. [39].
Fixing has been very successful in mitigating spurious

behavior arising from extra degrees of freedom or higher
order derivatives [40,41,43]. However, it is not a cure-all
and there are, as yet not formalized, conditions for its
applicability [40]. Moreover, fixing the nonlinear Proca
theory, e.g., as suggested in Barausse et al. [38], goes
beyond this. The time evolution problems in this case
commonly appears as one approaches the scale at which
the EFT becomes strongly coupled, i.e., the scale at which
no finite order truncation of the EFT approximates the UV
theory, cf., the Planck scale for gravity. Thus, fixing
cannot generically capture the dynamics of the UV theory
in such cases.2

To demonstrate this point, we will compare solution of
the NPT (which is an EFT), its fixed versions, and the UV
theory (which is known in our case). This will allow us to
see some instances where the fixing succeeds, and some
where it fails. Surprisingly, in some cases, fixing even*andrew.coates.grav@gmail.com

†framazanoglu@ku.edu.tr
1Coordinate singularities can be easily mistaken for the

physical breakdown. See Coates and Ramazanoğlu [8,9] for
the subtleties of this issue.

2Fixing is not the sole solution suggested by Barausse et al.
[38], who also suggest careful use of coupling constants and
gauges [42,45]. Also see Babichev et al. [46].
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performs less well than the unfixed EFT. Our results provide
lessons for general applications of fixing beyond the sample
cases we present.

The theories. We will be studying two sets of theories. The
first is a K-essence model, its fixing(s) and UV completion.
The second is nonlinear Proca, its fixing and UV com-
pletion. In both cases we will be looking at the regimes
where a UV completion is known to exist. Thus, we will be
able to start with a theory that has no breakdown, and
integrate out the heavy degrees of freedom to obtain an EFT
that does break down. Finally, we develop the fixed theory
by introducing new variables with invented dynamics on
top of the EFT, and see how the breakdown can be avoided
if we did not know the UV theory. To be exact, the fixed
theory can also be considered an EFT, however we will not
call it as such to avoid confusion.
This order of presentation is the reverse of the usual

course of research. Typically, the EFT is proposed first, and
the realization of its problems lead to a search for a UV
theory, which cannot be found in many cases unlike our
examples. Then, fixing becomes a possible remedy.
We work in 1þ 1 dimensions with ds2 ¼ −dt2 þ dx2.

c ¼ 1.

Scalar theories: Here we will follow Lara et al. [47], though
using some different notation. The UV Lagrangian for the
pure scalar set of theories we will be studying is that of a
complex scalar field with global Uð1Þ symmetry,

LUV;1 ¼ −
1

2
gμν∂μΦ̄∂νΦ −

1

2
VðΦ̄ΦÞ ð1Þ

with,

VðΦ̄ΦÞ ¼ −m2Φ̄Φþ λ

2
ðΦ̄ΦÞ2: ð2Þ

Note Φ ¼ 0 is unstable and the global minimum of V
occurs at Φ ¼ v expðiΘÞ, where v ¼ m=

ffiffiffi

λ
p

and Θ∈R.
We obtain the so-called K-essence theory by integrating

out the heavy degree of freedom using the EFT expansion.
To do so, write

Φ ¼ ðvþ ϱÞ exp ðiΘÞ; Φ̄ ¼ ðvþ ϱÞ exp ð−iΘÞ: ð3Þ

In terms of the new variables

LUV;1 ¼ −
1

2
ð∂ϱÞ2 − 1

2
ðvþ ϱÞ2

�

ð∂ΘÞ2 −m2 þ λ

2
ðvþ ϱÞ2

�

;

where ð∂ϱÞ2 ≡ gμν∂μϱ∂νϱ. This leads to the equation
of motion

□ϱ ¼ ðvþ ϱÞ½ð∂ΘÞ2 −m2 þ λðvþ ϱÞ2�

The essence of the EFT expansion is that the dynamics of ϱ
is ignorable when it is heavy, i.e. when its effective mass
M≡ ffiffiffi

2
p

m is large, holding λ fixed (so v diverges withM).
Quantitatively,

ð∂ΘÞ2−m2þλðvþϱÞ2≈0⇒ ϱ¼−
ð∂ΘÞ2
M2

þO
�

1

M4

�

ð4Þ

Inserting this back into the Lagrangian, we obtain the EFT

LEFT;1 ¼ −
v2

2
ð∂ΘÞ2

�

1 −
ð∂ΘÞ2
M2

�

ð5Þ

which is the Lagrangian for the so-called quadratic
K-essence, where the kinetic term is

KðyÞ ¼ v2

2

�

y −
y2

M2

�

; y ¼ ð∂ΘÞ2 ð6Þ

with equation of motion

∇μ½K0ðyÞ∂μΘ� ¼ 0: ð7Þ

The Cauchy problem here breaks down if K0 → 0 and
this behavior is what we will seek to fix. It is worth noting
at this point that K0 → 0 occurs in the regime where
∂Θ2=ðM2Þ ∼ 1, i.e. where the EFT expansion itself
breaks down.
The breakdown can also be seen when we write the

equation of motion as

ḡμν∇μ∇νΘ¼ 0; ḡμν≡ gμνþ 2
K00

K0 ∇μΘ∇νΘ; ð8Þ

where the dynamics is governed by the effective metric ḡμν

rather than the spacetime metric gμν. Hence, time evolution
breaks down when ḡμν changes signature at K0 ¼ 0.
Lara et al. [47] suggested fixing the equation by

introducing a new field Σ to replace K0 in Eq. (7), which
is dynamically driven toward K0 via

∂tΣ ¼ −
1

τ
½Σ − K0�: ð9Þ

The smaller the timescale τ the closer this will track the
unfixed equations (and the UV completion where appli-
cable). However, Σ ¼ 0 still causes a breakdown of the
evolution system, so larger τ may be required to avoid
doing so. In some cases there is no “good” value of τ, and
so we also consider the alternative driver equation

∂tΣ ¼ −
1

τ

�

2K0

v2

�

2

½Σ − K0�: ð10Þ

ANDREW COATES and FETHI M. RAMAZANOĞLU PHYS. REV. D 108, L101501 (2023)

L101501-2



Vector theories: This proceeds almost identically to the
previous case, starting from the gauged version of the
Lagrangian in Eq. (1). In other words, the UV theory is
the Abelian Higgs model for a vector field Aμ,

LUV;2 ¼ −
1

4
½FμνFμν þ 2DμΦDμΦþ 2VðΦ̄ΦÞ� ð11Þ

where Fμν ¼ ∇μAν −∇νAμ and

DμΦ ¼ ∂μΦ − iqAμΦ: ð12Þ
This guarantees invariance under the Uð1Þ transformation,

Aμ → Aμ þ ∂μf; Φ → Φ exp ðiqfÞ: ð13Þ
It is also useful to define the gauge invariant field

Xμ ≡ Aμ −
1

q
∂μΘ; ð14Þ

which will take the place of (−1=q times) ∂μΘ from the
scalar section. Indeed, writing Φ ¼ ðvþ ϱÞ exp ðiΘÞ, and
performing the same expansion to integrate out ϱ, the EFT
Lagrangian becomes

LEFT;2 ¼ −
1

4
FμνFμν − Kðq2X2Þ; ð15Þ

with K the same as in Eq. (6) and X2 ¼ XμXμ. This is
exactly NPTwith the squared mass and the quartic coupling

μ2NPT ¼ q2v2; λNPT ¼ −
2q2

M2
; ð16Þ

respectively, recalling that the coefficient of the quartic term
is λNPTμ2NPT=4 in that convention [5,7].
Note that the UV completion only exists for μ2NPT > 0

and λNPT < 0, which is only a part of the parameter space.
The full equations of motion are,

∇μFμν ¼ 2q2K0Xν; ∇μðK0XμÞ ¼ 0; ð17Þ
which, again, will break down where K0 ¼ 0, this time the
effective metric being [7,8]

ḡμν ¼ ð1þ λNPTX2Þgμν þ 2λNPTXμXν: ð18Þ
Therefore we will again use some fixing, one suggested

by Barausse et al. [38]. We split the vector field via the
Stueckelberg mechanism, Xμ ≡ Aμ − ð1=qÞ∂μΘ, and intro-
duce an additional field Σ to take the place of K0

∇μFμν ¼ 2q2ΣXν; ∇μðΣXμÞ ¼ 0

∂tΣ ¼ −
1

τ
½Σ − K0�; Xμ ≡ Aμ −

1

q
∂μΘ: ð19Þ

Results. For various scenarios, we will compare the time
evolution (at the sample fixed point x ¼ 1) for the EFT,
the fixed theory (for various τ) and the UV theory for both
the scalar and vector fields, starting from the same initial
data. For example, the standard expectation is that the
vector field Xμ of NPT and the gauge invariant vector
fields Xμ ¼ Aμ − ð1=qÞ∂μΘ for the fixed and UV theories
agree with each other when the approximations work as
they are supposed to. We also track the determinant of the
effective metric, ḡ, whose vanishing implies the break-
down of time evolution for the EFT. Our results seem quite
general based on our explorations. Numerical errors are
smaller than the thickness of the lines in the following
plots,3 hence, we do not provide explicit error bars. Details
of the numerics [5,7,48] and the solutions are in the
Supplemental Material [49].
The first result is that the right fixing can do a very good

job of recreating the behavior of the UV theory after the
EFT breaks down, but in all cases we explored, this only
happens if the region of interest “settles down” quickly. As
we are working in 1þ 1 dimensional Minkowski space,
settling down means when the fields disperse and head off
to infinity. When there is nontrivial behavior considerably
beyond when the breakdown occurs for the EFT, the fixing
eventually fails to capture the UV theory due to the
excitation of high frequency modes that fixing cannot
replicate. Indeed, it seems there is an inevitable excitation
of some high frequency mode in the UV when the EFT
breaks down, which also quickly causes the numerics to fail
as well. Success of fixing observed by others in analogous
cases, e.g., Lara et al. [47], is likely related to the formation

FIG. 1. Collision of two pulses in the vector field theory where
the EFT barely breaks down at t ≈ 2.5, but the fields disperse
afterward in the UV theory. Fixing works successfully as
expected. The horizontal dotted line is the ϱ value where the
breakdown is theoretically expected.

3Exceptions to this such as cases where the computation breaks
down will be apparent in our discussion.
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of a horizon in their work, which can keep the high
frequency behavior from influencing the exterior solution.
An example of fixing working well at extending the

solution beyond the breakdown of the EFT is in Fig. 1. Here,
two Gaussian vector field pulses collide, and the resulting
high field amplitudes when they meet barely break down the
EFT. The fixed theory continues to evolve while tracking the
UV theory closely. This follows our findings, since the high
amplitudes responsible for the breakdown occur for a short
duration in the UV-theory, and the fields quickly settle down
after the pulses pass through each other.

Figure 2 is a case where the fixing fails. Here, the fields
settle down, but not fast enough, in a scenario where a high
value of Θ̇ pushes the initial data toward breakdown. The
“fixed” evolution still breaks down for small τ. If we use
larger τ to avoid this, the UV theory is not well approxi-
mated except at late times when all fields return to vacuum.
We would be unaware of the latter failure if we did not
already know the UV theory. In some instances, the fixed
theory fails even when the EFT does not, where numerical
dissipation [50,51] seems to play an important role, see the
Supplemental Material [49].
Figure 3 shows a case which does not settle down to

vacuum, where there are sustained oscillations due to an
initial constant background contribution to the electric
field. This time, fixing fails due to a flow of energy to
high frequencies. This is not necessarily surprising since
the UV theory is nonlinear, however, the fact that not
settling to vacuum is correlated with such behavior, which
guarantees the failure of fixing, is noteworthy.4

The second main result is that the dynamics of the fixed
case depends strongly on the choice of the parameter τ and
the particular driver equation used. The best value of τ, i.e.,
the smallest that does not lead to a breakdown due to Σ ¼ 0,
for different initial data can range over several orders of
magnitude. In some situations there is no particularly good
choice of τ that we could find. That is, there is no value of τ
which both avoids Σ ¼ 0 and closely tracks the UV
solution, as we saw in Fig. 2. However, we did find that
using an alternative driver equation can sometimes help as
in Fig. 4. Without knowing the UV completion, there is no
benchmark against which to compare the results of the

FIG. 2. Sample evolution of the scalar theory where fixing
does not work well for any value of τ, due to slow settling down.
K-essence breaks down at t ≈ 1.5, the fixed versions [Eq. (9)]
either also break down (in red) or else do not approximate the UV
solution well (green).

FIG. 3. Continuous oscillations induced by a constant back-
ground electric field, leading to the vector field theory not settling
down promptly. The EFT breaks down within the first cycle. After
a few cycles, some high frequency component dominates the UV
theory solution, at which point the fixed theory also breaks down
(noisy pattern after t ≈ 170). For all initial data of this form, either
the dip into the breakdown regime is too mild to break the EFT, or
else this high frequency component eventually comes to dominate
the UV solution, which later crashes our numerics.

FIG. 4. The same as in Fig. 2, but with the alternative driver
Eq. (10). This is a better fixing than that of Fig. 2, since the fixed
and UV theories agree more closely.

4Once the high frequency dominates, the numerical results
are not reliable any further. However, the energy flow to
high frequencies is already apparent before this happens, where
the numerics converge without issue. See the Supplemental
Material [49] for details.
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fixed equations in general. This raises a seemingly unan-
swerable questions as to whether fixed solutions are
physically realistic generically. We have seen in Fig. 2
that the fixing (9) is not, in this specific case.

Discussion. We have seen that fixing the equations
approach is not universally reliable. In certain situations,
the simplest application of fixing can lead to scenarios
where no good fixing parameter exists. Therefore without
some mathematical theory of fixing, it is not a dependable
tool for generating physically relevant solutions. In fact,
even given some such understanding, it does not seem to
be fit for purpose in all cases. That is, if one wishes to find
an efficient method for generating EFT solutions, fixing
can be quite ineffective. This is because, to solve an EFT to
mth order using the perturbative approach, which we have
good reason to believe converges whenever EFTs are
appropriate [52], one needs to solve p systems of N
equations. Whereas to apply the fixing method one needs
to solve N þ p equations to however many times it takes to
solve an optimization problem in s continuous variables.
The use case is then whenever p ≫ s, and how often that
can actually be achieved will not be known until a theory
of fixing has been developed beyond the current heuristic
approach.
We reiterate that our findings are not in contradiction

with the existing specific results obtained via fixing, where
some general guidelines have been shown to be useful in
specific cases [42,53]. Rather, we show that the technique
cannot be assumed to be generically useful. We considered

1þ 1 dimensions here, but loss of hyperbolicity studies
indicate that the behavior is similar in any dimension [7].
A feature we have seen in any solution that does not

quickly settle to vacuum is that the breakdown of the EFT
in our cases always coincided with the excitation of a high
frequency mode in the UV theory that eventually over-
whelmed our numerics. Although we cannot see an
analytic reason for this, it is perhaps no surprise that the
breakdown of the EFT coincides with the inevitable
excitation of modes that have been integrated out. We
believe this is another mark against fixing the equations as
the technique cannot pick up on this by definition. Since
we do not have the UV solution, it does not seem possible
to know when this suppressed behavior becomes important
aside from simple order estimates of cutoff scales (see the
Supplementary Material [49] for some more detail). It
finally is worth mentioning that the numerical threshold for
this behavior seemed to be equal to the numerical threshold
for the breakdown of the EFT. In other words, if the
solution barely dipped into the breakdown regime for a
small enough time such that the EFT continued to evolve
afterward, then we could also not see this high frequency
behavior in the UV theory, though this behavior may not
be universal [45].
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