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SU(2), triplet scalar as the origin of the 95 GeV excess?
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We explore the possibility that an SU(2), triplet scalar with hypercharge ¥ = 0 is the origin of the
95 GeV diphoton excess. For a small mixing angle with the Standard Model Higgs, its neutral component
has naturally a sizable branching ratio to yy such that its Drell-Yan production via pp — W* — HH® is
sufficient to obtain the desired signal strength, where H¥ is the charged Higgs component of the triplet.
The predictions of this setup are (1) The yy signal has a py spectrum different from gluon fusion but similar
to associated production. (2) Photons are produced in association with tau leptons and jets, but generally
do not fall into the vector-boson fusion category. (3) The existence of a charged Higgs with my: =~
(95 £5) GeV leading to 6(pp — rrvv) ~ 0.4 pb, which is of the same level as the current limit and can be
discovered with Run 3 data. (4) A positive definite shift in the W mass as suggested by the current global

electroweak fit.
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Introduction. The Standard Model (SM) is the currently
accepted theoretical description of the known constituents and
interaction of matter. It has been successfully tested in
precision experiments [1-3] and the Brout-Englert-Higgs
boson [4-7], the last missing piece, was finally discovered
in 2012 at CERN [8-10]. In fact, this 125 GeV particle
has properties consistent with the ones predicted by the
SM [11-15]. However, this does not exclude the existence
of additional scalar bosons, as long as their role in electroweak
symmetry breaking is subleading and their production
cross sections are smaller than the ones of the SM-like
Higgs [16,17].
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The minimality of the SM Higgs sector, i.e., the
existence of a single SU(2); doublet scalar that simulta-
neously gives mass to the electroweak (EW) gauge bosons
and all fermions, is not guaranteed by any theoretical
principle or symmetry. A plethora of such extensions
have been proposed in the literature, including the
addition of SU(2), singlets [18-20], doublets [21-25],
and triplets [26-31].

While Large Hadron Collider (LHC) searches for new
particles did not lead to any discovery (yet), there are
interesting hints for new scalar bosons [32]. In particular,
CMS [33-35] searches hint toward a neutral scalar H
decaying into two photons at 95 GeV. This is compatible
with the latest ATLAS result [36] and supported by
Z-strahlung with H — bb at LEP [37], as well as by 77 [35]
and WW [38-40] searches. In fact, combining these
channels results in a global significance of 3.80 [41].

So far, explanations of the 95 GeV excesses in terms of
SU(2), singlets and/or SU(2), doublets were proposed in
the literature [42—67], which all respect custodial symmetry
at tree-level. For higher dimensional SU(2); representa-
tions, the measurement of the p-parameter restricts the
vacuum expectation value (VEV) of the new scalar to be
<O(1) GeV [3] and except for the SU(2), triplet with
hypercharge Y = 0 multiply charged scalars at the same

Published by the American Physical Society
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Preferred regions (1o and 20) by the i — yy signal strength (blue) and the 95 GeV H — yyexcess (green) in the @ — A, plane

for the two values of v, corresponding to the two my, benchmark points. The region between the two red lines is allowed by vacuum
stability and perturbative unitarity. The dashed vertical line indicates the region preferred by the LEP measurement of Z + (H — bb),
and the region to the right of the solid vertical line is preferred by the 7 — ZZ* signal strength at 1o level.

mass scale are unavoidable which is problematic with
respect to LHC searches [68—71].1 It is well known that
this field provides a positive definite shift in the W mass
(with respect to the SM prediction) [80-91], as motivated
by the current global electroweak fit [92-94] (driven by the
CDF 1I result [95]). However, its collider phenomenology
has been barely studied. In this article, we study the
viability of ¥ = 0 triplet as an alternative in addressing
the hints for a ~95 GeV scalar.

Phenomenology. The SM extended with an SU(2), triplet
scalar with hypercharge 0, is commonly referred to as the
ASM [96-103]. In contains an additional charged scalar H~*
and a neutral one H which acquires a vacuum expectation
value v, in the process of spontaneous symmetry breaking.
Importantly, without mixing H couples only to W bosons at
tree-level, while the CP-even mixing angle o induces
couplings to SM fermions. Furthermore, charged Higgs loops
modify both 4 — yy and H — yy. A detailed description of
the model is provided in the Supplemental Material [104].
Perturbative unitarity and vacuum stability: The ASM
parameter space can be constrained by vacuum stability and
perturbative unitarity. The region between the red lines
in Fig. 1 is allowed by both criteria and the explicit

'For small mass-splitting among the SU(2), components, LHC
searches for multiply charged scalars would exclude scenarios
with a neutral Higgs with a mass around ~95 GeV [72,73].
However, nondegenerate scenarios, with the heavier multiply
charged Higgses decaying into (off-shell) neutral Higgses
and W-bosons, could still be consistent with the LHC
searches [74-77]. The phenomenology of such mass spectra
has been studied in Refs. [78,79].

calculation of the constraints is given in the Supplemental
Material [104].

W mass: The latest ATLAS update of my = 80.360(16)
[105] (superseding the 2017 result [106]) as well as the
LHCb result my = 80.354(32) [107] are significantly
smaller compared to my = 80.4335(94) GeV obtained
by CDF II. When combined with DO [95] and LEP [108],
this lead to a naive global average of my, = 80.406(7) GeV.
Because there is considerable tension between these mea-
surements (> /dof = 4.3), we inflate the error on my, to
0.015 GeV to get a conservative average of [901?

m$om = (80.406 = 0.015) GeV. (1)

Comparing this with the SM prediction of m{M =
80.3499(56) GeV [3,92,109-115], with m, =
172.5(0.7) GeV [3], the discrepancy of 56 MeV amounts
to 3.70. If we disregarded the CDF II result, we find an
average of

mSymP O COFD (80372 4 0.010) GeV,

(2)
which corresponds to a discrepancy of 22 MeV (2.20).
In the ASM, we have

2 2
m2 — 9 2
2 —

T (3)
4cos 03,

Therefore, v, of a few GeV can easily alter the my
prediction in the desired direction. As such, mom™°

Dy - . . . .
This naive average agrees well with the one obtained in a
sophisticated fit performed by HEPfit [92] prior to the ATLAS update.
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FIG. 2. Feynman diagrams showing the modification of i1 — yy (left), the DY processes pp — Z*,y* - HTH™ — t77 v (middle),

and pp - W* - H*HO (right).

comb(w/o CDF1I) .
requires

requires v, =4.607028 GeV, while m
va = 2.897037 GeV.

SM Higgs signal strength: Through the quartic inter-
actions H* contributes to the diphoton decay rate of the SM
Higgs h (see Fig. 2 left). The corresponding signal strength,

with respect to the SM one, is given by

Hhyy = Fh_’]’}’/rh—»y;f |K | (4)
with
4m?
0 HE
A ﬂH( )
K, & cosa + hHiHﬂ) 7 : A (5)
e ) )

and the loop functions [116] are given in Supplemental
Material [104].

Combining the most recent measurements of
CMS [117] and ATLAS [118], uf}S =1.12100 and
ppTEAS = 1047079, respectively, we get the weighted
average

o2 o’

I'(H N2 H

H = 10 % 1 024m7m,

Here, a, at g> = 0 numerically approximates well the
NLO QED corrections.

For a small mixing angle a, H is mainly produced via the
Drell-Yan (DY) process pp — W* — H*H (see Fig. 2
right) with a leading order (LO) cross section of 1.77 pb for
my+ & my =95 GeV. While the QCD corrections have
not been estimated so far for the ASM, it is obvious that
they pertain dominantly to the hadronic ends of the
processes and are thus expected to be the same as for
sleptons or SU(2), triplet leptons. The latter has been
calculated in Ref. [121], resulting in a correction factor of
1.15, by which we naively rescale the LO cross section
(computed with MadGraph5AMC@NLO [122]) to obtain
~2 pb. In addition, H is also produced via gluon-gluon

4 4 4 4
——smaﬂ}f( n?) + <—sina+ﬂcos )ﬁH< mW)
3 My v My

exp
Hhgy

= 1.085007. (6)
The resulting preferred regions at the 1o and 20 level are
shown in blue in Fig. 1.

While the 7 — yy signal strength is the most precise
measured one, it is affected by h-H mixing and the H*-
loop contribution so that cancellations occur. Therefore, the
second-best measured SM Higgs signal h — ZZ* [119,120]

provides a complementary constraint of [3]

exp

D, =102+ 0.08,

(7)
which, to a very good approximation, is only sensitive to the
mixing angle a. The region on the right of the solid vertical
line in Fig. 1 is compatible with ;5. at the 1o level.

Diphoton excess: While nearly all relevant decay modes
of H can be obtained from a rescaling of the widths of a
SM-like Higgs with a mass of 95 GeV by multiplying with
sin? @, the decay H — WW* is already generated at tree-
level via v, and H — yy receives loop contributions from
the charged Higgs as well as from W loops’:

_|_AHHiH¥U 7 4miy.
Zm%# " ms

2

(8)

fusion (ggF) and vector boson fusion (VBF) processes
through the mixing with 4. The corresponding cross section
is calculated by multiplying the production cross section of
a SM-like 95 GeV Higgs by a?. Neglecting the subdomi-
nant contribution from VBF, and using o[pp — h(95)] =
68 pb [123-133], we thus have

~ Br[H — yy]

olpp —» H = yy] x (2 + 68a%) pb. (9)

Normalizing the signal strength to the one of a hypothetical
SM-like Higgs with the same mass [123], we find numerically

3Only Zy also receives an additional direct contribution from
the W loop, which is already present for sina = 0, but the
corresponding branching ratio is negligibly small.

L091704-3



SATYAD ASHANUJJAMAN et al.

PHYS. REV. D 108, L091704 (2023)

Hi g, ~ (21.5 4 7190%) x Br[H — yy]. (10)

This has to be compared to the combination of the CMS and
ATLAS analyses of a low mass yy searches of (651"

Hiryy = 0271043 (11)

The resulting preferred regions are shown in green in Fig. 13

Zbb, WW and 7z: While Br[H — WW] is large for a very
small mixing angle a, the resulting effect in yy would be too
high if one aims at the central value of the cross section of
Ref. [40]. Therefore, @ cannot be too small, and it is
possible to explain the Zbb excess of LEP which requires

exp  07P(eTe” — ZH)
Hop = ocM(ete™ — ZH)

Br(H — bb) = 0.117 £ 0.057.
(12)

For tau decays, the central values of the signal strength
exp

Uze = 1.2 £ 0.5 cannot be fully explained, which is a
general feature of most SM extensions addressing the
95 GeV excess [58], the error is too large to draw a
conclusion here.

pp — H"H™ — 7t up: The charged Higgs in general
dominantly decays to zv. Therefore, its pair production and
subsequent decays, i.e., pp = Z*, y* - H'H™ - 17171
(see Fig. 2, middle), leads to a collider signature searched for
in the context of supersymmetric tau partners [135-138].
While CMS [137] provides an upper bound on the
cross section and observes a weaker limit than expected,
ATLAS [138] observes a stronger limit than expected but
does not provide a bound on the total cross section. Since
both bounds deviate from the expected limit by x~1c level,
but in opposite directions, we will thus use the expected limit
on the cross section provided by CMS [137] of 0.347%3 pb.
Using once more MadGraphSAMC@NLO at LO, we find a
production cross section of 0.86 pb which we again multiply
by a factor 1.15 [121,139] to include NLO QCD effects.

*Note that the signal strength of H is normalized with respect
to an SM-like Higgs with the same mass. While the latter is
mainly produced via ggF and VBF processes, the former is
dominantly produced via the DY process pp — W* - H*H
while the other production modes are too a good approximation
only induced via the mixing with 4. Note that, while in the limit
of zero mixing between the SM Higgs and the triplet Higgs, H is
fermiophobic, this region in parameter space is, contrary to the
setup of Ref. [134], not excluded due to the charged Higgs
contribution to H — yy. Furthermore, for a # 0, couplings to
fermions are induced.

>Note that our model has similarities with one of the “square”
benchmark scenarios of Ref. [44], where the 95 GeV excess was
studied in the context of the type-I two-Higgs-doublet model.
There, in the fermiophobic limit, pp — W= — H*H is the
dominant production mode. However, the model in Ref. [44]
predicts an additional pseudoscalar with ~80 GeV while the
Higgs potential allows for more freedom than our setup.

0.25 T T T T T
=
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FIG. 3. Transverse momentum normalized to the invariant mass

of the photon pair system for different production mechanisms of
a 95 GeV scalar H: VH (orange), ggF (green), DY production in
the triplet model (blue).

Taking into account that CMS and ATLAS assume a 100%
branching ratio of the stau to tau and neutralino, while we
have Br[H* — t¥1,]~0.66 +0.03 [123,140-154].° a
cross section of ~0.44 + 0.03 pb is predicted. This is in
slight tension with the 95% exclusion limit.

Let us therefore consider the option to reduce
Br[H* — 7] by increasing the mass splitting Am such
that Br[H* — HW*] becomes sizable':

m2 m2
G, ), (13
(2, a3)

where Aypy+yw = 2cosacosf —sinasinf, and the loop
function G(x,y) is given in the Supplemental
Material [104].

As one can see in Sec. III in the Supplemental
Material [104], choosing v, = 0.86 GeV as a benchmark
point, allows for a small region in parameter space with
sizable mass splitting, that is allowed by the vacuum
stability and perturbative unitarity® as well as compatible
with h — yy,ZZ*, H — yy, and Zbb. Note that this
scenario predicts a small positive shift in the W mass.

9g4m +
+ *\ H 2
D(H = HW*) = 5 By,

Conclusions and outlook. In summary, the predictions if the
neutral component of the SU(2), triplet with hypercharge O
is the origin of the 95 GeV excess are
(i) LHC Run 3 shows a stau-like excess.
(i1) Positive shift in the W mass.
(iii) H is produced in association with jets and 7 leptons.

%Since in our case the branching ratio is dominated by zv
and cs, the error on Br[H* — cs] is dominating the error
of Br[H* - t*u,).

"Note that Br[H* — H*W] is much smaller such that it
can be neglected.

$Note that, for sizeable a, the requirements of vacuum stability
and perturbative unitarity dictate that A,, ~ 22a-3.75 GeV.
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(iv) A charged Higgs with a mass below ~100 GeV
which could be very well studied at future e™e™
colliders [155-158].

(v) A significantly broader p; spectrum of the diphoton
system compared to ggF, as shown in Fig. 3.

“While this information is currently not available, it can be used
in future analyses as a discriminator. To compare the p; of the
diphoton system of the ASM to the SM, we generated 100 k events
at NLO using MadGraph5SAMC@NLO with the parton shower per-
formed by PYTHIAS.3 [159] and the detector simulation for the CMS
detector [34], carried out with DELPHES [160]. The UFO model
file at NLO of the ASM was built using FeynrRules [161-163]
and to increase the efficiency of the simulation, the decay of H to a
photon pair was forced using Madspin [164].
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