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We show that an infinitesimal step of gradient flow can be used for defining a novel approach for
computing gradients of physical observables with respect to action parameters. Compared to the commonly
used perturbative expansion, this approach does not require calculating any disconnected contribution or
vacuum expectation value and can provide results up to 3 orders of magnitudes more precise. On the other
hand, it requires a nontrivial condition to be satisfied by the flow action, the calculation of its force and its
Laplacian, and the force of the observable, whose gradient needs to be measured. As a proof of concept, we
measure gradients in β of Wilson loops in a four-dimensional SU(3) Yang-Mills theory simulated on a 164

lattice using the Wilson action.

DOI: 10.1103/PhysRevD.108.L091508

Introduction. In a lattice gauge theory with an action
Sθ ≡ SðU; θÞ, the expectation value of an observable
OðUÞ is given by the path integral

hOiθ ¼
1

Zθ

Z
D½U�OðUÞ expð−SðU; θÞÞ; ð1Þ

where Zθ ≡ R
D½U� expð−SðU; θÞÞ is the partition function

and θ is a parameter of the action. The focus of this work is
the calculation of the gradient of the expectation value with
respect to the parameter θ, which might result in a
challenging task since the so-called sea effects have to be
measured. Indeed, it is standard to perturbatively expand the
expectation value with respect to an infinitesimal change of
the parameter, dθ, obtaining

hOθþdθiθþdθ ¼
hdθ ∂Oθ

∂θ þOθ expð−dθ ∂Sθ
∂θ Þiθ

hexpð−dθ ∂Sθ
∂θ Þiθ

þOðdθ2Þ;

and, thus, the gradient with respect to θ is given by

dhOθiθ
dθ

¼ lim
dθ→0

hOθþdθiθþdθ − hOθiθ
dθ

¼
�
∂Oθ

∂θ
−Oθ

∂Sθ
∂θ

�
θ

þ hOθiθ
�
∂Sθ
∂θ

�
θ

; ð2Þ

where, in the above equations, for generality’s sake, we have
introduced an optional explicit dependence on θ also in the

observableOθ ≡OðU; θÞ. Since on both sides of Eq. (2) all
terms depend on θ, we rewrite the equation with the
shorthand notation

dhOi
dθ

¼
�
∂O
∂θ

−O
∂S
∂θ

�
þ hOi

�
∂S
∂θ

�
; ð3Þ

and we refer to

�
∂O
∂θ

�
∶ as connected contribution;

�
O
∂S
∂θ

�
∶ as disconnected contribution; and

hOi
�
∂S
∂θ

�
∶ as vacuum expectation value:

Disconnected contributions are well known to be noisy.
Furthermore, when the vacuum expectation value is non-
zero, the latter and the disconnected contributions are
usually large values, whose difference needs to be taken
accurately for reliably measuring the gradient.
In this work, we present a novel and alternative

approach, based on gradient-flow techniques [1], which
is free from any of the aforementioned problems. Namely,
if a flow action that flows along the parameter θ is found,
then gradients of observables can be computed directly
using the ordinary differential equation (ODE) of the
operator. Our numerical results show that sea effects
can be computed up to 3 orders of magnitude more
precisely than the perturbative expansion in Eq. (3), when
an exact flow action is found. Therefore, this approach can
possibly be used to improve the accuracy of gradients in,
for example, among others:
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(i) applications of the Feynman-Hellmann theorem
[2–7],

(ii) leading isospin breaking corrections [8–12],
(iii) leading QED corrections [12–14],
(iv) fine-tuning of simulation parameters [15],
(v) leading contribution of the QCD Θ term to the

neutron electric dipole moment [16–18].
In the following, we present the novel approach in the

form of a theorem, followed by its proof and a numerical
case study.

Main result.

Notation: In the following,
(i) S̃ is referred to as flow action and is to be

determined;
(ii) L0 ¼ −

P
x;μ;a ∂

a
x;μ∂

a
x;μ denotes the Laplacian;

(iii) ðA;BÞ ¼ P
x;μ;a A

a
μðxÞBa

μðxÞ denotes the scalar
product over algebra-valued fields;

(iv) ∂ is the force of a scalar function, defined as

∂
a
x;μfðUÞ ¼ d

dτ
fðUτÞ

���
τ¼0

ð4Þ

with

Uτðy;νÞ ¼
�
eτT

a
Uðx;μÞ; for ðx;μÞ ¼ ðy;νÞ;

Uðy;νÞ for ðx;μÞ ≠ ðy;νÞ: ð5Þ

Theorem, gradient-flow approach: The gradient of an
expectation value with respect to a parameter θ of the
action is given by

dhOi
dθ

¼
�
∂O
∂θ

þ ð∂O; ∂S̃Þ −OC
�
þ hOihCi; ð6Þ

where

C ¼ L0S̃þ ð∂S; ∂S̃Þ þ ∂S
∂θ

: ð7Þ

Corollary, ideal gradient-flow approach: If the flow action S̃
is such that C ¼ constant, then Eq. (6) simplifies to

dhOi
dθ

¼
�
∂O
∂θ

þ ð∂O; ∂S̃Þ
�
: ð8Þ

We, therefore, refer to ideal flow action as an S̃ such that

L0S̃þ ð∂S; ∂S̃Þ þ ∂S
∂θ

¼ constant: ð9Þ

Corollary, standard perturbative approach: If S̃≡ constant,
then Eq. (6) simplifies to Eq. (3), since L0S̃ ¼ ∂S̃ ¼ 0
and C ¼ ∂Sθ=∂θ.

Summary: The corollaries are two special applications of
the theorem, and our numerical results show that gradients
computed using the ideal gradient-flow approach are
significantly more precise than those computed using the
standard perturbative approach. If Eq. (9) is not satisfied
exactly, then the theorem can be used to obtain correct and
possibly improved results.

Proof. The proof is based on gradient-flow techniques that
have been introduced in Ref. [1], which we refer to for
further details. Under a change of variables U ¼ F ðVÞ, the
expectation value of an observable transforms as

hOi ¼ 1

Z

Z
D½U�OðUÞ expð−SðUÞÞ

¼ 1

ZF

Z
D½V�OðF ðVÞÞ expð−SF ðVÞÞ; ð10Þ

where ZF ≡ R
D½V� expð−SF ðVÞÞ and

SF ðVÞ ¼ SðF ðVÞÞ − ln detF �ðVÞ ð11Þ

with F � being the Jacobian of the transformation. In the
following, we consider an infinitesimal transformation of
the field employing an Euler integration step and the force
of an action S̃:

F ðVÞ ¼ expð−ϵ∂S̃ðVÞÞV
¼ V − ϵ∂S̃ðVÞV þOðϵ2Þ with 0< ϵ≪ 1: ð12Þ

Two properties of such flow are [1]

ln detF �ðVÞ ¼ ϵL0S̃ðVÞ þOðϵ2Þ ð13Þ

and

OðF ðVÞÞ ¼ OðVÞ − ϵð∂OðVÞ; ∂S̃ðVÞÞ þOðϵ2Þ: ð14Þ

By using Eqs. (13) and (14) in Eq. (11), we obtain

SF ¼ S − ϵ½ð∂S; ∂S̃Þ þ L0S̃� þOðϵ2Þ; ð15Þ

where all terms now depend on the field V. The intent is
then to interpret the difference SF − S as an infinitesimal
change of action along the parameter θ, requiring

∂S
∂θ

¼ lim
ϵ→0

SF − S
ϵ

¼ −ð∂S; ∂S̃Þ − L0S̃: ð16Þ

We then define C, in Eq. (7), as the difference between the
left- and right-hand sides. By using C in Eq. (15), we can
remove any dependence on S̃, obtaining
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SF ¼ Sþ ϵ

�
∂S
∂θ

− C
�
þOðϵ2Þ: ð17Þ

In the following, we track explicitly the dependence on the
parameter θ, and from Eq. (17), we obtain

SF ¼ Sθþϵ − ϵCθ þOðϵ2Þ: ð18Þ

By using the latter in the definition of ZF , we obtain

ZF ¼ Zθþϵ − ϵZθhCθiθ þOðϵ2Þ: ð19Þ

Finally, by using the above in Eq. (10), we obtain

hOθiθ ¼ hOθiθþϵ þ ϵhOθCθiθ − ϵhOθiθhCθiθ
− ϵhð∂Oθ; ∂S̃θÞiθ þOðϵ2Þ; ð20Þ

and the theorem is proved since

dhOθiθ
dθ

¼ lim
ϵ→0

hOθþϵiθþϵ − hOθiθ
ϵ

¼
�
∂Oθ

∂θ
þ ð∂Oθ; ∂S̃θÞ −OθCθ

�
θ

þ hOθiθhCθiθ:

ð21Þ

Case study and numerical results.

Wilson action: To demonstrate the effectiveness of Eq. (6)
compared to Eq. (3), we consider a four-dimensional SU(3)
Yang-Mills theory defined on a lattice using the standard
Wilson action

SWðβ; UÞ ¼ −
β

6
W0ðUÞ; ð22Þ

where W0 denotes the sum of plaquettes. We aim at
computing the slope in β of various observables, and
therefore the approach outlined here requires a flow action
S̃ that satisfies Eq. (9) in the following way:

L0S̃ −
β

6
ð∂W0; ∂S̃Þ −

1

6
W0 ¼ constant: ð23Þ

Inspired by Lüscher’s t expansion [1], it is easy to show that
an analytical solution to Eq. (23) is

S̃ ¼ 1

6

X∞
k¼0

�
β

6

�
k
S̃ðkÞ with

S̃ð0Þ ¼ L−1
0 W0 ¼

3

16
W0 and

S̃ðkÞ ¼ L−1
0 ð∂W0; ∂S̃

ðk−1ÞÞ for k > 0; ð24Þ

which we refer to as β expansion, and it is equivalent to
Lüscher’s t expansion evaluated at t ¼ β divided by β. We
refer to S̃ð0Þ as the leading order (LO) and to S̃ð1Þ as the
next-to-leading order (NLO). The calculation of the NLO
can be found in Ref. [1], where the term ð∂W0; ∂W0Þ is
computed. It results in a linear combination of the Wilson
loops depicted in Fig. 1, which are defined as

Wi ¼
X
C∈Γi

trfUðCÞg for i¼ 0;1;2;5

Wi ¼
X

C;C0∈Γi

trfUðCÞgtrfUðC0Þg for i¼ 3;4;6;7; ð25Þ

where Γi are all unique loops for a given shape, including
loops in the perpendicular direction—i.e., chair shaped—
for i ¼ 1,2,3,4.

Gradients of Wilson loops: Since the convergence of the β
expansion in Eq. (24) deteriorates as β grows, we show
results for simulations performed at various values of β
from β ¼ 0 up to β ¼ 6. At β ¼ 0, the LO of the β
expansion solves Eq. (23) exactly, while, on the other
hand, the region of physical interest starts from β ≳ 5.8,
where a lattice spacing of about 0.14 fm is measured [19].
We compute the slope in β for a set of Wilson loops, Wi,
using either the perturbative expansion (PE) or the new
approach using the LO or the NLO of Eq. (24) computed at
each β. For all experiments, we use a lattice of size 164 and
measure expectation values over 10,000 configurations
simulated at each value of β using an Hamiltonian
Monte Carlo (HMC) algorithm. To compare gradients
for various Wilson loops, we study the deviation of the
value measured using an approach “T” from the weighted
average of all approaches, namely,

ΔT;i ¼
1

σPE;i

�
dhWii
dβ

����
T
−
dhWii
dβ

����
PE

�
; ð26Þ

FIG. 1. Representation of the loops entering the β expansion up
to the NLO. The plaquette, shown by the green loop, enters the
LO expansion, while the loops shown in blue enter the NLO. The
enumeration of the loops follows Ref. [1].
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where dhWii
dβ jT is the value from the approach T and we

normalize the results using the error from the perturbative
expansion PE, such that the error of ΔPE;i is always unity.
Results are depicted in Fig. 2 and summarized in Table I.
As can be seen, we observe excellent statistical agreement
between the results measured using the perturbative expan-
sion and the novel approach discussed in this work,

supporting the correctness of the derivation. We also
observe an impressive improvement in the error achieved
at small β. This is highlighted in Table I, in which we list
the minimum and maximum values of the ratio between the
errors obtained using the various approaches. At β ¼ 0,
results for LO and NLO are the same, since LO solves
exactly Eq. (23). Here, we achieve the largest improvement
for the signal-to-noise ratio, which is of more than 3 orders
of magnitude in calculating the slope in β of the plaquette.
Additionally, looking at Table I, we observe a very strong
connection between the improvement in the errors and the
ratio of the standard deviations of C and ∂S=∂β. The latter,
therefore, can be used to have an estimate of the gain one
would achieve in a generic situation.

Convergence of the β expansion: On a side note, our
experiments let us comment on the convergence of the β
expansion in Eq. (24). This provides some interesting
insights into the ability to flow in β using gradient
flows [20]. On one side, if all S̃ðkÞ have similar magnitude,
the series would be converging only for β < 6. On the other
hand, S̃ðkÞ might decrease in magnitude at increasing k,
therefore converging for all β. In Ref. [1], an analytical
study on the convergence of the t expansion is found, and
similar arguments can be applied to the β expansion since
they share the same origin. In the following, on the other
hand, we provide numerical evidence for the first few
orders. In our numerical experiments, we have computed
the actions S̃ð0Þ and S̃ð1Þ. Additionally, we can measure the
value of L0S̃

ð2Þ from its definition, namely,

L0S̃
ð2Þ ¼ ð∂W0; ∂S̃

ð1ÞÞ; ð27Þ

which is the scalar product of the forces of W0 and of S̃ð1Þ,
both computed in our experiments. Results for the ratio of
the first three orders are given in Fig. 3, in which we
analyze the standard deviation of these terms and not their
value since the flow action is defined up to a constant (23).

FIG. 2. Accuracy on the gradients in β for the Wilson loops,Wi
depicted in Fig. 1, measured using the perturbative expansion in
Eq. (3) or alternatively using the new approach in Eq. (6) with the
LO or the NLO terms for the flow action S̃ in Eq. (24). We depict
the deviation ΔT from the values measured using PE normalized
such that the errors of PE are unitary; see Eq. (26). Thus, the
continuous lines are the central values of PE, while the dashed
lines are plus or minus one unit of the error of PE. Results at
various β are computed over 10,000 configurations with lattice
size 164, simulated with HMC and separated by 4 MDUs.

TABLE I. Smallest and largest value for the ratio of the error
obtained using the new approach defined by Eq. (6) and the error
of the perturbative expansion given by Eq. (3) over the measured
Wilson loops. Results are given for the cases when the LO or the
NLO is used in the flow action. We report also the ratio between
the standard deviation of C and the one of S0 ¼ ∂S=∂β, noting a
strong connection between this ratio and the one between the
errors.

β ¼ 0 β ¼ 1 β ¼ 2 β ¼ 3 β ¼ 4 β ¼ 5 β ¼ 6

LO min 0.08% 12.0% 23.1% 37.6% 45.4% 67.6% 65.3%
max 0.45% 16.7% 33.5% 48.2% 66.2% 81.1% 92.5%

σC=σS0 0.00% 15.0% 29.2% 47.1% 65.6% 75.6% 102.0%

NLO min 0.08% 1.8% 6.9% 17.0% 29.6% 55.3% 68.9%
max 0.45% 2.5% 10.4% 22.4% 43.9% 66.3% 99.1%

σC=σS0 0.00% 2.4% 9.7% 22.8% 42.3% 62.2% 100.7%

FIG. 3. Study of the convergence of the β-expansion, showing
ratios between the standard deviation of the LO, the NLO, and the
next-to-next-leading-order (NNLO) of the flow action or its
Laplacian. Lines are interpolations for guiding the eye.
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While σðS̃ð1ÞÞ is almost 2 orders of magnitude smaller than
σðS̃ð0ÞÞ, the ratio σðL0S̃

ð2ÞÞ=σðL0S̃
ð0ÞÞ is larger than

σðL0S̃
ð1ÞÞ=σðL0S̃

ð0ÞÞ and increases in β, pointing in the
direction that the various orders might have similar mag-
nitude. If this is true, then the β expansion is converging
only for β < 6, while at larger β, possibly all terms
contribute to the flow action, making it an extensive
operator in the region where the regime of physical interest
begins. This is unfortunate for flow-based trivializing maps
since flowing at large β becomes very challenging. Indeed,
to date, only flowing at very small β has been proven
successful in four dimensions [21].

Conclusions. In this work, we have presented a novel
approach for computing gradients of observables with
respect to action parameters, which, in its simpler form
given in Eq. (8), is free of any disconnected contribution or
vacuum expectation value. We provide numerical evidence
within our case study that when a flow action solution to
Eq. (9) is found the new approach provides a significant
improvement in the signal-to-noise ratio compared to the
commonly used perturbative expansion. We use, as a case
study, the calculation of the slope in β of Wilson loops in
pure-gauge SU(3) Yang-Mills theories. In this situation, we
are able to provide in Eq. (24) an analytic solution to the
required flow action in terms of a series expansion, referred
to as β expansion. We compute the first two orders of the
series and show results at various β for many Wilson loops.
At β ¼ 0, the expansion converges at the leading order, and
in this case, we obtain the largest improvement in the errors.
At finite β, instead, the expansion converges in orders of
β=6. Therefore, a reduction in the errors is seen only for
β < 6, which is a region of nonphysical interest. On the

other hand, these results are only meant as proof of concept,
since the approach will change according to the application.
Indeed, each case should be studied independently, search-
ing for an appropriate flow action, that satisfies Eq. (9) for a
desired action S and parameter of the action θ. Where
possible, this can be done analytically, or alternatively, it can
be done numerically using a parametric definition of S̃ [20]
and machine-learning techniques to find the optimal flow
action. In this case, for the training, we suggest minimizing
either the variance of hCi [see Eq. (7)] since the final
objective is to make it constant, i.e., Eq. (9), or to perform an
observable-dependent training by minimizing the value or
the variance of hOihCi − hOCi. We have tested such an
approach for the case study presented here, and we have
obtained results compatible with the analytical solution, and
no further improvement was observed. On the other hand,
for all other cases where an analytical solution is not easy to
find, this is a new valuable application of machine-learning
techniques.
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