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Based on a dynamical model on particle production, the production and fraction of exotic components in
neutron star matter are analyzed. It is found that there exists a small fraction of strangeness in twice
saturation density matter. For five times saturation density matter, the fraction of strange baryons can be as
high as 25%–50%, depending on the equation of state used. The neutron-proton asymmetry of dense matter
does not significantly impact the strangeness fraction in neutron star matter. This research provides new
insights into the strange components in neutron stars.
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Neutron stars are one of the densest objects in our
universe, with densities exceeding that of atomic nuclei and
immense gravitational fields. They are formed from the
remnants of supernova explosions and are primitively
supposed to be primarily made up of neutrons. However,
a series of theoretical investigations have shown that
neutron stars may also contain strange matter, a type of
matter composed of strange quarks [1–10]. This “strange-
ness” in neutron star matter has sparked interest in physical
community as it could provide valuable insights into the
strong nuclear force and the behavior of matter under
extreme conditions [4,7,10–13].
The presence of strangeness in neutron stars could have

significant implications for our understanding of these
objects [14]. It could affect the internal structure and
cooling of neutron stars [15–19]. Strangeness could also
affect the outcome of neutron star mergers [20], potentially
producing unique gravitational wave signals [21]. Strange-
ness softens equation of state of dense matter in general,
thus might claim its role in the shock-wave/neutrino
delayed-shock process, presumably changing the explosion
in the formation of core-collapse supernovae [22–25].
Studying the properties and abundance of strangeness in
neutron stars is therefore an important area of research
for astrophysicists and particle and nuclear physicists. By
observing the properties and behavior of neutron stars, and
comparing these with theoretical models and simulations,
scientists hope to gain a better understanding of the nature
of matter under extreme conditions, as well as the processes
that govern the evolution of these objects over time [16].
There are several theoretical methods to study strange

particles in neutron stars. One method involves using
various nuclear many-body theories to calculate the proper-
ties of strange particles in dense matter [6,13]. Another
method is to use effective field theories to describe the

interaction between strange particles and nucleons [26].
Additionally, some researchers use perturbative quantum
chromodynamics to study strange quark matter [27,28].
Also one can use astrophysical observations of neutron stars
to infer the properties of strange particles within
them [29,30]. In all the above methods, the interactions
between strangeness and nonstrangeness in dense matter
are, in fact, rarely rectified by comparing with high-energy
nuclear experiments in terrestrial laboratory. Relativistic
heavy-ion collisions can reveal the interactions among
particles at short distance or high baryonic densities.
Determination of the strong nuclear force including strange-
ness in the context of high densities is the core question of
“hyperon puzzle” [12] and affects the fraction of strange-
ness. While the fraction of strangeness conversely affects the
bulk stiffness of neutron star matter or the maximummass of
neutron stars. The interplay of the fraction of strangeness
and the equation of state of neutron star matter complicates
the question on “hyperon puzzle.” To first determine the
fraction of strangeness in neutron star matter, in the present
study, I use a relativistic heavy-ion collision transport model,
which is frequently used to simulate particle productions in
heavy-ion collisions, to study the strangeness production in
neutron star matter through box simulation.
The used collision dynamical model is a mode of the

a multiphase transport (AMPT) model [31], which only
deals with pure hadron cascade with hadronic mean-field
potentials (dubbed as AMPT-HC) [32]. In the AMPT-HC
model, the Woods-Saxon nucleon density distribution and
local Thomas-Fermi approximation are used to initialize
the position and momentum of each nucleon in colliding
projectile and target. In addition to the usual elastic and
inelastic collisions, hadron potentials with the test-particle
method are applied to nucleons, baryon resonances, strange-
nesses as well as their antiparticles [32,33]. In the model, π,
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ρ, ω, η,K,K�, ϕ,N,Δ,N�ð1440Þ,N�ð1535Þ,Λ, Σ, Ξ andΩ
are included. Since the form of single nucleon potential at
high momenta and high densities is still less known, to make
minimum assumption, here we use the density-dependent
single nucleonmean-field potentialUðρÞ¼α ρ

ρ0
þβð ρρ0Þσ with

α¼ð−29.81−46.9 kþ44.73
k−166.32ÞMeV, β ¼ 23.45 kþ255.78

k−166.32 MeV,
σ ¼ kþ44.73

211.05 (where ρ0 and k stand for nuclear saturation
density and incompressibility of nuclear matter, respectively)
to model the stiffness of nuclear matter, i.e., the equation of
state (EoS) of nuclear matter [34]. As for the asymmetric part
of the EoS, which is crucial to neutron star matter, a form of
Esymðρ=ρ0Þ ¼ 34.5ðρ=ρ0Þγ is employed [35], where γ ¼ 0.5
or 1.5 for the default soft symmetry energy and a stiff
symmetry energy as counterpart, respectively.
In the AMPT-HC model, strangeness productions from

baryon-baryon, meson-baryon as well as meson-meson
scatterings were specified in detail in Refs. [31–33] and
references therein. The form of kaon potential is taken from
Ref. [36] while no mean-field potential is used for pions.
For strange baryons Λ, Σ, Ξ, and Ω, we adopt the quark
counting rule asserting that these strange baryons interact
with other baryons only through their nonstrange (2=3,
2=3, 1=3, 0) constituents [37,38]. Therefore, YN potential
is 2=3UN (where Y stands for Λ or Σ, UN is the single
nucleon potential); YY potential is 4=9UN ; YΞ potential is
2=9UN ; and ΞΞ potential is 1=9UN . There is no mean-field
potential for the three-strange-quark Ω.
Since the neutron star matter is a long-standing and

stable matter in the universe and one cannot simulate
particle-particle scatterings relating to strangeness produc-
tions in box using infinite time steps. In practice, I employ
finite time steps which can saturate strangeness production
quickly without introducing Pauli-blockings. Introducing
the Pauli-blockings would prolong the saturation time in
box simulations but does not evidently affects the results in
the present study. This is because the Pauli-blocking just
prevents a scattering with a larger probability but it would
happen if it has more chances to scatter. If the reaction
time is infinite, the Pauli-blocked scattering would have
more chances to scatter. In the simulations, for a specific
scattering channel, besides net charge conservation, the net
strangeness is conserved. However, during the collisions,
some strangenesses are short life and decay soon, the net
strangeness is thus not conserved in the whole simulation
process.
Nuclear matter computation given by nuclear many-

body models is frequently seen in the studies of properties
of neutron star matter as well as bulk properties of nuclear
matter in nucleus or heavy-ion collisions. Around nuclear
saturation density, since there are a lot of empirical values
from nuclear experiments to use, most nuclear many-
body models could give reasonable predictions. While
beyond saturation density, model extrapolations usually
give divergence, simply because the strong interactions
among different particles used at high baryon densities in

nuclear many-body models are less confirmed. Hadronic
transport model dealing with particle-particle scatterings
at high energies naturally tackles the interactions among
different particles at high densities. Since the results of
particle production given by transport models are fre-
quently compared with nuclear experimental data from
facilities worldwide, the scattering matrix element (deter-
mined by the strong interaction) among different particles
at high densities in heavy-ion collisions are frequently
adjusted. Therefore, hadronic transport model for relativ-
istic heavy-ion collisions could give some certain proper-
ties of strongly interacting matter.
Figure 1 shows nuclear matter in a box with periodic

boundary condition, simulated by the pure hadronic trans-
port model for relativistic heavy-ion collisions AMPT-HC.
In the simulations, besides particle-particle collisions,
mean-field potentials are added for most baryons and some
mesons. The mean-field potential plays an important role in
the long evolution process of dense matter. Coordinates of
initial nucleons are randomly distributed in box while the
initial momentum of each nucleon is decided by local
Thomas-Fermi approximation with Fermi momentum cal-
culated by its local density, i.e., pF ¼ ½3π2ℏ3ρðrÞn;p�1=3.
In this study, as the zero-temperature neutron stars are the
most frequently discussed, the initial temperature of sim-
ulation is set to be zero.
To see how the non-nucleon particles are produced in

dense matter, Fig. 2 denoting time evolution of the non-
nucleon particle productions in dense matter is plotted. It is
seen that the non-nucleon particles are gradually produced
as time increases. The nonstrange particles Δ resonance
and π meson are first produced due to their low production

FIG. 1. Sketch of initial nuclear matter (using 1 run 1 test
particle per nucleon as an example exhibition) at five times
saturation density, i.e., 5ρ0, in a box with periodic boundary
condition. The dimensions of the cubic box are a ¼ b ¼
c ¼ 5 fm. The position of the center of box is (0, 0, 0). In
practice, a particle that leaves the box on one side should enter
it from the opposite side with the same momentum. In real
simulations, 10 test-particle per nucleon and 1000 runs were
employed. The time step is 0.2 fm=c and the code runs and stops
at 1000 fm=c.
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thresholds. Their yields soon saturate as time increases,
suggesting the balance of production and absorption is
reached. As time increases, the nonstrange particles experi-
encing multiscatterings have enough energies to surpass
threshold energies of strangeness productions. One thus
sees that the singly strange particles Kþ, Λ, Σþ are
produced at later time and gradually reach saturation.
The associated production of single strangeness is clearly
demonstrated in Fig. 2. When there are enough singly
strange particles in dense matter, the doubly strange Ξ− is
ready to produce. It is clearly shown that the doubly strange
Ξ− begins to produce at the latest time and gradually
reaches saturation after 1000 fm=c. Overall, there is a rapid
saturation on the production of non-nucleon particles in
even denser matter. From Fig. 2, one sees that in the static
dense matter, nucleons, resonances, mesons as well as
single and double strangenesses all may exist. The exist-
ence of non-nucleon particles is supposed to alter the bulk
properties of dense matter.
In neutron star matter, the number of neutrons is

generally considered to be about 9 times the number of

protons. It is thus necessary to see if the previous result on
the productions of non-nucleon particles changes in neu-
tron star matter with super large asymmetry of neutron
number and proton number. Also it is interesting to see if
the symmetry energy plays a role in the production of non-
nucleon particles in dense and asymmetric matter. Figure 3
shows the typical particle (Δ0, πþ, Kþ, Λ, Σþ, and Ξ−)
productions in dense symmetric (N ¼ Z) and asymmetric
(N=Z ¼ 9) matter and the effects of EoS with the variety of
symmetry energy are also shown. First, it is seen that the
asymmetry of dense matter in fact less affects the produc-
tions of non-nucleon particles. This is not only because the
productions of these particles are less isospin-dependent
but also most asymmetry effects have been smoothed
out after many scatterings among particles. While the
symmetry energy affects the productions of non-nucleon
particles, especially at low densities, the stiff symmetry
energy (γ ¼ 1.5) increases the average energy per nucleon,
causes more energetic nucleon-nucleon collisions. There-
fore more non-nucleon particles are produced. Second, the
fractions of πþ, Kþ mesons are overall larger than those of

FIG. 2. Time evolution of several typical particle (Δ0, πþ, Kþ,
Λ, Σþ, and Ξ−) productions per initial baryon in dense matter
with, respectively, 2 (a), 3 (b), and 5 (c) times nuclear saturation
density employing a pure hadronic transport model.

FIG. 3. Same as Fig. 2, but for final state situations with various
asymmetries and symmetry energies. The default case for the
symmetry energy is Esymðρ=ρ0Þ ¼ 34.5ðρ=ρ0Þγ¼0.5. The case
“γ ¼ 1.5” denotes Esymðρ=ρ0Þ ¼ 34.5ðρ=ρ0Þγ¼1.5.
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Δ0, Λ, Σþ and Ξ− except for twice saturation density with a
soft EoS. The fractions of other particles could be estimated
via isospin symmetry of related reaction channels. Finally,
Fig. 3 further demonstrates that even at two times saturation
density, non-nucleon particles still occupy certain propor-
tions. One thus should be careful when predicting the
properties of dense matter above twice saturation density
via nucleon-only many-body approaches.
The basic question of “hyperon puzzle” in the neutron

star interior is the fraction of strangeness in neutron star
matter. To show the fraction of strange baryon in neutron
star matter, ratios of the strange baryon number over the
total baryon number are demonstrated for symmetric and
asymmetric matter with the variety of EoS. From Fig. 4, it is
seen that the fractions of the strange baryons become larger
for even denser matter. For dense matter at 2ρ0, one can see
that the fractions of strange baryons are about 4% for
symmetric (N ¼ Z) and asymmetric (N=Z ¼ 9) matter with
a soft EoS. While such fractions increase evidently
(roughly from 4% to 10% or 20%) either for a stiff
symmetry energy (“γ ¼ 1.5”) or further for a large incom-
pressibility coefficient (k ¼ 380 MeV). But the effects of
the EoS on the fractions of strange baryons become less
evident for even denser matter. For dense matter at 5ρ0,

the fractions of strange baryons could be as high as
25%–50%, depending on the EoS employed. Large
fraction of the strange baryon in dense matter call for
clear hyperon-nucleon and hyperon-hyperon interactions
while studying the properties of neutron star matter via
many-body calculations. It is gratifying to see that the study
of hyperon-nucleon interaction is reignited at RHIC
through the measurements of Λ hyperon and hypernuclei
directed flows [39].
The nuclear EoS affects the fraction of the strange

baryon in dense, neutron star matter. While the strange
composition in neutron star matter alters the stiffness of
neutron star matter [6]. The interplay of the EoS and the
fraction of strangeness complicates the studies on the
properties and the structure of dense, neutron star matter.
The present research on strangeness production in

neutron star matter does not necessarily represent the actual
situation inside neutron stars, but it provides new insights
into the strange components in neutron stars.
In summary, based on a relativistic transport model for

heavy-ion collisions, the fractions of non-nucleon particles,
especially for strange baryons in dense, neutron star matter
are studied via box calculations. It is found that the
fractions of strange baryons are not affected by the
asymmetry of neutron number and proton number in dense
matter, but the employed equation of state evidently affects
the fractions of strange baryons. There exists a small
fraction of strangeness in twice saturation density matter.
For five times saturation density matter, the fraction of
strange baryons can be as high as 25%–50%, depending on
the equation of state used. Large fraction of the strange
baryons in dense matter call for clear hyperon-nucleon and
hyperon-hyperon interactions so as to determine the bulk
properties of the neutron star matter.
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