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Motivated by the existence of two-body hadronic molecules composed of ΩΩ, ΩcccΩccc, and ΩbbbΩbbb

predicted by lattice QCD simulations, we use the Gaussian expansion method to investigate whether three-
body systems composed of ΩΩΩ, ΩcccΩcccΩccc, and ΩbbbΩbbbΩbbb can bind with the two-body 1S0
interactions provided by lattice QCD. Our results show that none of the three-body systems bind. On the
other hand, we find that with the one-boson exchange potentials the ΩΩΩ system develops a bound state,
for which the 5S2 interaction plays an important role. Our studies support the existence of the 3

2
þ ΩΩΩ

bound state and the nonexistence of the 3
2
þ ΩcccΩcccΩccc and ΩbbbΩbbbΩbbb bound states, due to the

suppressed 5S2 interactions in heavier systems.

DOI: 10.1103/PhysRevD.108.L091506

Introduction. The quark model, as a classification scheme
for light-flavor hadrons, was proposed by Gell-Mann [1]
and Zweig [2] in 1964, which was established when the
predicted Ω baryon with the highest strangeness number
was observed experimentally [3]. It is often viewed as the
first stage in hadron physics. Since 2003, we have wit-
nessed a new stage in hadron physics with the observation
of many new hadronic states, such as the charmoniumlike
XYZ states and the pentaquark states [4–12], which have
stimulated extensive studies, both theoretically and exper-
imentally. Although remarkable progress has been made, a
unified understanding of exotic hadronic states is still

missing. At present, it is widely acknowledged that one
should pay more attention to new configurations, exotic
quantum numbers, and special systems in order to better
understand the nature of exotic hadronic matter and the
nonperturbative strong interaction.
In recent years, fully strange and fully heavy dibaryon

systems have attracted considerable attention. With increas-
ing computational power, lattice QCD has become the
primary force to derive hadron-hadron interactions in a
quantitative way from first principles. In Ref. [13], the
authors investigated the ΩΩ interaction in the 1S0 channel
and concluded that there exists a weakly bound state
regardless of the Coulomb interaction, which is even
shallower than the deuteron. In Ref. [14], the existence
of a 1S0 ΩcccΩccc shallow bound state is predicted, while it
disappears once the Coulomb interaction is taken into
account. Very recently, the existence of a deeply bound 1S0
ΩbbbΩbbb state was also predicted [15]. For the ΩΩ,
ΩcccΩccc, and ΩbbbΩbbb systems, some of us developed
an extended one-boson-exchange (OBE) model to derive
their interactions in Ref. [16] and obtained results
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consistent with those of lattice QCD [13–15]. In Ref. [17],
the authors found the existence of fully heavy dibaryon
bound states, ΩcccΩccc and ΩbbbΩbbb, in the constituent
quark model, while the corresponding fully heavy hex-
aquark states are found to be above the ΩcccΩccc and
ΩbbbΩbbb mass thresholds in both the constituent quark
models [18–20] and the QCD sum rules [21].
On the experimental side, studies of fully heavy multi-

quarks have made important breakthroughs. In 2020, the
LHCb Collaboration reported the observation of the first
fully heavy tetraquark state, Xð6900Þ [22]. It was later
confirmed by the CMS Collaboration with a statistical
significance of 9.4σ, and, in addition, two new states
Xð6600Þ and Xð7200Þ were observed [23]. The ATLAS
Collaboration further confirmed the discovery of the LHCb
Collaboration [24]. Clearly, the existence of fully heavy
multiquark states can be considered as firmly established.
It is a plausible expectation that tribaryon systems exist,

given the predicted existence of dibaryon systems. We note
that experimental and theoretical studies of tribaryon
systems other than atomic nuclei and hypernuclei have
continued for many years without conclusive results
[25–46]. For example, in Refs. [27–31], the authors studied
the possible existence of nonstrange tribaryons including
NNN [28,31], NNΔ [28,31], NΔΔ [29,31], and ΔΔΔ
[27,30,31] systems with the relevant two-body potentials.
The strange tribaryons have also been studied, including
single strangenessΛNN andΣNN [32–34], double- strange-
ness ΛΛN and ΞNN [35–39], and multistrangeness NΞΞ
[39],ΩNN, andΩΩN [40,41]. An interesting observation is
that, in the ΩNN and ΩΩN systems, the 5S2 ΩN potential
derived from latticeQCDsimulations,which can formbound
states [47], plays an important role [40,41,48]. On the
experimental side, a strange tribaryon S0ð3115Þwas reported
in the 4He (stopped K−, p) reaction, which mainly decays
into ΣNN [49]. In Ref. [42], this strange tribaryon is
explained as a nonaquark state. Other searches for strange
tribaryons have also been performed [43–46].
In this paper, motivated by the remarkable progress

achieved on studies of the fully heavy multiquark states
from both lattice QCD [13–15] and experiments [22–24],
we study theΩΩΩ system, as well as theΩcccΩcccΩccc and
ΩbbbΩbbbΩbbb systems. Notice that this study differ from
the previous works. Regarding the works we mentioned
above, they have either different species of baryons (ΩNN,
ΩΩN,…) or different flavors or charges (pnn, ΔΔΔ, ΞΞΞ,
…). To the best of our knowledge, it is the first time that
three-body systems that are composed of fully identical
flavored baryons have been studied. The systems we study
contain only one species of baryons that are composed of
only one species of quarks and, therefore, have the highest
symmetries. This means that we need only the interactions
of a pair of identical baryons and the number of allowed
configurations is much reduced as well, thus allowing for
more robust predictions.

Most strange tribaryon. We adopt the Gaussian expansion
method (GEM) [50–52] to study theΩΩΩ system. To solve
the Schrödinger equation with GEM, one needs to derive
the two-body interactions and construct the three-body
wave functions. We note that three-body interactions may
play an important role in many-body systems, such as the
nucleus. Unfortunately, no empirical information on the
three-body interactions is available for the three identical
baryons we have studied. Thus, in this exploratory work,
we consider only two-body interactions.
TheΩΩ interaction has been derived in lattice QCD [13],

where it was shown that the S-wave ΩΩ system can bind
with a binding energy of 1.6ð6Þþ0.7

−0.6 MeV (without taking
into account the Coulomb interaction). In addition to lattice
QCD, other methods such as the extended OBE model can
also provide the ΩΩ interaction [16]. The light meson
exchange, including the pseudoscalar (π), scalar (σ), and
vector (ρ, ω) mesons, can well describe many hadron-
hadron interactions, which is naively extended to the
ΩcccΩccc system by invoking the exchange of the charmo-
nium states ηc, χc0, and J=ψ . The couplings between Ωccc
and the charmonium states are assumed to be proportional
to the couplings between the nucleon and the light mesons
utilizing the quark model. We emphasize that, although the
OBE model constructed in this way suffers from relatively
large uncertainties, these can be minimized by fitting to the
lattice QCD binding energies of the ΩΩ, ΩcccΩccc,
and ΩbbbΩbbb bound states. In this work, we utilize both
interactions to study the ΩΩΩ three-body system; see
Fig. 1 for the potentials.
The ΩΩ lattice QCD potentials for the 1S0 channel are

expressed with three Gaussian functions V
1S0
L ðrÞ ¼P

3
i¼1 aie

−bir2 [13]. Since the Ω baryon is charged, the
Coulomb interaction plays an important role in the ΩΩ
andΩΩΩ systems. The Coulomb potential between a pair of
ΩΩ is VCðrÞ ¼ −α=r, where α ¼ 1=137 is the electromag-
netic fine structure constant. The lattice QCD simulations
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FIG. 1. OBE and lattice QCD potentials for theΩΩ system. The
blue dashed, orange dashed, and green solid lines denote the 1S0
OBE, the 5S2 OBE, and the 1S0 latticeQCDpotentials, respectively.
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provided only the 1S0 potential between the ΩΩ pair. As we
see later, the 5S2 potential plays an important role in the three-
body system as well.
In GEM, a three-body system is studied by solving the

three-body Schrödinger equation with the three-body wave
functions and the Hamiltonian in Jacobi coordinates. For
theΩΩΩ three-body system, the Schrödinger equation is as
follows:

½T þ VΩΩðr1Þ þ VΩΩðr2Þ þ VΩΩðr3Þ − E�ΨJðr⃗c; R⃗cÞ ¼ 0;

ð1Þ
where c ¼ 1–3 denote the three Jacobi channels, rcðRcÞ are
the Jacobi coordinates, T is the kinetic-energy operator, and
VΩΩ is the two-bodyΩΩ interaction. For the details on how
to construct the Jacobi coordinates and the three-body
kinetic-energy operator, please refer to Ref. [51].
The ΩΩΩ three-body wave function can be written as a

sum of three Jacobi channels:

ΨJðr⃗c; R⃗cÞ ¼
X

Ac
αΦc

Jðr⃗c; R⃗cÞ; ð2Þ

where Ac
α is the expansion coefficients and α is the set of

quantum numbers characterizing the wave function in each
Jacobi channel. The wave function of each Jacobi channel
reads as

Φ1
Jðr⃗1; R⃗1Þ ¼

h
½½χ3χ2�s1χ1�S ⊗ ½ψ l1ðr⃗1ÞϕL1

ðR⃗1Þ�Λ
i
J
;

Φ2
Jðr⃗2; R⃗2Þ ¼

h
½½χ1χ3�s2χ2�S ⊗ ½ψ l2ðr⃗2ÞϕL2

ðR⃗2Þ�Λ
i
J
;

Φ3
Jðr⃗3; R⃗3Þ ¼

h
½½χ2χ1�s3χ3�S ⊗ ½ψ l3ðr⃗3ÞϕL3

ðR⃗3Þ�Λ
i
J
;

where χi is the spin wave function of the ith particle,
Hc

s;S ¼ ½½χiχj�sχk�S is the spin wave function of Jacobi
channel c, ψðriÞϕðRiÞ is the spatial wave function, s is the
spin of the sub-ΩΩ two-body system, S ¼ 3=2 is the total
spin of ΩΩΩ, li (Li) is the orbit angular momentum
corresponding to riðRiÞ, Λ is the total orbit angular
momentum built from l and L, and J is the total angular
momentum built from Λ and S.
Fermi-Dirac statistics dictates that only the 1S0 and 5S2

interactions contribute to the formation of anΩΩΩ 3
2
þ state.

The spin coupling coefficients of different spin configura-
tions between Jacobi channels i and j for i ≠ j are shown in
Table I. Note that, for i ¼ j, the matrix is orthogonal.
It is important to point out that, for the ΩΩΩ system, the

5S2 potential can play a very important role, even more
important than the 1S0 potential. This is because the 5S2
partial wave is more strongly coupled to the three-body spin-
3=2 state than the 1S0 partial wave. As shown in Table I, the
spin coupling coefficient of different Jacobi channels i and j
in the 5S2 partial wave is hHc¼i

2;3=2jHc¼j
2;3=2ii≠j ¼ 3=4, while that

in 1S0 is hHc¼i
0;3=2jHc¼j

0;3=2ii≠j ¼ −1=4, whichmeans that, in the

spin space, the coupling between channels i and j in the 5S2
partial wave is 9 times larger than that in the 1S0 partial wave.
Once the wave functions are obtained, with either the

lattice QCD or OBE ΩΩ interactions, one can adopt the
GEM [51] to obtain the binding energies and root-mean-
square (rms) radius of the ΩΩΩ system.
The results for the two-body ΩΩ system are summarized

in Table II, which show that the binding energies and rms
radii obtained with the OBE potentials are consistent with
those of lattice QCD. With both lattice QCD and OBE
potentials, the ΩΩ system can bind with a binding energy
of 1.4þ0.9

−0.4 MeV. The uncertainties are determined by
multiplying a scaling factor to the lattice QCD potential
so that the binding energy varies from 1.0 to 2.3 MeV,
consistent with the lattice QCD result 1.6þ0.7

−0.6 MeV [13].
From the analysis given above, we know that both 1S0

and 5S2 interactions contribute to the 3=2 ΩΩΩ system.
Given that the lattice QCD provided only the 1S0 inter-
action, we first consider only the 1S0 two-body interaction
and find that the ΩΩΩ system does not bind. But this result
should not be taken too seriously, since the 5S2 partial wave
plays an important role in the spin configuration
(hHc¼i

2;3=2jHc¼j
2;3=2ii≠j ¼ 3

4
) and has a significant correlation

with the 1S0 partial wave (hHc¼i
0;3=2jHc¼j

2;3=2ii≠j ¼
ffiffi
5

p
4
) in the

three-body case. Actually, with the OBE 1S0 and 5S2
potentials, we find that the three-body ΩΩΩ system binds
with a binding energy of 5.8þ2.5

−1.2 MeV and rms radius
1.9þ0.1

−0.2 fm.
Note that the binding energy per baryon of the ΩΩΩ

system is larger than that of the ΩΩ system, and con-
sequently its rms radius is smaller than that of the ΩΩ
bound state. This is understandable, because for the ΩΩΩ

TABLE I. Coupling coefficients of different spin configurations
between Jacobi channels i and j (i ≠ j). Here, Hc

s;S is the spin
function, s ¼ f0; 2g are alternative spin values of ΩΩ, and S ¼
3=2 is the total spin of ΩΩΩ.

Hc¼i
0;3

2

Hc¼i
2;3

2

Hc¼j
0;3

2

− 1
4

−
ffiffi
5

p
4

Hc¼j
2;3

2

−
ffiffi
5

p
4

3
4

TABLE II. Binding energies (BE) and root-mean-square radii
(hri) of theΩΩ and ΩΩΩ bound states obtained with lattice QCD
(with only 1S0) and OBE potentials (with both 1S0 and 5S2). BE in
MeV and radius hri in fm.

ΩΩðBEÞ ΩΩðhriÞ ΩΩΩðBEÞ ΩΩΩðhriÞ
LQCD 1.41þ0.89

−0.41 3.45þ0.52
−0.62 � � � � � �

OBE 1.41þ0.89
−0.41 3.33þ0.51

−0.62 5.84þ2.48
−1.22 1.86þ0.13

−0.19

TRIBARYONS WITH LATTICE QCD AND ONE-BOSON … PHYS. REV. D 108, L091506 (2023)

L091506-3



system the 5S2 potential plays an important role, while only
the 1S0 potential is relevant for the ΩΩ system.
The weights of partial waves and Hamiltonian expect-

ation values of the predicted ΩΩΩ bound state are given in
Table III, which clearly show that the 5S2 interaction plays a
significantly important role in the ΩΩΩ system. More
specifically, the weights of the 1S0 and 5S2 partial waves are
about 22% and 78%, respectively.
As we mentioned above, since the Ω baryon is charged,

the impact of the Coulomb interaction is worth discussing.
We find that the Coulomb interaction in this three-body
system affects the binding energy by about 2–3 MeV but
does not change the conclusion. Considering the Coulomb
interaction, the binding energy and rms radius of the ΩΩΩ
bound state predicted by the OBE model are 2.0 MeV and
2.3 fm, respectively.
It is important to discuss where to search for the

predicted ΩΩ and ΩΩΩ bound states. In Ref. [48], the
production yield of theΩΩ bound state was estimated using
a dynamical coalescence mechanism for the relativistic
heavy-ion collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and 2.76 TeV,
which turn out to be of the order of 10−6. In Ref. [41], the
production yields of NNΩ and NΩΩ were estimated to be
10−7 and 10−9, respectively. Comparing these results, one
can estimate the ΩΩΩ production rate for the relativistic
heavy-ion collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and 2.76 TeV,
which is of the order of 10−11.

Most charming and beautiful tribaryons. It is straightfor-
ward to extend the above study to the ΩcccΩccc and
ΩbbbΩbbb systems, for which the lattice QCD simulations
already provided the 1S0 potentials [14,15] and their OBE
counterparts also exist [16]. Note that in Ref. [15] no
analytic form of the ΩbbbΩbbb potential was provided. We
fitted the lattice QCD potential with a sum of three
Gaussian functions as done in Ref. [14]. All the lattice
QCD potentials and the corresponding OBE potentials are
shown in Fig. 2. We note that, although the interaction
strengths of the lattice QCD potential and those of the
OBE potentials are different, the positions where they
become the most attractive are almost the same. The same
can be said about the ΩΩ potentials shown in Fig. 1. Such
a coincidence indicates that the OBE model must have
captured some essential features of the baryon-baryon
potentials.
With the above lattice QCD and the OBE potentials, we

can study the two-body and three-body systems composed

of Ωccc and Ωbbb. As shown in Table IV, with only the
strong interaction the ΩcccΩccc bound system can be
formed, but it dissolves once the Coulomb interaction is
taken into account. On the other hand, theΩbbbΩbbb system
is always bound regardless of the Coulomb interaction.
Furthermore, we note that the results obtained with the
lattice QCD potentials and those with the OBE potentials

TABLE III. Weights of the partial waves and Hamiltonian
expectation values (units in MeV) of the 3

2
þ ΩΩΩ bound state.

hΨ1S0
3=2jΨ

1S0
3=2i hΨ5S2

3=2jΨ
5S2
3=2i hTi hV1S0i hV5S2i

OBE 22% 78% 52.72 −15.71 −42.84
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FIG. 2. OBE and lattice QCD potentials of the ΩcccΩccc (top)
andΩbbbΩbbb (bottom) systems. The blue dashed, orange dashed,
and green solid lines denote the 1S0 OBE, the 5S2 OBE, and the
1S0 lattice QCD potentials, respectively.

TABLE IV. Binding energies (BE) and root-mean-square radii
(hri) of the ΩcccΩccc and ΩbbbΩbbb bound states obtained with
OBE and LQCD potentials (BE in MeVand radius hri in fm). NC
means that the Coulomb interaction is not taken into account,
while C means that the Coulomb interaction is considered.

ΩcccΩccc
(NC)

ΩcccΩccc
(C)

ΩbbbΩbbb
(NC)

ΩbbbΩbbb
(C)

LQCD BE 5.54 � � � 88.7 79.9
hri 1.14 � � � 0.240 0.245

OBE BE 5.52 � � � 88.6 78.4
hri 1.05 � � � 0.198 0.202
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are similar. Nonetheless, none of the ΩcccΩcccΩccc and
ΩbbbΩbbbΩbbb three-body systems can bind mainly
because of the much weaker 5S2 interactions, which are
nontrivial predictions of the present work.

Summary. Motivated by the existence of ΩΩ, ΩcccΩccc,
and ΩbbbΩbbb bound states predicted by lattice QCD
simulations, we studied the 3

2
þ ΩΩΩ, ΩcccΩcccΩccc, and

ΩbbbΩbbbΩbbb three-body systems with the lattice QCD
and OBE potentials. We found that the ΩΩ, ΩcccΩccc, and
ΩbbbΩbbb systems can also bind with the OBE potentials,
with binding energies and rms radii consistent with those of
lattice QCD simulations. The repulsive Coulomb inter-
actions plays an important role in these systems, especially
in theΩcccΩccc system, which is strong enough to break the
ΩcccΩccc pair bound by the strong force.
For the three-body systems, we find that the 5S2 partial

wave plays a very important role in forming the 3
2
þ three-

body state. With only the 1S0 lattice QCD potentials, the
ΩΩΩ, ΩcccΩcccΩccc, and ΩbbbΩbbbΩbbb three-body sys-
tems do not bind. With the OBE potentials both in the 1S0
and 5S2 partial waves, the ΩΩΩ system becomes bound,
while the ΩcccΩcccΩccc and ΩbbbΩbbbΩbbb systems remain
unbound mainly due to the much suppressed attractive 5S2
interaction in the two-body ΩcccΩccc and ΩbbbΩbbb sys-
tems. To verify the existence of the ΩΩΩ bound state,
lattice QCD studies of the 5S2 interactions of the ΩΩ
system will be the key. We hope that the predicted ΩΩΩ
bound state can be searched for in present and future
hadron-hadron colliders.

A particularly interesting discovery of the present work
is that, even the two-body interactions are attractive and
strong enough to form two-body bound states, the three-
body systems do not necessarily bind. This is because, in
three-body systems, spin-spin interactions can play an
important role. The three highly symmetric systems studied
in the present work provide an ideal platform to understand
the relevance of spin-spin interactions in forming few-body
bound states.
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