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We calculate the Debye screening mass in thermal, dense, and magnetized QCD matter in the frame of
resummed perturbation theory. In the limit of zero temperature, when the Landau energy level and Fermi
surface of quarks match each other μ2q ¼ 2njqBj, where q, μq, and B are respectively the quark electric
charge, baryon chemical potential, and external magnetic field, the screening mass diverges and the system
is in the state of weakly interacting parton gas, which is very different from the known result of strongly
interacting quark-gluon plasma at high temperature. The divergence disappears in the thermal medium, but
the screening mass oscillates with clear peaks at the matched magnetic field.
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Introduction. An immediate consequence of quarks being
fermions is that quarks must satisfy the Pauli exclusion
principle, which states that no two quarks can occupy the
same state. The application of this pure quantum effect in
quark matter at finite baryon density means a boundary
separating occupied and unoccupied states in momentum
space, it is called the Fermi surface controlled by the
baryon chemical potential. The sharp Fermi surface leads
to the expectation that there should a first-order phase
transition in quantum chromodynamics (QCD) systems at
high baryon density. While lattice QCD simulations meet
the sign problem, many effective models obtain the first-
order phase transition for the chiral symmetry restoration at
high density [1–3]. A hot topic in the experimental and
theoretic study of QCD thermodynamics in relativistic
heavy ion collisions is the search for the critical point
connecting the crossover at high temperature and the first-
order transition at high baryon density [3,4].
A strong external electromagnetic field can also induce

QCD phase transitions and change the QCD medium
properties, like magnetic catalysis [5,6], inverse magnetic
catalysis [5,7], and chiral magnetic effect [8,9]. It is widely
believed that the strongest electromagnetic field in nature
can be created in noncentral nuclear collisions [8,10–16].
A familiar quantum phenomenon for a fermion moving in

an external magnetic field is the Landau energy level: The
fermion’s moving in the transverse plane perpendicular to
the magnetic field is like a harmonic oscillator which leads
to a discrete transverse energy [17]. A question we ask
ourselves is what will happen when the sharp Fermi surface
meets the discrete Landau levels. The related physics
systems with high baryon density and strong magnetic
field might be realized in compact stars and intermediate
energy nuclear collisions [4,18,19].
We study in this work the color screening in thermal,

dense, and magnetized QCD matter. Analog to the Debye
screening in electrodynamics, the color interaction between
a pair of quarks is screened by the surrounding quarks and
gluons [20]. The Debye mass mD or the Debye length
rD ∼ 1=mD can be used to effectively describe the QCD
phase transition: When the Debye length is shorter than the
hadron averaged radius, the constituents inside the hadron
cannot see each other through the color interaction and the
hadron as a whole particle disappears. In finite temperature
field theory, the Debye mass is defined as the static and
long wavelength limit of the gluon self-energy [20]. In a hot
QCDmedium, the hard thermal loop (HTL) method gives a
temperature-dependent Debye screening mass mDðTÞ [21].
For a dense QCD medium, the hard dense loop (HDL)
provides a similar baryon chemical potential dependence
mDðμBÞ [20,22,23]. The high-order corrections have
been considered [24–27]. Recently, the screening effect
is investigated in a thermal and magnetized QCD
matter [28], and the calculated Debye mass mDðT; BÞ
recovers the previously obtained limits of weak and strong
magnetic fields [29–31].
The paper is organized as follows. We first derive the

Debye screening mass mDðT; μB; BÞ at finite temperature,
baryon chemical potential, and magnetic field in the frame
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of loop-resumed perturbation theory, and compare it with
the previously obtained limits of dilute quark gas, weak and
strong magnetic field. We then focus on the case at zero
temperature and analyze the new phenomenon induced by
the quantum Fermi surface and Landau levels. We will
show the numerically calculated Debye mass at zero and
low temperature to see clearly the new phenomenon. We
summarize the work in the end.

Screening mass. The magnetic field breaks down the
translation invariance, which leads to the separation of
the quark momentum p into a longitudinal and a transverse
part pk and p⊥, parallel and perpendicular to the magnetic
field. Using the Schwinger propagator for massless quarks
with electric charge q [32],

GðpÞ ¼ −
Z

∞

0

dv
jqBj

�
ðγ · pÞkð1 − isgnðqÞγ1γ2 tanh vÞ

−
ðγ · pÞ⊥
cosh2v

�
e

v
jqBjðp2

k−
tanh v
v p2⊥Þ; ð1Þ

where the magnetic field B is explicitly shown, and the
temperature T and baryon chemical potential μB enter the
calculation through the Matsubara frequency p0 ¼ iωm ¼
ið2mþ 1ÞπT and energy shift p0 → p0 − μq with quark
chemical potential μq ¼ μB=3, one can calculate the gluon
polarization induced by a quark loop,

ΠμνðkÞ ¼ g2
Z

d4p
ð2πÞ4 Tr½γμGðpÞγνGðp − kÞ�; ð2Þ

where k is the gluon momentum, and the quark momentum
integration includes a three-momentum integration and a
Matsubara frequency summation. Note that, we have
neglected the Schwinger phase factor in the propagator (1),
since in the calculation of the polarization the two-phase
factors for the quark and antiquark cancel to each other. Here
wehave also fixed thequark flavor,wewill consider the flavor
summation in the end.
Taking the usually used summation over quark loops

on a chain, one can derive a nonperturbative gluon
propagator [20], and the Debye mass is defined as the
pole of the propagator. In the cases of high temperature
and/or high density, the screening mass is determined only
by the polarization in the limit of zero gluon momentum
Πμνðk0 ¼ 0; k → 0Þ, called as HTL and HDL approxima-
tions [20]. Since in these cases, the polarization depends
only on the external parameters, one can explicitly express
the dependence asΠμνðT; μB; BÞ. It is easy to see that all the
off-diagonal elements (μ ≠ ν) of the polarization vanish
automatically, one needs to consider the diagonal elements
only. One further divides the diagonal polarization into a

parallel and a perpendicular part Πk
μμ with μ∈ f0; 3g and

Π⊥
μμ with μ∈ f1; 2g, only the parallel part is related to the

color screening mass [20]. Including the gluon-loop and
ghost-loop contribution Π̄μν to the gluon polarization which
is only temperature dependent, since gluons and ghosts do
not carry neither charge nor baryon chemical potential, the
Debye screening mass is expressed as

m2
DðT; μB; BÞ ¼ −Πk

00ðT; μB; BÞ − Π̄k
00ðTÞ: ð3Þ

Since the pure temperature and density dependence in the
absence of a magnetic field is known [21–23],

m2
DðT; μB; 0Þ ¼ g2

��
Nc

3
þ Nf

6

�
T2 þ Nf

μ2q
2π2

�
ð4Þ

with numbers Nc and Nf of color and flavor degrees of
freedom, we focus the following on the shift of the squared
Debye screening mass induced by B. From the calculation
at zero baryon density [28], it is

δm2
DðT; μB; BÞ ¼ m2

DðT; μB; BÞ −m2
DðT; μB; 0Þ

¼ 2g2T
X
pz;m

ϵ̄2−Kðϵ̄2þÞ; ð5Þ

where the chemical potential is included in the dimension-
less variables ϵ̄2� ¼ ½p2

z � ðωm þ iμqÞ2�=ð2jqBjÞ, and the
function K is defined as KðxÞ ¼ 1=ð2x2Þ þ 1=x − ψ 0ðxÞ
with ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ controlled by the Gamma func-
tion. The quark frequency summation

P∞
m¼−∞ and the

longitudinal momentum integration
P

pz
¼ R

dpz=ð2πÞ2
are explicitly shown in (5), and the summation over
Landau levels for the transverse momentum pn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqBjp

is reflected in the recurrence relation of the
function K,

KðxÞ ¼ 1=ð2x2Þ þ 1=x − 1=ð2ðxþ NÞ2Þ − 1=ðxþ NÞ

þKðxþ NÞ −
XN−1

n¼0

1=ðxþ nÞ2 ð6Þ

with

N ¼
�
Floor

�
μ2q − π2T2

2jqBj
�
þ 1

�
θðμq − πTÞ: ð7Þ

To understand the physics of the summation here, we
consider the Fermi surface for quarks moving in an external
magnetic field. It is determined by the quark Fermi-energy
ϵn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2

n

p
¼ μq which restricts the quark momentum

p2
z þ 2njqBj ≤ μ2q. Since p2

z is positive, the maximum
Landau level is Floor½μ2q=ð2jqBjÞ�. Extending the analysis
to finite temperature, the restriction condition becomes
p2
z þ 2njqBj þ ω2

m ≤ μ2q. Considering again the minimum
longitudinal momentum pz ¼ 0 and the minimum thermal
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energy πT, the maximum Landau level becomes
Floorðμ2q − π2T2Þ=ð2jqBjÞ under the condition of μq > πT,
which is expressed as N − 1 in (6) and (7). When the Fermi
surface is not high enough to overcome the thermal energy
μq < πT, there isN ¼ 0, and the summation in (6) vanishes
automatically.
The recurrence relation (6) leads to

Kðϵ̄2þÞ ¼
1

ϵ̄2þ
−

1

ϵ̄2N
−
1

2

XN
n¼0

Δn
N

ðϵ̄2nÞ2
þKðϵ̄2NÞ ð8Þ

with Δn
N ¼ 2 − δ0n − δnN and ϵ̄2n ¼ ϵ̄2þ þ n. Substituting K

into the mass shift (5), after a straightforward but a
little tedious calculation, see the details shown in the
Supplemental Material [33], the total mass shift is separated
into two components,

δm2
D ¼ δm2

1 þ δm2
2;

δm2
1 ¼ −

g2

4T

X
pz;s

�
p2
zSs

N −
jqBj
2

XN
n¼0

Δn
Nsech

2ðϵ̄snÞ
�
;

δm2
2 ¼

2g2T2

π1=2

Z
∞

0

dξ
ξ2

ecξ
2

ϑ2ðaξ2; e−ξ2ÞMðbξ2Þ ð9Þ

with the constants a2 ¼ μ2q=ð4π2T2Þ, b ¼ jqBj=ð4π2T2Þ,
c ¼ a2 − 2Nb, and ϵ̄sn ¼ ðϵn þ sμqÞ=ð2TÞ and the func-
tions Ss

N ¼ sech2ðϵ̄s0Þ − sech2ðϵ̄sNÞ, ϑ2ðu; xÞ ¼ 2x1=4
P∞

i¼0

xiðiþ1Þ cos ðð2iþ 1ÞuÞ, and MðxÞ ¼ 1 − x2= sinh2 xþ
2Nxð1 − x coth xÞ. The summation

P
s¼� is over quarks

and antiquarks. Note that the first component δm2
1 dis-

appears automatically for N ¼ 0 due to Ss
0 ¼ 0 and

Δn
0 ¼ 0, the often used approximation [34] of taking only

the lowest Landau level is included in the second compo-
nent δm2

2. We can see for a dilute quark gas with μq → 0,
the component δm2

1 vanishes automatically due to N ¼ 0,
and δm2

DðT; 0; BÞ ¼ δm2
2ðT; 0; BÞ goes back to the known

result in hot medium [28].

Weak and strong magnetic field.We now consider the mass
shift (9) in weak and strong magnetic field approximations.
First, in the weak magnetic field limit jqBj → 0, the second
component δm2

2 disappears due to Mð0Þ ¼ 0. From the
derivation provided in Supplemental Material [33], the first
component δm2

1 vanishes too. Therefore, the total Debye
screening mass is guaranteed to satisfy the condition
limB→0m2

DðT; μB; BÞ ¼ m2
DðT; μB; 0Þ. Second, for a weak

magnetic field with
ffiffiffiffiffiffiffiffiffijqBjp

≪ T, one can either directly
expand the total mass shift δm2

DðT; μB; BÞ in terms of jeBj
or simply perform a replacement for the frequency
ωn → ωn þ iμq in the known result δm2

DðT; 0; BÞ obtained
before [28]. We take here the latter and the details are
shown in the Supplemental Material [33]. The Debye

screening mass shift up to jeBj2 for a weak magnetic field
at finite baryon chemical potential is then expressed as,

δm2
D ¼ −

1

18ð2πÞ4
X
s¼�

ψ ð2Þ
�
1

2
þ is

μq
2πT

�
g2

T2
jeBj2

þOðjeBj4Þ; ð10Þ

where ψ ð2Þ is second order polygamma function, ψ ð2ÞðxÞ ¼
d3 lnΓðxÞ=dx3 with Gamma function ΓðxÞ. Here, we have
completed the quark flavor summation. Although the quark
chemical potential is flavor independent, the electric charge
q depends on the flavor qu ¼ 2e=3; qd ¼ −e=3, and
qs ¼ −e=3. When the baryon chemical potential disap-
pears, the above equation goes back to the result shown
in the previous study [28]. A big difference between
δm2

DðT; μB; BÞ and δm2
DðT; 0; BÞ is that the former can

be negative at μq ≫ T.
The other limit we consider is the strong magnetic

field with
ffiffiffiffiffiffiffiffiffijqBjp

≫ T. Taking a variable transformation
ξ ¼ Tη=jqBj1=2 and employing the limit

lim
jqBj→∞

ea
2ξ2ϑ2ðaξ2; e−ξ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
πjqBj

p
=ðTηÞ; ð11Þ

the component δm2
2 becomes

δm2
2 ¼

g2

4π2
jqBjθðπT − μqÞ: ð12Þ

This covers the familiar result [31] including only the
contribution from the lowest Landau level. More details
about the derivation of (12) are provided in the
Supplemental Material [33]. For the component δm2

1, in
the limit of strong magnetic field with N ¼ 1 at μq > πT,
by using the delta function

δðxÞ ¼ lim
T=jqBj1=2→0

�
1

4T=jqBj1=2 sech
2

�
x

2T=jqBj1=2
��

; ð13Þ

we have

δm2
1 ¼

g2

4π2

�
jqBj − 2μ2q −

2

3
π2T2

�
θðμq − πTÞ: ð14Þ

Considering the summation of all quark flavors, the total
mass shift in a strong magnetic field is

δm2
D ¼ g2

3π2
jeBj − Nfg2

2π2

�
μ2q þ

π2

3
T2

�
θðμq − πTÞ: ð15Þ

The magnetic field dependence of the scaled screening
mass mD=g (9) and the comparison with the approxima-
tions of weak (10) and strong (15) magnetic field is shown
in Fig. 1 at high baryon chemical potential μB ¼ 1 GeV
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and low and high temperatures T ¼ 20 and 200MeV. In the
frame of loop resummation, mD=g is no longer coupling
constant dependent. The integrated function in δm2

2 (9)
looks like divergent at ξ ¼ 0, but it is convergent
due to the limits limξ→0 ea

2ξ2ϑ2ðaξ2; e−ξ2Þ ∼ 1=ξ and
limξ→0MNðbξ2Þ ∼ ξ4 þ � � �. The color and flavor numbers
are chosen as Nc ¼ Nf ¼ 3. Because the external magnetic
field breaks down the isotropy symmetry but random
thermal motion restores the symmetry, the approximation
of a weak magnetic field becomes better and the approxi-
mation of a strong magnetic field becomes worse with
increasing temperature, as a consequence of the competi-
tion of the two effects.

Resonant screening. An interesting phenomenon shown in
Fig. 1 is the oscillation behavior of the screening mass at
low temperatures. To understand the physics behind it we
turn to discuss the zero-temperature limit of Eq. (9). Similar
to the treatment for the integration over ξ in a strong
magnetic field, after taking the variable transformation
from ξ to η, the integrated function can be expressed as a
complete differential, and it is zero at both the lower and
upper limit of the integration, which leads to δm2

2 ¼ 0 at
T → 0. By taking the limits

lim
T→0

tanhðx=TÞ ¼ 2θðxÞ − 1;

∂xðtanhðx=ð2TÞÞ ¼ sech2ðx=ð2TÞÞ=ð2TÞ → 2δðxÞ; ð16Þ

the total mass shift becomes

δm2
D ¼ δm2

1

¼ −
g2μ2q
2π2

þ g2μqjqBj
ð2πÞ2

XN−1

n¼0

2 − δ0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2q − 2njqBj

q ð17Þ

with the maximum Landau level N − 1 ¼
Floor½μ2q=ð2jqBjÞ�. The details to derive (17) are shown
in the Supplemental Material [33]. Considering the
result (4) in the absence of a magnetic field, and taking
into account all the flavors, the total mass square in zero
temperature limit is

m2
D ¼ g2μq

ð2πÞ2
X
f

XN−1

n¼0

jqfBjð2 − δ0nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2q − 2njqfBj

q : ð18Þ

When the Fermi surface matches the Landau energy
level, μ2q ¼ 2njqfBj, controlled by the chemical potential
and magnetic field, the Debye mass diverges mD → ∞ and
the screening length approaches zero rD → 0. That means a
full screening: the color interaction between a pair of
quarks is completely screened, and the medium becomes a
weakly interacting quark gas. This phenomenon at high
baryon density is different from the known result that the
QCD medium is a strongly interacting quark-gluon plasma
at high temperature [3]. The numerical calculation in the
limit of zero temperature and the modification by the
thermal motion is shown in Fig. 2. For fixed chemical
potential μB ¼ 1 GeV, the magnetic fields where the
mass diverges are jeBj ¼ 1=6; 1=12; � � � GeV2 for d and
s quarks and jeBj ¼ 1=12; 1=24; � � � GeV2 for u quarks,
corresponding to the first, second, third and other

FIG. 1. The scaled screening mass mD=g as a function of the
strength jeBj of the external magnetic field at fixed baryon chemical
potential μB ¼ 1 GeV and two temperatures T ¼ 20 MeV (upper
panel) and 200 MeV (lower panel). The solid, dashed, and dotted
lines are the full calculation and two approximations with weak and
strong magnetic fields.

FIG. 2. The scaled screening mass mD=g as a function of the
strength jeBj of the external magnetic field at fixed baryon
chemical potential μB ¼ 1 GeV in zero-temperature limit and at
temperature T ¼ 20 MeV.
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divergences counted from the right. When the magnetic
field is too strong to satisfy the matching condition,
jqfBj > μ2q=2 ¼ μ2B=18, the mass becomes chemical poten-
tial independent and is linear in the magnetic field,

m2
D ¼ g2

3π2
jeBj; ð19Þ

see the black dashed line in the region of the strong
magnetic field shown in Fig. 2.
The above divergence induced by the matched Fermi

surface and Landau energy level is similar to the well-
known resonant transmission in quantum mechanics [17].
For the particle tunneling through a potential well, when the
particle energy and the well structure (the depth and width
of the well) meet certain conditions, the particle completely
penetrates the well with a transmission coefficient equals to
one and without any reflection. From the comparison with
this resonant transmission, we call the above divergence of
the screening mass as resonant screening.
When the thermal motion is turned on, the sharp Fermi

surface becomes a smooth distribution, and the divergence
is washed away. When the temperature is not so high, the
thermal motion is not yet strong enough, the mass oscillates
with the magnetic field, and the divergence is changed to a
peak, see the red lines in Figs. 1 and 2 at T ¼ 20 MeV.
Note that the divergence happens at zero temperature, no
matter whether the chemical potential is high or low. Even
for a very low chemical potential, the mass will diverge at
zero temperature or oscillate at low temperature in the
region of jqfBj < μ2q=2.

Summary.We calculated in this paper the Debye screening
mass in QCD matter at finite temperature, baryon density,
and magnetic field in the resummed perturbation theory.
The Landau energy levels of moving quarks in the
external magnetic field are explicitly shown in the mass.
Three limits of the general result, namely the dilute quark
gas, and weak and strong magnetic field, are discussed in
detail. We focused on the dense and magnetized medium
in the limit of vanishing temperature. In this case, when
the Landau energy level matches the Fermi surface of
quarks, the screening mass goes to infinity, indicating that
the color interaction between a pair of quarks is com-
pletely screened. We call this full screening as resonant
screening in comparison with the resonant transmission in
quantum mechanics, the location of the resonance is
determined by the matching condition μ2q ¼ 2njqBj.
While the random thermal motion smears the divergence,
there is still oscillation with clear peaks at low tempera-
tures. The resonant screening or screening peaks may
have applications in dense and magnetized matter
created in compact stars and intermediate energy nuclear
collisions.
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