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We present an innovative approach to the linearly polarized gluons confined inside the unpolarized
nucleon in lepton-nucleon scattering. Our method analyzes the correlation of energy flows at azimuthal
separations ϕ. The interference of the spinning gluon with both positive and negative helicities translates
into a cosð2ϕÞ asymmetry imprinted on the detector. Unlike the conventional transverse momentum
dependent probes, the cosð2ϕÞ asymmetry in this approach is preserved by rotational symmetry, holds to all
orders, and is free of radiation contamination and is thus expected to provide the exquisite signature of the
nucleon linearly polarized gluons.
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Introduction. Quarks and gluons that are confined within
nucleons will be examined in unprecedented detail at
the next-generation QCD facilities [1–3]. Extracting their
fundamental properties requires the analysis of scat-
tering data to reveal their distributions inside nucleons. It
is now widely recognized that, even within an unpolarized
nucleon, partons can exhibit polarization, leading to a
scattering cross section of the schematic form

σ ∝ jM̂jþi þ M̂j−ij2
¼

X
i¼þ;−

hijM̂†M̂jii þ ðhþjM̂†M̂j−i þ c:c:Þ; ð1Þ

in which jii denotes the helicity state of the parton out of
the hadron and M̂ is the transition operator. Thus far,
experimental and theoretical studies have placed extensive
focus on the first trace term, which brings about the
most familiar unpolarized parton distributions, such as
the collinear parton distribution functions (PDFs) and
the unpolarized transverse momentum-dependent PDFs
(TMDs). While these unpolarized distributions have

provided us with valuable insights into the dynamics of
strong interactions, the off-diagonal terms contain the
intrinsic quantum effects. The operator M̂ acts as a screen
in helicity space, leading to a double-slit interference
phenomenon when both i ¼ þ and i ¼ − are allowed,
as illustrated in Fig. 1. A similar effect in the context of
final states has drawn recent discussions in jet physics [4–7]
and top physics [8], leading to an interesting application of
two-dimensional (2D) conformal symmetry in four-dimen-
sional (4D) collider physics [9,10].
The knowledge of the off-diagonal contribution requires

the quantum description of a nucleon by the density matrix
ρij ¼ jiihjj, with i; j ¼ þ=−, where 1

2
Trρ gives the unpo-

larized distributions. Out of that, the entropy of a nucleon in

FIG. 1. Nucleon structure as a double-split experiment in the
helicity space.
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the helicity space can also be defined, S ¼ −ρ ln ρ.
Furthermore, the concepts, such as the positivity of ρ
and the maximum entropy principle, may be introduced
and tested in the hadron structure studies. In the following,
we focus on the hadron structure associated with the gluon
distribution, and we refer to the off-diagonal contribution as
the linearly polarized gluon distribution.
To observe the effect, one has to introduce a transverse

reference direction that goes beyond the conventional
collinear PDFs. In the literature, this has been demonstrated
in the generalized parton distribution (GPD) framework
[11–14] and the TMD framework. In the GPD formalism,
the associated distribution is also called the transversity or
helicity-flip gluon GPD [15–17], where the momentum
transfer between the initial- and final-state hadrons plays
the role as a reference direction. Similarly, in the TMD
formalism, the transverse momentum of the gluon helps to
define the linearly polarized gluon distribution [18,19]. An
anticipated outcome of this novel gluon distribution is a
cosð2ϕÞ azimuthal angular asymmetry in the associated
hard scattering processes [15–17,20–26], while in the TMD
framework, the asymmetry could receive additional
cosðnϕÞ corrections not associated with the nucleon target’s
parton polarization [23,24,26], which overshadows the
naive cosð2ϕÞ expectation.
In this paper, we apply recently proposed nucleon

energy-energy correlator (NEEC) [27], which is a novel
extrapolation of the energy-energy correlator [28] from
final-state jet substructure [29,30] to the nucleon structure,
to introduce a fresh strategy to identify the linearly
polarized gluon distribution in an unpolarized hadron.
One standout feature of our proposal is that the gluon
operator in the NEEC follows the (helicity-dependent)
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution [31], and a collinear factorization is applied to
compute the associated differential cross sections and the
relevant azimuthal angular asymmetries. This contrasts
heavily with the linearly polarized gluon distribution in
the TMD formalism, where soft gluon radiation plays an
important role. The customary approach to the linearly
polarized gluon involves the gluonic TMD distributions by
observing the cosð2ϕÞ asymmetry between the slight
imbalance k⃗T and the leading jet momentum P⃗J;T in
dijet/dihadron production in the deep inelastic scattering
(DIS) process [20–24]. However, soft radiations that are
unrelated to the nucleon target’s partons can also generate
significant anisotropy in the form of cosðnϕÞ (where
n ¼ 1; 2;…) [23,24,26] and thus obscure the physics.
Additionally, Sudakov logarithms that lead to a significant
suppression in the nonperturbative region [32] complicates
the analysis of other TMD probes such as Higgs production
[33,34] in hadronic collisions.
Unlike its predecessors, the linearly polarized gluon

contribution in the NEEC is formulated in the collinear
factorization for the inclusive process, without the

contamination from soft radiation, eliminating the need
for the Sudakov resummation. The cosð2ϕÞ signature is
preserved by rotational symmetry and persists to all orders.
Therefore, this methodology provides a unique opportunity
to observe the interference effects from the spinning gluon
inside the hadrons.

Helicity-dependent NEEC. The NEEC was introduced in
[27] as a new quantity for the nucleon structures, which
complements the TMDs and has been demonstrated as an
efficient portal to the onset of gluon saturation [35]. The
operator definition of the unpolarized NEEC can be found
in [27,31] and involves the asymptotic energy flow operator
ÊðθaÞ that records the energy deposition in the calorimeter
at a fixed angle θa, normalized to the proton energy, but
with the azimuthal position ϕa integrated over.
If we keep the azimuthal dependence and measure the

energy flow into the solid angle ðθa;ϕaÞ, the related flow
direction nαa ¼ ð1; sin θa cosϕa; sin θa sinϕa; cos θaÞ sup-
plies a chance to map out the intrinsic Lorentz structure
of the gluon field in terms of the helicity-dependent NEEC,

fαβg;EECðx; n⃗aÞ

¼
Z

dy−

4πxPþ e−ixP
þy−

2

× hPjFþαðy−ÞL†½∞; y−�Êðn⃗aÞL½∞; 0�Fþβð0ÞjPi

¼ −gαβT fg;EEC þ
�
nαa;Tn

β
a;T

n2a;T
−
gαβT
2

�
dg;EEC; ð2Þ

where the first equation furnishes the operator definition
of the helicity-dependent gluon NEEC in which F is the
gauge field strength tensor and L is the gauge link. If we
average the gluon helicity, we recover the unpolarized gluon
NEEC [31]. In the second equation, gαβT ¼ gαβ − Pαn̄βþn̄αPβ

n̄·P ,
where n̄ · P ¼ P0 þ Pz ≡ Pþ, n⃗a ¼ sin θaðcosϕa; sinϕaÞ,
and nαa;T ¼ ð0; n⃗a; 0Þ is the transverse component of the light
ray vector nαa. The second equation is the most general
parametrization of fαβg;EEC to satisfy rotational covariance
around the z axis.
The coefficient fg;EECðθaÞ is the unpolarized NEEC [31],

while dg;EECðθaÞ is the linearly polarized gluon NEEC
originated from the interference between different helicity
states. To see this, we parametrize the gluon polarization
vectors as ϵ�α� ¼ 1ffiffi

2
p ð0; 1;∓ i; 0Þ; it is then straightforward

to check that ϵ�;αϵ
�
�;βf

αβ
g;EEC ¼ fg;EEC, and ϵ∓;αϵ

�
�;βf

αβ
g;EEC ¼

1
2
e∓2iϕadg;EEC, which manifests that the linearly polarized

gluon NEEC is a consequence of helicity interference.
Since the energy flow measurement Êðn⃗aÞ is isotropic in
the azimuthal plane, the nontrivial ϕa dependence of the
fαβg;EEC probes directly the polarization of the gluon field
inside the nucleon.

LI, LIU, YUAN, and ZHU PHYS. REV. D 108, L091502 (2023)

L091502-2



When Pþθa ≫ ΛQCD, the NEEC can be further matched
onto the collinear PDFs. At OðαsÞ, the matching of the
unpolarized NEEC can be found in [31]. The linearly
polarized gluon NEEC is calculated from the polarized
splitting function and found to be

dg;EECðx; θ2aÞ ¼
αs
4π2

2

θ2a

Z
dz
z
ð1 − zÞ 1 − z

z

×
x
z

�
CFfq

�
x
z

�
þ CAfg

�
x
z

��
: ð3Þ

Here, we have averaged over the initial parton color
and spin. The evolution of fg;EEC follows the DGLAP
evolution [31]. The dg;EEC obeys the helicity-dependent
DGLAP equation that resums logarithms αns lnn−1 θa=θa
and will be carried out in future work.

Measurement of the energy correlator. We consider the
unpolarized DIS process in the Breit frame, in which the
incoming proton is along the z axis and the virtual photon
generates no transverse momentum with its momentum
qμ ¼ ð0;0;0;−QÞ.Wemeasure the energy flows that deposit
in 2 arbitrary pixels on the calorimeter located at n⃗a ¼
sin θaðcos ϕa; sin ϕaÞ and n⃗b ¼ sin θbðcos ϕb; sin ϕbÞ.
Here, θ’s andϕ’s are polar and azimuthal angles, respectively.
The polar angles are measured with respect to the z axis, and
the azimuthal angles aremeasured from the plane spanned by
the proton and the leptons, as shown in Fig. 2. We then
construct d⃗ ¼ n⃗b − n⃗a.
We require one of the pixels much closer to the proton

beam axis (i.e., suppose it is a); then, θa ≪ θb, and when
Qθa ∼OðΛQCDÞ, we probe the NEEC of the proton [27].
The other pixel, suppose it is b, is in the central region.
Since θa ≪ θb, the measurement of the energy flow along

n⃗b guarantees the inclusive dijet configuration in the central
region to balance the transverse momentum.
To probe the interference of the gluon helicities, we look

at the azimuthal angle difference ϕ ¼ ϕd − ϕa between n⃗a
and d⃗1; see Fig. 2. We note that when θa → 0, d⃗ → n⃗b, and
ϕ → ϕb − ϕa. More specifically, we measure the energy-
weighted cross section

ΣðxB;Q2; cos θa;b;ϕÞ

¼
X
ij

Z
dσðxB;Q2Þ Ei

EP

Ej

EP
δðn⃗a − n⃗iÞδðn⃗b − n⃗jÞ

× F ðϕ; n⃗a;bÞ; ð4Þ

where F ðϕ; n⃗a;bÞ imposes the phase-space measurement to
construct ϕ. Here, we note that we integrated over the
azimuthal angles of the lepton and the ϕa;b. The only
azimuthal angle we observe in this measurement is ϕ.
The general form of the cross section Σ is given by

Σ ¼ 4πα2e2q
Q4

lμνΣμνðxB; cos θa;b;ϕÞ; ð5Þ

where α is the electrical fine structure constant and lμν ¼
gμνð−2l · l0Þ þ 4lμlν, where the Ward identity qμΣμν ¼ 0

has been applied. Here, −2l · l0 ¼ Q2, and lμ ¼ Q 1þy
y ×�

1;
ffiffiffiffiffiffiffiffi
1þ2y

p
1þy ; 0; y

1þy

�
. The Σμν is the cross section for γ�P → X

with the energy correlators measured. When θa ≪ θb, the
calculation of the Σμν can be performed within the collinear
NEEC factorization and closely follows [31], which gives

Σμν ¼ y2

16πQ2

Z
dΦXM

μ
qMν†

q fq;EECðx; n⃗aÞ

þMμ
g;αMν†

g;βf
αβ
g;EECðx; n⃗aÞ: ð6Þ

The factorization theorem is illustrated in Fig. 3. Here, ΦX
stands for the phase space of the final-state partons,
including the integration over the incoming parton momen-
tum fraction

R
dx
x , with the energy Ej=EP weighting and the

angle ϕ measurement in Eq. (4) included. The Ei=EP and
n⃗a measurements have been absorbed into the definition of
the NEEC.Mμ

i is the matrix element for the partonic γ�i →
jjþ X production and can be calculated order by order in
αs, whose leading-order contribution is illustrated in Fig. 3.
The subscript q (g) indicates the quark (gluon-)initiated
partonic process. Here, we have used the fact that in
perturbative QCD (and also QED) the massless quark

FIG. 2. The measurement proposed as a probe of the gluon
polarization in the DIS process. The energy flow into different
pixels (in red blocks) at n⃗a and n⃗b are recorded, for θa ≪ θb. ϕ
angles are measured from the plane where the leptons lie. The
measurement of Eiðn⃗aÞ induces the NEEC.

1One can also measure the azimuthal difference ϕ0 between n⃗b
and n⃗a. The difference between ϕ and ϕ0 vanishes as θa=θb → 0.
However, the power correction to the factorization in Eq. (7)
could be significant if we use ϕb − ϕa directly. A similar strategy
is used to suppress the power correction in [5].
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helicity is conserved; therefore, only the unpolarized quark
NEEC fq;EEC is involved.
It can be shown that to all orders Eq. (6) fulfills

the general form such that, up to power corrections
∼Oðθa=θbÞ,

lμνΣμν ¼
Z

dz
z

�X
i¼q;g

Ĥiðz; y; cbÞ
xB
z
fi;EEC

�
xB
z
; θ2a

�

þ 1

2
cosð2ϕÞΔĤgðz; y; cbÞ

xB
z
dg;EEC

�
xB
z
; θ2a

��
;

ð7Þ
where we abbreviated cb ¼ cos θb and suppressed the scale
dependence. Here, z≡ xB

x , and the factor xB
z is originated

from Ej=EP. To understand how we get the form of Eq. (7),
we first note that the parton momentum pα ¼ Q

z ð1; 0; 0; 1Þ
that initiates the interaction is determined by z. Given that
we are inclusive over the final-state energy, then the
partonic cross section Ĥ and ΔĤ can only be functions
of z, y, and n⃗b ≈ d⃗ in the small-θa limit. The quark channel
is unpolarized and hence ϕ independent. As for the gluon
channel, given the tensor structure of fαβg;EEC in Eq. (2), any

Lorentz structures of
R
dΦXlμνM

μ
g;αMν;†

g;β constructed out
of the longitudinal vectors vanishes when contracted with
fαβg;EEC. Therefore, its nonvanishing contribution to lμνΣμν

must require the all-order form

−gαβT Aðz; cbÞ þ
�
nαb;Tn

β
b;T

n2b;T
−
gαβT
2

�
Bðz; cbÞ: ð8Þ

The form is determined by the reason that
R
dΦXlμν×

Mμ
g;αMν;†

g;β is rotational covariant around the z axis and
can only be constructed out of gαβ,pα, qα, anddα ≈ nαb, while
neither pα nor qα but only nαb acquires a transverse compo-
nent. Furthermore, the ϕb integration eliminates possible ϕb
dependence within A and B. Now, contracting Eq. (8) with
fαβg;EEC, we arrive at the final form in Eq. (7), where the
unpolarized gluon contribution comes from the contraction
of the −gαβT structures and the cosð2ϕÞ comes from the

B term.Here,wehave appliedϕ ¼ ϕd − ϕa ≈ ϕb − ϕa in the
θa → 0 limit.
We conclude from Eq. (7) that the NEEC-based meas-

urement provides a unique chance to probe the linearly
polarized gluons since the following are true:

(i) Equations (2), (7), and (8) hold to all orders with all
radiation effects such as parton shower being taken
into account. Therefore, unlike the TMDs, to all
orders, the NEEC probe involves only one azimuthal
structure cosð2ϕÞ, due to the absence of soft radi-
ations and hence no cross-talk between MμM

†
ν and

fμνEEC. Each of theMμM
†
ν and f

μν
EEC can only depend

on one of the azimuthal angles (ϕa or ϕd ≈ ϕb).
Therefore, ϕ enters only through the tensor structure
in Eqs. (2) and (8), which uniquely determines the
cosð2ϕÞ asymmetry.

In contrast, the TMD soft radiation with momen-
tum k could simultaneously connect all directions,
for instance, both the proton P and the leading jet PJ
in the dijet process, and thus depends on all
azimuthal angles. On that account, additional azi-
muthal dependence due to the eikonal factor 1

k·Pk·PJ
∝

1
���þcosðϕÞ →

P
n cn cosðnϕÞ [23,24,26] contaminates

the naive cosð2ϕÞ expectation.
In this sense, the NEEC is a cleaner probe of the

rotating gluons inside the nucleon target.
(ii) Furthermore, the NEEC factorization in Eq. (7)

suffers no Sudakov suppression [27,31,35] in the
nonperturbative signal region when θaQ ∼OðΛQCDÞ,
which is quite different from the TMD case. On the
contrary, the region is enhanced by the DGLAP
evolution of the NEEC [31].

(iii) The energy flow measurement Eðn⃗bÞ in the central
region can be replaced by a jet constructed using a
standard jet algorithm. The precision of this meas-
urement can be improved by using the tracking
information [36–39]. To further enhance the sensi-
tivity to the gluon fEEC, we can tag the heavy quark
species (charm=b-energy flow) for Eðn⃗bÞ measure-
ment [40,41].

Numerics. Now, we present numerical studies. Our main
objective of this study is to examine the all-order cosð2ϕÞ
structure in Eq. (7), through a perturbative calculation at
higher orders. We use the NLOJET++ [42] to generate trijet
production in DIS at next-to-leading order (NLO)
[Oðα2s þ α3sÞ, up to four jets]. Since the exact NEEC is
not known, we model it by restricting 0.005 < θa < 0.02.
In this calculation, the strong coupling constant αs is
evaluated at Q2 and α ¼ 1=128.0. Through our numerical
study, we aim to provide a nontrivial test of the all-order
factorization structure derived in Eq. (7), offering initial
insight into what could be expected from the measurement.
In Fig. 4, we show the normalized NLOJET++ ϕ

distribution result (in circle dots) at NLO Oðα2s þ α3sÞ in

FIG. 3. NEEC factorization theorem. Representative Feynman
diagrams for Mμ

gMν�
g at OðαsÞ.
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the Breit frame forEl ¼ 18 GeV,EP ¼ 275 GeV, andQ2¼
100GeV2.We choose xB¼0.01.We set 1.0 < θb < 1.5.We
fit the un-normalized distribution with aþ b cosð2ϕÞ (solid
curve) to observe an excellent cosð2ϕÞ asymmetry to agree
with our expectation from Eq. (7). Since both loop correc-
tions and real emission up to four jet contributions are
involved at this order, Fig. 4 acts as a highly nontrivial test of
the all-order formalism we derived in Eq. (7).
In this calculation, we find the asymmetry induced

by the linearly polarized gluon is ΔĤgdg;EEC=Ĥifi;EEC ∼
b=a ≈ 2.69%, as can be seen from Eq. (7). Here, ΔĤg and
Ĥ can be calculated perturbatively. Therefore, in reality,
measuring the azimuthal asymmetry could tell directly
the “amount” of the linearly polarized gluons within the
nucleon, once the unpolarized fEEC is measured. We note
that there could be logarithmic ln θa correction to the
normalized distribution shown in Fig. 4 which can be
resummed through the evolution of fi;EEC and dg;EEC
following the strategy in [31]. However, resummation does
not change the tensor structure in Eq. (2) and thus leaves the
cosð2ϕÞ pattern unaffected. Meanwhile, in this fixed-order
simulation, the strong coupling constant αs is evaluated at
Q, which will underestimate the size of the nonperturbative
contribution. Nevertheless, since the primary objective of
this study is to examine the cosð2ϕÞ structure rather than
determine the exact size of dg;EEC (which in any case should
be determined by future experiments), we have chosen to
leave the ln θa resummation for a subsequent study. We
emphasize that Fig. 4 encompasses all channels, while, in
practical measurements, the heavy flavor tagging for the
energy deposition in the central region [40] could enhance
the sensitivity to the gluon channel and improve the
significance of the observed azimuthal asymmetry.
Finally, we delve into the squeezed limit, defined as

θa ≪ θb ≪ 1. We require 0.1 < θb < 0.3, xB ¼ 0.03, and
the results for the NLO normalized cases are shown in
Fig. 5. Once again, we observe the presence of azimuthal

asymmetry of size b=a ≈ −6.09% indicating the persist-
ence of the cosð2ϕÞ structure. We note that the sign of the
asymmetry flips in Figs. 4 and 5, due to different kin-
ematics regimes and the significant modification of large
logarithms ln θb. We will carry out a detailed study in a
future publication.

Conclusion. Our findings indicate that it is possible to
directly investigate the linearly polarized gluons through
the observation of helicity-dependent NEEC in the DIS
process. This method measures the energy deposition asym-
metry in the calorimeter, which arises from the spinning
gluon confined inside the nucleon andmanifests as a cosð2ϕÞ
correlation. Importantly, the cosð2ϕÞ signature is preserved
by rotational symmetry and holds at all orders.Consequently,
the shape of the asymmetry remains robust against radiation/
parton shower contamination and free of Sudakov suppres-
sion. The size of the asymmetry is to be determined by future
experimental analysis and will provide us with a unique
opportunity to determine the significance of gluon polari-
zation at the current and future electron-ion facilities.
Moreover, the absence of a polarized beam requirement
suggests that it may be feasible to experimentally verify the
factorization formalism using the available HERA data.
Looking ahead, we plan to present the evolution of the
helicity-dependent NEEC, as outlined in [31], to make all-
order predictions for the azimuthal distribution.However,we
do not anticipate any qualitative modifications to the results
presented in this study.

Acknowledgments. We are grateful to Dingyu Shao and Jian
Zhou for their useful discussions. This work is supported by
the Natural Science Foundation of China under Contracts
No. 12175016 (X. L. L. and X. L.) and No. 11975200
(H. X. Z.) and the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231 (F. Y.).

FIG. 4. cosð2ϕÞ asymmetry at Oðα2s þ α3sÞ in the Breit frame. FIG. 5. cosð2ϕÞ asymmetry in the squeezed limit, atOðα2s þ α3sÞ
in the Breit frame.
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