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Coherent states in M-theory: A brane scan using the Taub-NUT geometry
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The Taub-NUT geometry corresponds to the Kaluza-Klein monopole solution of M-theory and on
dimension reduction along the Taub-NUT circle direction it becomes the D6 brane of type IIA string theory.
We show that the Taub-NUT geometry can be realized as a coherent state, or more appropriately as a
Glauber-Sudarshan state in M-theory, once we take the underlying resurgence structure carefully. Using the
duality chain it in turn implies that all D-branes as well as NS5-branes can be realized as Glauber-
Sudarshan states in string theory. Our analysis also leads to an intriguing possibility of realizing the gravity
duals of certain nonconformal minimally supersymmetric gauge theories by deforming a class of Glauber-

Sudarshan states.
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I. INTRODUCTION

The nonperturbative physics of string theory captured
by solitonic solutions is nicely characterized in terms of
D-brane and NS5-brane solutions [1,2]. Before the discov-
ery of D-branes, solitonic p-brane solutions to supergravity
equations of motion were obtained and attempts to study
their dynamics using world volume field theory were also
carried out. One of the advantages of these supergravity
approaches was that they were agnostic to the origin of
supergravity theories. In other words, the solutions were
obtained not only in the type I or type II supergravities,
which originate from underlying string theory but also in
the eleven dimensional supergravity, which has its origin in
the M-theory.

The stringy dualities have brought all string theories and
M-theory on an equal footing, thereby bringing solitonic
solutions in M-theory almost on par with the D(NS)-brane
solutions. While the latter enjoy the string world sheet
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description, a microscopic description of solitons in
M-theory continue to be an enigma. Nonetheless, string
dualities seamlessly relate M-theory solitons to string theory
solitons [3-5]. The soliton solution is typically a classical
solution to nonlinear equations of motion of the theory.

It is believed that most of these soliton solutions can
be expressed in terms of coherent states (see [6] for a
discussion on field theory solitons). An explicit represen-
tation of this belief, however, is lacking in the literature. It
has been recently shown that de Sitter spacetime can be
realized as a Glauber-Sudarshan(GS) state in type IIB string
theory [7-9]. The GS states differ from the usual coherent
states—which are constructed by shifting the free vacua—
by being constructed from shifting the interacting vacua.
This construction begins with an M-theoretic configuration
and using string dualities, one can obtain a solution in
the type 1IB theory. A reader may get an impression that
this is done by restricting to a sector corresponding to the
consistent truncation, but that is not the case. The GS state
is constructed by taking into account terms at arbitrary
orders in coupling as well as in the derivative expansion.
(Keeping all the irrelevant operators exhaustively is pos-
sible because (a) we are at low energies where we know the
degrees of freedom, and (b) an exact renormalization group
analysis [10] guarantees this.) The GS state describing the
de Sitter geometry is a resurgent sum over contribution of
all these terms [11].

In this paper, we will demonstrate that the Taub-NUT
geometry, which corresponds to the Kaluza-Klein(KK)
monopole solution in M-theory, can be constructed as a
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GS coherent state over the Minkowski vacuum by doing a
resurgent sum over all higher order terms. It is well known
that the D6 brane of type IIA string theory in the strong
coupling limit becomes the KK monopole solution in the
M-theory. On the other hand, an appropriate dimension
reduction brings us to the type IIA KK monopole solution,
which by duality chain gives us NS5-brane solution in both
type IIA and IIB string theory. Thus, using a combination
of dimension reduction and stringy duality symmetries, our
construction of the Taub-NUT space as a coherent state
over the Minkowski vacuum of the M-theory provides a
mechanism of showing that not only all D-branes but also
the KK monopoles and the NS5 branes are GS coherent
states in the appropriate string theory. Interestingly this also
opens up an avenue to investigate gravity duals of certain
nonconformal pure glue theories in the large N limit.

II. THE TAUB-NUT SPACE IS A GLAUBER
SUDARSHAN STATE

Let us quickly recall the KK monopole solution in
M-theory. In the low energy limit, physics of M-theory
is completely captured by the 11D supergravity. Massless
fields of this theory are, the metric gy, the three form
gauge field Cynp, and the gravitino fields Wy, and Py,
where M,N,---=0,...,9,1l;and a=1,...,16 are 11D
vector and Dirac spinor indices, respectively. The KK
monopole is a purely gravitational bosonic solution to
the equations of motion, i.e., the solution is completely
characterized by the metric alone, with Cypp = 0, and
Wye = Pumq = 0. In other words, Taub-NUT is a solution
to the vacuum Einstein equation of M-theory. The KK
monopole solution is described by the metric

6
ds?* = gyndMdZN = —dr* + Z dy™dy™ +ds3y (1)

m=1

where, y" denotes coordinates transverse to the Taub-NUT
geometry m = 1,...,6, and ds?y is the metric of the
Euclidean Taub-NUT space [12]:

dshy = V(x)dx - dx + V71 (x)(dx' + A(x) - dx)?. (2)

Here x!! is the coordinate of the compact direction and

x = (x7,x%, x%) are the three spatial coordinates transverse
to the brane. The functions V(x) and A(x) are not
independent, they are related to each other by the self-

duality condition,

— —

VxA=VV=VV=0. (3)
We will consider single centered solution which possesses

spherical symmetry and corresponds to the following form
of the function

= 4)

where r = /X - X and p is a constant. The singularity at
r =0 is a coordinate singularity provided the coordinate
x'! has periodicity 4zu. The vector potential A can then be
determined using the Eq. (3). It is worth emphasizing that
the KK monopole solution does not contain any harmonic
function in the directions transverse to the Taub-NUT
space. While the Minkowski space is a solution with trivial
holonomy, the Taub-NUT solution has SU(2) holonomy
and as a result in the supersymmetric set up, it preserves
half the supersymmetry. Thus the unit charge M-theory
KK monopole solution in the polar coordinates can be
written as

6
ds}) = —d? +) " dy"dy" + (1 + *r’) (dr* + r?dQ3)

m=1

-1
n (1 +”> (dx'! + pcos Odg)?, ()
r

The dimensional reduction of the compact coordinate x!'!
leads to the ten dimensional metric, the dilaton and the
Ramond-Ramond gauge field A, which corresponds to the
D6 brane solution in type IIA string theory. The string
coupling is given by

—3/4
s=et= (1447 ©

r

the radius of the compact eleventh direction is

Ry =vonunl, = 93/3117 = gyl (7)
and yu = %gsls = %gsx/g , implying its connection to the
radius of the eleventh direction.

We will now show that the Taub-NUT solution (5) is a
GS state in M-theory. Our starting point will be the
Minkowski solution to the M-theory equation of motion,
namely,

6
ds> = —di* + Y dy"dy" + dr® + r2d$3
m=1
+ r?(dx"! + pcos 0dg)?, (8)

where we have chosen the Cartesian coordinates in six
spatial directions; spherical polar coordinates in remaining
four directions with the Hopf metric on S3: and defined
dQ} = 9% 1 4 sin® @dp®. The boundary condition will be
satisfied because at r — ﬁ where kg is the IR cutoff, the
large radius eleventh circle will be replaced by a finite sized
circle by the GS state as we shall see in (12) and (13).
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A general Euclidean path integral analysis in M-theory leads to the following expression for the expectation value of

metric operator over the GS state [11]:

(o]6gMmn|o)

_ f [Dgnn] [DChinp] [D‘PM] [D¥y]

e"SwD' (. §.7)dg

<5gMN> <O'|O'>

1 fo S 1
= |— [ as
s ()

The subscript ¢ of the metric expectation values is
a mnemonic used to indicate that the expectation value
is obtained in a specific Glauber-Sudarshan state
o) = D(0)|Q) = |a.B.7). Here a=aw,p = Pune.7 =
(Tvar Tmq) Tepresent the GS states associated with the
various components of the metric, fluxes and the Rarita-
Schwinger fermions respectively in the Fourier space.
D(o) is the displacement operator acting on the interacting
vacua, and therefore differs from the usual notion of the
coherent state where the displacement operator acts on the
free vacua. Additionally D'D # DD' # 1. The bold-faced

letters denote the operators, for example gy = gI(\ZI)\I +
(clgyilo)
(lo)
the Minkowski background (5). The other parameters
appearing in (9) are defined as follows. The coupling g
is related to the inverse power of M), that appears as the
suppression factor in a given derivative interaction (the
fields are taken to be dimensionless), [ is the corresponding
asymptotic Gevrey growth with A being related to the
amplitudes of the so-called dominant nodal diagrams;
and P. V is the principal value of the integral (see [11]
for details). It is important to point out that this result
incorporates resurgent sum over all higher order derivatives
as well as curvature corrections. (In [11] the analysis was
done by mapping the various metric, flux and fermionic
components to scalar degrees of freedom to avoid incor-
porating Faddeev-Popov ghosts, but the generic analysis,
even including the derivative ghosts [13], while technically
challenging may be done with some effort.) One may even
go beyond the dominant nodal-diagrams and incorporate
NLO diagrams, including all possible higher powers of the
derivative interactions in S, but the result quoted in (9)
changes only by a constant multiplicative factor which may
be absorbed in the definition of ay (k) [13]. This surpris-
ing feature is of course a consequence of the wave-function
renormalization that was predicted for a generic setting
in [7-9,11] and tells us that knowing ay (k) one would
easily compute the expectation value (gyn), from the
graviton propagator a(k) and wave function y;(X), where
X is the ten-dimensional spatial coordinate, in the energy
range kg <k <u with A > M, > M, > u > kg, where
kg 1s the IR cutoff mentioned earlier. Alternatively,
knowing the metric components, we can use the inverse
transformation to compute @y (k), thus determining the

is

ogwmn 1s related to the metric operator such that

J [P [PCyinp| [DPr] [D¥x]e 5D (a, B, 77) (5‘ B.7)

11, an (k) e o-ikot
:|PVAIRd ¢ a(k) R (l//k(X) ) (9)

|

GS state itself. Since the KK monopole solution is
independent of the 3-form field Cyp, We can consistently
set it to zero, i.e., (Cynp), =0 (or Bynp = 0), and
concentrate only on the remaining bosonic field, namely
the metric (gyn),- Furthermore, by implementing a change
of variable S = u/.A'/" we can simplify the principal value
integral part of the expectation value of the metric in the
following way:

(Sgmn)s = % UO du exp < u) 1 —lul]pv

X /” a1k PN E) g (X)er). (10)
kir

a(k)

where ¢ = (Ag)'/! and for convenience we will refer to the
principal value integral, that is on the first line of Eq. (10),
as [.,. (We will revisit this integral momentarily.) The
expression in Eq. (10) is for the fluctuation of a generic
component of the metric and to obtain a specific metric,
e.g., the Taub-NUT metric, we need to make a judicious
choice of the Glauber-Sudarshan functions @y (k) such
that the Fourier integral correctly reproduces desired metric
components.

Our task is to find @y (k) such that we derive the Taub-
NUT metric with following expectation values.

(800)s = —1, (811)s =1, (8n), =1, ..,
(866)s = 1, (8rr)o = V(r), (800)s = rZV(r)’
(8gp)o = 7si®OV(r),  (g11)e = V(7). (11)

We hasten to point out that the expectation value (10) is a
correction to the background Minkowski metric (8) and (11)
is the fully corrected metric on R!%x Taub-NUT space. We
only need to find the functions ay (k) for M,N =7, 8, 9,
11 directions because R'® metric agrees with the back-
ground Minkowski metric. Utilizing the spherical symmetry
of the 7,8,9 directions, the metric components in (11) are
written in terms of r, 6, and ¢ coordinates with x'! being a
periodic direction with periodicity 4zu.

The functions @y (k) for M, N belonging to R!'"¢ simply
vanish. Our problem therefore has reduced to determining
a,,(k), ago(k), @,,(k), and @,y ;(k) only. The spherical
symmetry of the Taub-NUT space in the 7,8,9 direction
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implies we only need to determine one function V(r) of
the radial coordinate r. The self-duality of the Riemann
curvature guarantees that the component (g;;), =
V=!(r). The components of ayy(k) along 3D polar
direction are

= L3 8(ko)6° (R)8 k).

_ ~ 3 111 (7, H
gy = (ko) (k)6 (k) (E ko (k) ~ ”zfcz)’ (12)

and @,,, may be easily determined from above; where k =
(ko K, K. ky;) with (ko, k) parametrizing the seven dimen-
sional momenta along R'®; (ﬁ, ki) parametrizing the
momenta along the Taub-NUT base and eleventh direction
respectively; and k = (ksin@cos @, k sin @sin ¢, k cos 0).
The component of metric in the eleventh direction is a circle
fibration over the base with a function V~!(r). The GS
function for which is therefore more complicated and can
be written in the following integral representation,

s (k) = 8(k)® (R)5(kyy) [féa@)(ﬁ)

R kR, [ in ¢
PRy (g B e )
4n 2 R“/ll‘—kR”/Z

1 111 (1,
- ks (k)]. (13)

Although we have shown that the eleven dimensional
Fourier integral in (9) completely reproduces the M-theory
KK monopole solution, we have not computed the con-
tribution of the principal value integral I. ; as yet. Note that
this integral is an outcome of summing over all perturbative
as well as nonperturbative contributions to the effective
action. One might worry that, in the absence of the precise
knowledge of the nodal diagram amplitude A, the principal
value of the integral will be harder to compute because of
the dependence of the pole on A in the Borel plane.
Fortunately, this is not the case because the coupling g
that appears in the definition of ¢ = (Ag)'/! in (10) takes
the form

1

X —F
1\/[+ve ’
p

g (14)

where the positive power is determined by the derivative
coupling in the action. In the low energy limit, i.e., when
M, — oo, we are in the weak coupling limit and hence
g — 0 which implies that ¢ — 0. In this limit the principal
value integral in (10) becomes [11]:

I
m%LZ -1, (15)
c—> C

implying that the entire resurgent sum, including the
nonperturbative terms, has only a constant contribution
with no sub-leading polynomial or exponentially sup-
pressed terms. Thus the principal value integral does not
affect the result obtained by doing the eleven dimensional
Fourier transform. Adding the NLO diagrams, or other
higher derivative interactions in S, do not change the
aforementioned conclusion [13].

Before we show that this solution is a seed to incorporate
all string theory solitons as GS coherent states, we will
establish another result that will be useful in the case of
string soliton solutions. The Minkowski vacuum solution
preserves all the supersymmetry of the M-theory because it
is a solution with trivial holonomy group. The M-theory
KK monopole solution is the next simplest solution. The
Taub-NUT space is a noncompact hyperkéhler four mani-
fold. That is it is Ricci flat and solves vacuum Einstein
equations. (In the language of expectation values, the GS
state satisfies the Schwinger-Dyson’s equations [7-9].)
The self-duality condition implies the spin connection is
half flat and hence the space has a SU(2) holonomy. The
32 component Majorana spinor in eleven dimensions—by
combining W), and ¥y,— decomposes as 32 = 8 x 4,
with 8 component spinor along RS direction and 4
component spinor along the Taub-NUT direction. The
trivial holonomy along R'¢ implies all 8 components of
the spinor are preserved but SU(2) holonomy of the Taub-
NUT space implies only 2 out of 4 components are
preserved. We therefore get 16 Killing spinors character-
izing this space and hence the GS state corresponding to the
M-theory KK monopole is a half-BPS state.

III. SOLITONS IN STRING THEORY

In the above section, we showed how to realize the
M-theory KK monopole as a GS coherent state. We will
now show that all the string theory soliton solutions can be
derived from this solution by using a sequence of dimen-
sional reductions and string theoretic duality transforma-
tions. For example, by choosing any of the space-like
directions in the R!® direction to be the M-theory circle,
one obtains the KK monopole solution in type IIA theory.
We could have arrived at this solution without taking the
M-theory route. That is, we could have directly solved for
the GS functions in type II theory (A as well as B) to get
identical results. The type I[IB KK monopole is just one
T-duality, along a spacelike direction in R!>, away from
type IIA KK monopole. On the other hand, if we T-dualize
the Taub-NUT circle direction of type II(A/B) KK mono-
pole, we end up with the NS5-brane of type II(B/A) theory,
respectively.

If instead we chose the Taub-NUT circle direction to be
the M-theory direction then we end up with the D6-brane
solution of type IIA string theory. It is then trivial to generate
all Dp-brane solutions by T-duality transformations. Since
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the initial seed is the KK monopole solution to the M-theory
equations of motion, its coherent state representation along
with duality cascade guarantees that all string theory KK
monopoles, NS5-branes as well as any Dp-brane can also be
written in terms of the GS coherent state. All we need to do is
carefully follow the chain of duality transformations. Recall
that the GS function along the world volume of the KK
monopole vanishes and it is nontrivial along the Taub-NUT
direction. Therefore from the GS state perspective, T-duality
transformation along the D-brane world volume corresponds
to simply switching from one coherent state shift function
to another, i.e., D(0;)|Q) — D(0,)|Q), and T-duality in the
transverse direction will be the reverse process, namely
D(5,)|) — D(o))|).

Since dimension reduction as well as the T-duality
transformations along the isometry direction do not affect
the number of Killing spinors, all these solutions are also
half-BPS solutions in string theory and hence the GS
coherent state is a half BPS state.

The half BPS solutions possess no force property which
allows us to stack them one over the other or keep them
separated without affecting the Killing spinors. The GS
ansatz for the coherent state naturally incorporates this fact
to produce multi-Taub-NUT solution. All we need to do is
to replace, for example:

n—1
A,y = Aypp X <1 + Zexp(ikq)), (16)
=1

and we get multi-Taub-NUT solution with one solution
centred at r = 0 and remaining n — 1 of them centred at
r=r; one at each j. This simple additive ansatz for
multisoliton seems to suggest that the GS function ayy
may be obtained by using some solution generating
technique. We hope to address this issue in a forthcoming
work.

Before closing this section, let us look at yet another pure
gravity solution to M-theory or string theory equations of
motion. In the M-theory this solution corresponds to the
geometry R'? x TN x TN, where TN x TN is two copies
of Taub-NUT space extended along x3,---x°,x!! direc-
tions. Recall in the R!® x TN the GS function @y along
the R! direction was trivial, namely zero. All we need to
do is to replace it with another copy of @y along x°, x*, x°,
x® directions. This can be achieved with ease implying that
R'2 x TN x TN is a coherent state in M-theory and R x
TN x TN is a coherent state in type II string theory.

To show that this is a quarter BPS solution, let us
decompose 32 component Majorana spinor into 32 =
2 x 4 x 4, with 2 component spinor along R!? and one
4 component spinor each along two Taub-NUT spaces.
Since both Taub-NUT spaces preserve 2 component
spinors, we have 2 x 2 x 2 = 8 Killing spinors, implying
that this is a quarter BPS solution and the corresponding GS

state is a quarter BPS state. The duality symmetries of
string theory relate this solution to intersecting brane
configurations and hence the quarter BPS GS state gives
a coherent state representation of intersecting brane
configurations.

IV. WHERE ARE THE OPEN STRINGS?

So far we have shown how to obtain the ground state
configuration of these solitons in terms of the GS coherent
state. A natural question would be how to obtain excitations
over these solutions. In particular, how do we see that the
D-branes as coherent states naturally realize the open string
excitations.

We will restrict our demonstration to the D6 brane,
although using duality symmetries identical analysis can
be carried out for other branes as well. Whereas an open
fundamental string stretched between two different
D-branes creates oppositely charged excitations on two
different branes, an open string excitation on a single
D-brane generates an electric dipole excitation on it. In the
case of multi-D6 brane configuration, Sen [14,15] has
shown that the stretched string between two D6-branes
becomes a wrapped 2-brane on a transverse two cycle from
the M-theory perspective. A natural question would be
what is the representation of the fundamental string
excitation on the D6-brane in the M-theory? Since this
string generates a dipole on the D6-brane, it must corre-
spond to a dielectric membrane in the M-theory. Such an
excitation is generated by the Myers effect [16], which
requires a four form flux as well as multiple DO-brane
excitations. The DO-branes are simply the KK momenta
along the M-theory circle, which in the D6-brane context
correspond to graviton modes along the Taub-NUT circle
direction.

The above discussion clearly has its root in the M(atrix)
theory formulation of M-theory [17] as the open strings
between parallel D6-branes would be generated from
Myers effect [16]. Again a detailed study of this is clearly
beyond the scope of this work, but we want to end this
section by comparing our analysis with the one done
previously by Shenker [18]. In [18], D-branes were
identified from Borel resumming a Gevrey series coming
from the computation of the correlation function of two
operators in string perturbation theory. The asymptotic
nature of the correlation function computation, done over
the interacting vacua, suggested the presence of nonper-
turbative effects that go as exp (- ) and exp (- %), among

other subdominant renormalon contributions. The former
is related to the D-branes and the latter to the NS-branes,
and the open-string nature of the D-branes was shown
later in [2].

The analysis presented here differs from [18] in many
ways. First, our analysis is done over an excited state, i.e.,
over a Glauber-Sudarshan state, and not over a vacuum
state. Secondly, we are computing one-point functions of
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the graviton, flux and fermionic operators over the GS
states. These one-point functions would vanish in the
analysis of [18]. Thirdly, the open-string behavior of the
D-branes in the M-theory picture appears exclusively from
the KK modes of the gravitons in the presence of four-form
G-fluxes (Gynpg), due to Myers effect. This is clearly
different from how the open strings appear in say [2]. In
fact, the gauge theory on D6-brane, including the tension
of the open-string, may be easily determined from the
presence of the normalizable self-dual harmonic two-form
in the Taub-NUT space following [14,15,19]. Finally,
in [18] the resurgent sum was crucial in deciphering the
presence of D-branes, while in our case the resurgent sum
in say (10) only contributes as wave-function renormaliza-
tion (which in the limit M,, — oo is simply a constant).

The above comparison however raises the following
question. In Borel resumming the Gevrey series in our case,
do we expect the M2 and M5 instantons to also appear? The
answer is in principle yes, but if we view all nonperturba-
tive states in M-theory as coming from puffed-up DO branes
in the presence of appropriate G-flux components, then
taking the metric components (and their KK modes) we are
in principle taking into account all nonperturbative states as
well as the renormalons in the Borel resummation. Happily
M(atrix) theory guarantees this, but it will be interesting to
explore this further.

V. GAUGE-GRAVITY DUALITIES AND RG FLOWS

Our study of coherent states in M-theory now leads to
a rather interesting application in the field of non-AdS/
non-CFT dualities. The non-CFT, as the name suggests,
corresponds to theories that have nontrivial RG flows, and
here we will specifically look at the low energy dynamics of
a certain large N gauge theory that has permanent confine-
ment in the far IR. An example of such a theory is a pure
glue SU(N) gauge theory that comes from N D35-branes
wrapping a two-cycle of the resolved conifold in type 1IB
theory. Such a configuration is mirror-dual to N D6-branes
wrapping a three-cycle of a deformed conifold in type IIA
theory [20-23]. Lifting this to M-theory now leads to a
seven-dimensional manifold with G, holonomy. In fact,
this manifold appears from nontrivially combining a multi
Taub-NUT geometry with N coinciding centers, coming
from the N wrapped D6-branes, and the deformed conifold.
From our earlier analysis it is now easy to construct the GS
state associated with this geometry as the metric structure
of such a manifold has been worked out in [21,24-27].
Let us label this GS states as |ogr), such that the metric may
be computed as before as an expectation value <gMN>0'GT'
Interestingly, under a flop transition and a subsequent
dimensional reduction, we get a resolved conifold with
two-form fluxes threading the two-cycle of the resolved
conifold [24]. This then corresponds to the gravity dual of
the wrapped D6-brane configuration [20-23].

Something interesting happens now. In the dual side in
M-theory, generated from the flop transition [24], the
metric configuration is again known [25-27]. We can
use our aforementioned techniques to determine the GS
state associated with the dual configuration. Let us label it
now as |or) and express the metric for the dual configu-
ration as <gMN>”'GT‘ Comparing the two GS states, it appears

that the following deformation:

locr) = logr), (17)

from one GS state to another would be our way to represent
the gauge-gravity duality here. Saying it in another way,
gauge-gravity duality may simply be represented by
deforming the GS state. But how unique is this deforma-
tion? Clearly, supersymmetry plays a crucial role here and,
since we are dealing with minimal N' = 1 supersymmetry
in four-dimensions, any arbitrary deformation of the GS
state |ogr) would generically break supersymmetry. On the
other hand, if there exist multiple supersymmetry preserv-
ing deformations of the GS state, that would either imply
multiple possible gravity duals (modulo diffeomorphisms
or even set of T-dualities in IIA), or multiple possible
configurations that would be connected by some trans-
formations to the gravity dual. Unfortunately, both these
possibilities have issues: the former can be ruled out from
the uniqueness of the gravity dual and the latter can be ruled
out from the fact that a pure glue theory has neither a
Coulomb branch nor a Higgs branch. Thus it appears that
(17) could be a unique deformation (modulo diffeomor-
phisms or even number of T-dualities in the IIA side). More
details will be presented elsewhere.

VI. DISCUSSION

We have presented the KK monopole solution of the
M-theory equations of motion in terms of a GS coherent
state. This construction works for the KK monopoles in all
string theories (type I, type II, as well as heterotic). It is
shown that using duality symmetry in string theory, a
GS state representation for all solitons (D-branes and NS-
branes) in string theory can be obtained. Implementation of
T-duality in the GS state simply corresponds to a specific
swap between one GS state to another. Interestingly the
gauge/gravity duality for pure glue theories may also be
explained by yet another set of SUSY preserving deforma-
tions of the GS states. Although our approach gives the GS
representation of all solitonic solutions in string and M-theory,
it would be interesting to relate this to a solution generating
method that allows us to get multi-soliton solutions.
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