
Supersymmetric conformal field theories from quantum stabilizer codes

Kohki Kawabata ,1,2 Tatsuma Nishioka ,2 and Takuya Okuda 3

1Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
2Department of Physics, Osaka University, Machikaneyama-Cho 1-1, Toyonaka 560-0043, Japan

3Graduate School of Arts and Sciences, The University of Tokyo,
Komaba, Meguro-ku, Tokyo 153-8902, Japan

(Received 16 April 2023; accepted 28 July 2023; published 18 October 2023)

We construct fermionic conformal field theories (CFTs) whose spectra are characterized by quantum
stabilizer codes. We exploit our construction to search for fermionic CFTs with supersymmetry by focusing
on quantum stabilizer codes of the Calderbank-Shor-Steane type, and derive simple criteria for the theories
to be supersymmetric. We provide several examples of fermionic CFTs that meet the criteria, and find
quantum codes that realize N ¼ 4 supersymmetry. Our work constitutes a new application of quantum
codes and paves the way for the methodical search for supersymmetric CFTs.

DOI: 10.1103/PhysRevD.108.L081901

I. INTRODUCTION

The past two decades have seen a growing interest in
quantum information theory as a foundation for quantum
computing and broad applications to various branches of
theoretical physics. In particular, quantum error correction
(QEC) is the key to the experimental realization of fault-
tolerant quantum computers robust against quantum noises
such as decoherence [1–5]. QEC codes are the theoretical
framework that protects quantum states (code subspaces)
from errors by embedding them into larger Hilbert spaces.
In condensed matter physics, a large class of QEC codes is
constructed to describe topological phases of matter such as
toric codes [6–8] and fracton models [9–12] as code
subspaces. On the other hand, holographic codes [13–16]
have been investigated in high energy theory to understand
holographic duality between quantum gravity and quantum
field theory in one lower dimensions [17–19].
QEC codes have been exploited to construct a discrete

set of two-dimensional conformal field theories (CFTs),
called Narain code CFTs [20]. This generalizes the con-
struction of chiral CFTs from classical codes [21], which
has been known for a long time [24,25]. Narain code CFTs
are bosonic CFTs whose spectra are characterized by
Lorentzian lattices associated with quantum stabilizer
codes. Narain code CFTs find their applications in the
modular bootstrap program [26–28], the search for
CFTs with large spectral gaps [29,30], and holographic

duality [31] based on ensemble average [32,33].
More recently, Narain code CFTs have been generalized
from qubit (binary) to qudit (nonbinary) stabilizer
codes [34], and a family of code CFTs is constructed from
quantum Calderbank-Shor-Steane (CSS) codes [2,35]. See
also [36–38] for other developments.
In this paper, we expand on the prescriptions

of [20,34] and construct fermionic CFTs from quantum
stabilizer codes. Our strategy is to use the modern descrip-
tion [39–42] of fermionization [43], which turns a bosonic
theory with a Z2 symmetry into a fermionic theory. We will
describe the fermionization of a Narain code CFT in terms
of the modification of the Lorentzian lattice underlying the
CFT. Our formulation makes manifest the relationship
between the sectors of fermionic CFTs and the modified
lattices.
Furthermore, we leverage our construction to search for

supersymmetric CFTs, i.e., fermionic CFTs with super-
symmetry. The emergence of supersymmetry has attracted
much attention in high energy theory [44–50] and even in
condensed matter physics [51–57]. In the chiral case, there
are notable examples of supersymmetric CFTs built out of
classical codes [45,58], but no analog has been known in
the nonchiral case. In this paper, we examine when the
fermionic code CFTs constructed from quantum CSS codes
are supersymmetric. We derive simple criteria for super-
symmetry that can be tested for a given CSS code. By
applying the criteria to the codes of small lengths, we find
two codes of length six that yield the same fermionic CFT
satisfying the conditions for supersymmetry, and moreover
prove that the resulting theory is equivalent to a description
of the K3 sigma model with N ¼ 4 supersymmetry [59].
We find more candidates of supersymmetric code CFTs and
leave it as an open problem to establish the actual existence
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of supersymmetry. Our results signify the ubiquity of QEC
codes as a universal structure in theoretical physics.

II. NARAIN CODE CFTS

We start with reviewing the construction of bosonic
CFTs from quantum stabilizer codes [20,34]. Let Fp ¼
Z=pZ be a finite field for an odd prime p and fjxijx ∈ Fpg
an orthonormal basis for the Hilbert space Cp. The
Pauli group acting on Cp is generated by the operators
X and Z defined by Xjxi ¼ jxþ 1i; Zjxi ¼ ωxjxi,
where ω ¼ expð2πi=pÞ and x is defined modulo p [60].
X and Z are generalizations of the Pauli matrices acting on a
qubit system. For an n-qudit system, we define gða;bÞ≡
Xa1Zb1 ⊗ � � � ⊗ XanZbn , where a ¼ ða1;…; anÞ;b ¼
ðb1;…; bnÞ ∈ Fn

p. While a pair of two operators gða;bÞ
and gða0;b0Þ do not commute in general, they commute if
a · b0 − a0 · b ¼ 0, where a · b ¼ P

n
i¼1 aibi. An ⟦n; k⟧

quantum stabilizer code VS is defined as a pk-dimensional
subspace of ðCpÞn fixed by the stabilizer group S ¼
hg1;…; gn−ki generated by a commuting set of operators
gi ¼ gðaðiÞ;bðiÞÞði ¼ 1;…; n − kÞ [61–65].
There is an intriguing relation between quantum stabi-

lizer codes and classical codes [66,67]. Consider a classical
code C specified by the stabilizer group S:

C ¼ fc ¼ ða;bÞ ∈ F2n
p jgða;bÞ ∈ Sg: ð1Þ

The classical code C admits the Lorentzian inner product
taking values in Fp: c ⊙ c0 ¼ cηc0T (c; c0 ∈ C) where

η ¼
�
0 In
In 0

�
: ð2Þ

The associated dual code C⊥ consists of elements c0 ∈ F2n
p

satisfying c0 ⊙ c ¼ 0 mod p for any c ∈ C. C is called self-
orthogonal if C ⊂ C⊥ and self-dual if C ¼ C⊥. For a qudit
stabilizer code, C is not necessarily self-dual. However, for
self-dual codes C, the Construction A lattice [68]

ΛðCÞ≡
�
cþ pmffiffiffiffi

p
p

����c ∈ C; m ∈ Z2n

�
ð3Þ

is even self-dual with respect to the Lorentzian inner
product λ ⊙ λ0 ≡ ληλ0T : λ ⊙ λ ∈ 2Z for any λ ∈ ΛðCÞ
and there is one lattice point per unit volume.
The Construction A lattice ΛðCÞ is related to the

momentum lattice Λ̃ðCÞ of the Narain CFT [69,70] via
ðpL;pRÞ ¼ ðλ1 þ λ2; λ1 − λ2Þ=

ffiffiffi
2

p
∈ Λ̃ðCÞ, where ðλ1; λ2Þ ∈

ΛðCÞ. The vertex operators in a Narain code CFT
are constructed from ðpL; pRÞ ∈ Λ̃ðCÞ as VpL;pR

ðz; z̄Þ ¼
exp ðipL · XLðzÞ þ ipR · XRðz̄ÞÞ, where Xðz; z̄Þ ¼ XLðzÞ þ
XRðz̄Þ is an n-dimensional free boson. The resulting theory
is a bosonic CFT of central charge n, whose consistency is

guaranteed by the evenness and the self-duality of the
Construction A lattice. Using the state-operator iso-
morphism, the vertex operators correspond to the momen-
tum states jpL; pRi. They are eigenstates of the Virasoro
generators L0 and L̄0 with the eigenvalues (conformal
weights) h ¼ p2

L=2 and h̄ ¼ p2
R=2, respectively. Taking

account of the excitation by bosonic oscillators, we obtain
the whole Hilbert space HðCÞ of the Narain code CFT.
We measure the spectrum of the Narain code CFT by the

torus partition function ZC defined by

ZCðτ; τ̄Þ
ðqq̄Þ− n

24

¼ TrHðCÞ½qL0 q̄L̄0 � ¼
X

ðpL;pRÞ∈Λ̃ðCÞ
q

p2
L
2 q̄

p2
R
2 ; ð4Þ

where τ ¼ τ1 þ iτ2 is the modulus of the torus and
q ¼ expð2πiτÞ. Let us define the complete weight enumer-
ator [71] of the self-dual code C ⊂ F2n

p as

WCðfxabgÞ ¼
X
c∈C

Y
ða;bÞ∈Fp×Fp

xwtabðcÞab ; ð5Þ

where wtabðcÞ ¼ jfijðci; ciþnÞ ¼ ða; bÞgj. The torus parti-
tion function of the CFT can be written using the complete
weight enumerator:

ZCðτ; τ̄Þ ¼
1

jηðτÞj2n WCðfψþ
abgÞ ð6Þ

with ηðτÞ the Dedekind eta function and ψþ
ab ¼ Θ½α0�ð0jΩÞ,

where

α ¼
�
a
p
;
b
p

	
; Ω ¼ p

�
iτ2 τ1

τ1 iτ2

�
; ð7Þ

and Θ is the Siegel theta function of genus-two defined by

Θ
�
α

β

�
ðzjΩÞ ¼

X
n∈Z2

e
2πi

h
ðnþαÞΩðnþαÞT

2
þðnþαÞðzþβÞT

i
: ð8Þ

III. FERMIONIZATION AND LATTICE
MODIFICATION

Consider a bosonic CFT B with a global nonanomalous
Z2 symmetry σ. The Hilbert space H can be decomposed
to the even and odd subsectors under the Z2 as
H ¼ Hþ ⊕ H−, whereH� ≡ fψ ∈ Hjσψ ¼ �ψg. H will
be called the untwisted sector. To define the twisted sector,
let us place the theory on a cylinder. In the σ-twisted Hilbert
space Hσ , a field ϕ obeys the twisted boundary condition
ϕðxþ 2πÞ ¼ σϕðxÞ, along the circle direction parame-
trized by x. The twisted sector also decomposes to the
Z2 even and odd subsectors: Hσ ¼ Hþ

σ ⊕ H−
σ . One can

define the partition function S of the Z2-even sectorHþ by
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S ¼ ðqq̄Þ− n
24TrHþ½qL0 q̄L̄0 �. The three partition functions T,

U, and V can be defined similarly for the other
sectors H−;Hþ

σ and H−
σ , respectively. Then the partition

function of (the untwisted sector of) B can be written
as ZB ¼ Sþ T.
A fermionic theory F can be constructed from the

bosonic theory B by coupling the latter to a spin topological
quantum field theory with a Z2 symmetry and gauging the
diagonal Z2 symmetry. This is the modern description of
fermionization [39–42]. The Hilbert space of the resulting
fermionic theory on a circle has Neveu-Schwarz (NS) and
Ramond (R) sectors [72]. Each of the NS and R sectors
decomposes to theZ2-even and odd subsectors correspond-
ing to the fermion parity. Thus there are in total four
subsectors NSþ, NS−, Rþ, and R−, whose partition
functions are given by ZNSþ

F ¼ S ZNS−
F ¼ V, ZRþ

F ¼ T,
ZR−
F ¼ U, respectively.
We now turn to a Narain code CFT for a quantum

stabilizer code and its fermionization. The spectrum of the
code CFT is uniquely characterized by the underlying
lattice ΛðCÞ, hence we will recast the fermionization
procedure in terms of lattices. First, let us consider a vector
of length 2n, χ ¼ ffiffiffiffi

p
p

12n, where we introduced the notation
12n ¼ ð1; 1;…; 1Þ. This vector belongs to ΛðCÞ but its half
δ≡ χ=2 does not: δ ∉ ΛðCÞ. Then, we decompose ΛðCÞ as
ΛðCÞ ¼ Λ0 ∪ Λ1, where

Λi ¼ fλ ∈ ΛðCÞjχ ⊙ λ ¼ i mod 2g ði ¼ 0; 1Þ: ð9Þ

We define the Z2 symmetry by letting Λ0 and Λ1

correspond to the Hilbert spaces Hþ and H−, respectively.
Note that Λ0 is a sublattice of ΛðCÞ, while Λ1 is not a lattice
by itself. This structure precisely matches the fact that the
operators in Hþ are closed under the operator product
expansion (OPE) while those inH− are not. Let us move to
the twisted sector. We assume n ∈ 2Z to ensure that the Z2

symmetry defined by χ is nonanomalous [73]. We then
introduce two additional sets by

ðΛ2;Λ3Þ¼
�ðΛ1þδ;Λ0þδÞ ðn∈4ZÞ;
ðΛ0þδ;Λ1þδÞ ðn∈4Zþ2Þ: ð10Þ

One can check thatΛNS ≡ Λ0 ∪ Λ2 is a self-dual lattice that
is not even (i.e., odd self-dual) with respect to the
Lorentzian inner product ⊙. The oddness and the self-
duality of ΛNS imply that the spectrum of the associated
CFT includes both bosonic and fermionic operators that are
closed under OPE. Hence we can identify Λ0 and Λ2 with
the Z2 even and odd subsectors of the NS sector (NSþ and
NS−) in the fermionized theory, respectively. Similarly, Λ1

and Λ3 correspond to the Z2 even and odd subsectors of the
R sector. Table I summarizes the relations between the
sectors of code CFTs and Λi (i ¼ 0, 1, 2, 3).
The partition function of each sector of the code CFTs

can be calculated from Λi (i ¼ 0; 1; 2; 3) shown in Table I,

thus can be represented by the weight enumerator of the
associated code C [20,34]. By reading off the spectra of the
sectors from the norms of the lattice vectors, we find

S� T ¼ WCðfψ�
abgÞ

jηðτÞj2n ; U � V ¼ WCðfψ̃�
abgÞ

jηðτÞj2n ; ð11Þ

where ψ−
ab ¼ Θ½α0�ðpδjΩÞ, ψ̃þ

ab ¼ Θ½αþδ
0 �ð0jΩÞ, and ψ̃−

ab ¼
Θ½αþδ

0 �ð0jΩþ ΔÞ with the parameters

δ ¼
�
1

2
;
1

2

	
; Δ ¼

�
0 p

p 0

�
: ð12Þ

IV. SEARCHING FOR SUPERSYMMETRIC
THEORIES

Having yielded a general construction of fermionic CFTs
from quantum stabilizer codes, we will exploit our con-
struction to search for supersymmetric CFTs. Fermionic
CFTs with supersymmetry must meet the following con-
ditions (see e.g., [49]):

(i) The NS sector contains a Virasoro primary with the
conformal weight ð3=2; 0Þ, ð0; 3=2Þ.

(ii) The R sector satisfies the positive energy condition
h, h̄ ≥ n

24
.

(iii) The Ramond-Ramond (RR) partition function
ZRR ≡ ZRþ

F − ZR−
F is constant.

The first condition is necessary for the existence of operators
that generate supersymmetry with conformal weight 3=2.
The second condition is imposed by the unitarity of the
theory. The third one follows from the cancellation of the
contributions from bosonic and fermionic states other than
the vacuum in supersymmetric theories. Recently, the first
two conditions have been proven to imply the third in [48],
thus fermionic CFTs satisfying the conditions (i),(ii) are
conjectured to be SCFTs [47–49].
In what follows, we focus on the fermionic CFT

constructed from the CSS code corresponding to
C ¼ C × C, where C is a classical self-dual code with
respect to the Euclidean inner product. The Lorentzian even
self-dual lattice for the bosonic CFT takes the form:

TABLE I. The sectors of bosonic and fermionic code CFTs and
their relations to Λi (i ¼ 0; 1; 2; 3).

B Untwisted Twisted

Even S=Λ0 U=Λ3

Odd T=Λ1 V=Λ2

F NS R

Even S=Λ0 T=Λ1

Odd V=Λ2 U=Λ3
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ΛðCÞ ¼
��

c1 þ pm1ffiffiffiffi
p

p ;
c2 þ pm2ffiffiffiffi

p
p

	
∈ R2n

�
; ð13Þ

where c1; c2 ∈ C;m1; m2 ∈ Zn. Since the resulting non-
chiral CFT is left-right symmetric, it is enough to examine
the conditions ðiÞ; ðiiÞ for the left-moving sector.
Let us first examine the condition (i). The spectrum of

the primary operators in the NS sector is determined by
ΛNS ¼ Λ0 ∪ Λ2 (see Table I). If there exist primary
operators of weight ðh; h̄Þ ¼ ð3=2; 0Þ in the NS sector,
they must be built out of the lattice vectors in Λ2 as h − h̄ ¼
ðp2

L − p2
RÞ=2 ¼ λ ⊙ λ=2 takes an integer value for any

vector λ in the even self-dual lattice Λ0. Also h̄ ¼ 0

imposes λ1 ¼ λ2, so the primary operators with h̄ ¼ 0
are associated with the lattice vectors in Λ2 of the form:
λþ δ with λ ¼ ðv; vÞ ∈ ΛðCÞ, where v is a vector in the
Euclidean Construction A lattice ΛEðCÞ defined by

ΛEðCÞ ¼
�
cþ pmffiffiffiffi

p
p

����c ∈ C;m ∈ Zn

�
; ð14Þ

which is odd self-dual for C a self-dual code. Note that
λþ δ ∈ Λ2 implies that λ ∈ Λ1 when n ∈ 4Z and λ ∈ Λ0

when n ∈ 4Zþ 2. The former is, however, impossible as λ
satisfies χ ⊙ λ ¼ 2

ffiffiffiffi
p

p
v · 1n ¼ 2ðcþ pmÞ · 1n ¼ 0 mod 2.

Thus, we focus on the case with n ∈ 4Zþ 2. The momen-
tum vectors for the primary operators with h̄ ¼ 0 in the NS
sector take the form, ðpL; pRÞ ¼ ð ffiffiffi

2
p

u; 0Þ, u ∈ SðΛEðCÞÞ,
where SðΛEðCÞÞ is the shadow [75] of the Euclidean lattice

ΛEðCÞ defined by SðΛEðCÞÞ ¼ ΛEðCÞ þ
ffiffiffi
p

p
2
1n. The

shadow determines the spectrum of the primary operators
with h̄ ¼ 0 in the NS sector as h ¼ u2 with u ∈ SðΛEðCÞÞ,
and allows us to test if there exist operators of h ¼ 3=2
once a self-dual classical code C is given.
Next, we turn to the constraint imposed by condition (ii).

Let us focus on the left-moving momenta pL of the
vertex operators in the R sector. For n ∈ 4Zþ 2, they
are in Λ̃1 ∪ Λ̃3. The left-moving momenta are pL ¼
ðc1 þ c2 þ pðm1 þm2ÞÞ=

ffiffiffiffiffiffi
2p

p
for pL ∈ Λ̃1 and pL ¼

ðc1 þ c2 þ pðm1 þm2 þ 1nÞÞ=
ffiffiffiffiffiffi
2p

p
for pL ∈ Λ̃3, where

c1; c2 ∈ C;m1; m2 ∈ Zn and 1n · ðc1 þ c2Þ ≠ 1n · ðm1 þ
m2Þmod 2. In both cases, using the linearity of the classical
code C, we can represent them as pL ¼ ðcþ pmÞ= ffiffiffiffiffiffi

2p
p

,
where c ∈ C;m ∈ Zn and 1n · ðcþmÞ ¼ 1 mod 2. Since
1n · ðcþmÞ ¼ 1n · ðcþ pmÞ ¼ ðcþ pmÞ2 ¼ 1 mod 2
and ðcþ pmÞ2=p takes a non-negative integer value as c ·
c ¼ 0 mod p for c ∈ C, the positive energy condition
h ≥ n

24
amounts to

min
v∈ΛEðCÞ
v2¼1mod 2

v2 ≥
n
6
: ð15Þ

For a code of length n ≤ 6, (15) is always satisfied.
There are no further constraints from the positive

energy condition for the right-moving sector h̄ ≥ n
24

as it
yields the same condition as (15) in the left-right symmetric
theory.
To recapitulate the discussion so far, we have shown that a

fermionic CFT built out of the CSS code associated with a
self-dual classical code C has a chance of possessing super-
symmetry only if C has length n ∈ 4Zþ 2, a vector u ∈
SðΛEðCÞÞ satisfies u2 ¼ 3=2, and the condition (15) is met.
Otherwise, the fermionic CFT cannot have supersymmetry.
Armed with this result, we are now in a position to

search for supersymmetric CFTs by exploiting self-dual
classical codes with the necessary properties. Let us
consider the cases with n ≤ 6 so that the condition
(15) is automatically satisfied. Since n ∈ 4Zþ 2, we
have two cases; n ¼ 2 and n ¼ 6. For p ¼ 5, there
are one self-dual code C2 of length n ¼ 2 and two
self-dual codes C3

2 and F6 of length n ¼ 6 [76]. Let us
examine the C2 code which has five codewords
C2 ¼ fð0; 0Þ; ð1; 2Þ; ð2; 4Þ; ð3; 1Þ; ð4; 3Þg. The Euclidean
lattice ΛEðC2Þ becomes a two-dimensional lattice iso-
morphic to Z2, whose orthonormal basis can be chosen as
v1 ¼ ð1; 2Þ= ffiffiffi

5
p

and v2 ¼ ð2;−1Þ= ffiffiffi
5

p
. With this basis, we

have
ffiffi
5

p
2
12 ¼ ð3v1 þ v2Þ=2, and any vector u in the

shadow SðΛEðC2ÞÞ can be written as u ¼ m0
1v1 þm0

2v2
for m0

1, m
0
2 ∈ Zþ 1=2. In this case, there are no solutions

for u2 ¼ m02
1 þm02

2 ¼ 3=2 and thus the fermionic CFT
cannot be supersymmetric. Next, consider the code
C3
2 ¼ C2 × C2 × C2. The shadow is also decomposed into

the direct product of three SðΛEðC2ÞÞ. One can expand
any vector u ∈ ΛSðC3

2Þ as u ¼ P
6
i¼1 m

0
iri for m0

i ∈ Zþ
1=2ði ¼ 1;…; 6Þ in the orthonormal basis ri given by
r1 ¼ ðv1; 04Þ, r2 ¼ ðv2; 04Þ, r3 ¼ ð02; v1; 02Þ, r4 ¼
ð02; v2; 02Þ, r5 ¼ ð04; v1Þ, r6 ¼ ð04; v2Þ where 0k ¼
ð0; 0;…; 0Þ is the all-zero vector of length k. Solving
the equation u2 ¼ P

6
i¼1m

0
i
2 ¼ 3=2, we find 64 solutions

m0
i ¼ �1=2ði ¼ 1;…; 6Þ. Thus this theory meets the both

conditions (i),(ii). We also checked numerically the
condition (iii): ZRR ¼ T − U ¼ 24. Therefore, this model
is potentially supersymmetric.
Wenow show that the fermionicCFTconstructed fromC3

2

indeed has supersymmetry. By construction, the latticeΛðCÞ
given in (13) has a basis given by ðri; 06Þ and ð06; riÞ with
i ¼ 1;…; 6, and is therefore isomorphic to Z12 with
Lorentzian metric η in (2). Because the coefficients in the
expansion χ¼ ffiffiffi

5
p

112¼
P

3
i¼1ð3r2i−1þr2i;3r2i−1þr2iÞ are

all odd, the rotation defined by the basis gives isomorphisms

Λi ≃ Λð0Þ
i ¼

�
m ∈ Z12j

X12

j¼1

mj ¼ i mod 2

�
; ð16Þ

Λiþ2 ≃ Λð0Þ
iþ2 ¼ Λð0Þ

i þ 1

2
112; ð17Þ
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for i ¼ 0; 1. Thus, after the rotation, the left- and right-
moving momenta ðpL; pRÞ take values in

Λ̃ð0Þ
i ¼

�ða; aÞffiffiffi
2

p þ
ffiffiffi
2

p
m

����a ∈ F6
2; m ∈ Z12;

X6

j¼1

aj ¼ i

�
;

ð18Þ

Λ̃ð0Þ
iþ2 ¼ Λ̃ð0Þ

i þ 1ffiffiffi
2

p ð16; 06Þ; ð19Þ

for i ¼ 0, 1. We observe that the (shifted) lattices

Λ̃ð0Þ
i (i ¼ 0, 1, 2, 3) are precisely the momentum lattices

in the csuð2Þ61 description of the K3 sigma model [59],
which we refer to as the GTVW model. In particular,
the fermionic CFT has N ¼ ð4; 4Þ supersymmetries
whose currents were explicitly constructed in [59] and
interpreted in terms of quantum error correcting codes
in [46].
The other code F6 is generated by three codewords [76]

ð1; 0; 1;−1;−1; 1Þ, ð12; 0; 1;−1;−1Þ, ð1;−1; 1; 0; 1;−1Þ.
The lattice ΛðCÞ for F6 has a basis given by ðsi; 06Þ and
ð06; siÞ with si ¼ s̃i=

ffiffiffi
5

p
, where s̃1 ¼ ð0; 15Þ, s̃2 ¼ ð1; 0; 1;

−1;−1; 1Þ, s̃3 ¼ ð1;−1;−1; 1; 0; 1Þ, s̃4 ¼ ð1;−1; 1; 0;
1;−1Þ, s̃5 ¼ ð12; 0; 1;−1;−1Þ, and s̃6 ¼ ð12;−1;−1;
1; 0Þ. The odd coefficients in χ ¼ ð5s1 þ s2 þ � � � þ
s6; 5s1 þ s2 þ � � � þ s6Þ again imply that the fermionic
CFT constructed from F6 coincides with the GTVW
model [59]. We note that, in general, different codes can
yield the same CFT as exemplified by C3

2 and F6.

V. DISCUSSION

In this paper, we revealed novel relations among
fermionic CFTs, quantum stabilizer codes, and lattices
together with their modifications. We also examined the
necessary conditions for the fermionic code CFTs to be
supersymmetric and found two CSS codes defined
by classical self-dual codes with p ¼ 5 and n ¼ 6 that
satisfy the conditions. We further proved that these CFTs
are nothing but the GTVW model [59], which has N ¼ 4
supersymmetry. Given the successful application of our
method, we expect that more supersymmetric CFTs can be
constructed from quantum stabilizer codes. Focusing on
CSS codes defined by classical self-dual codes, fermionic
code CFTs can be supersymmetric only when n ∈ 4Zþ 2.
When p ¼ 5, there exist classical self-dual codes
for even n [76], and some of them may give rise to
supersymmetric code CFTs if the necessary conditions
given in the text are met. For n ¼ 10, fermionic code
CFTs cannot be supersymmetric as the associated
Construction A lattices have lattice vectors of length
one [77], which violate the condition (15). On the other
hand, there exist self-dual codes of length n ¼ 14 that

meet the necessary conditions for supersymmetry, thus the
associated code CFTs are candidates of supersymmet-
ric CFTs.
We have focused on qudit stabilizer codes based on Fp

for an odd prime p. A similar discussion can be applied to
qubit stabilizer codes (p ¼ 2) [78]. In the binary case, the
choice of χ ∈ ΛðCÞ depends on the type of classical
code C. In what follows, we focus on the CSS construction
C ¼ C × C for a binary self-dual code C. Then we
can take χ ¼ 2δ ¼ 12n=

ffiffiffi
2

p
where the nonanomalous con-

dition [74] imposes n ∈ 4Z. While the Z2 grading of ΛðCÞ
is the same as in the previous case (9), Λ2 and Λ3 are
slightly modified:

ðΛ2;Λ3Þ ¼
� ðΛ1 þ δ;Λ0 þ δÞ ðn ∈ 8ZÞ;
ðΛ0 þ δ;Λ1 þ δÞ ðn ∈ 8Zþ 4Þ: ð20Þ

The sectors after fermionization take the same form as in
Table I. Our construction provides examples of fermionic
CFTs satisfying the conditions (i)–(iii) for supersym-
metry. One example is given by the unique self-dual code
B4 (C2

2 of [79]) of length 4 generated by two codewords
ð12; 02Þ and ð02; 12Þ, and another by the unique indecom-
posable self-dual code B12 [79] of length 12 generated by
six codewords ð02; 1; 0; 1; 02; 1; 03; 1Þ, ð1; 03; 1; 03; 14Þ,
ð06; 12; 02; 12Þ, ð0; 1; 02; 1; 02; 14; 0Þ, ð03; 1; 03; 12; 02; 1Þ,
and ð05; 1; 0; 1; 0; 1; 0; 1Þ. For the self-dual code B4, the
fermionic code CFT contains 16 Virasoro primaries of
weights ð3=2; 0Þ and the RR partition function vanishes.
On the other hand, the fermionic code CFT from B12

contains 64 Virasoro primaries of weights ð3=2; 0Þ, and
the resulting RR partition function takes the constant
value 288. These observations strongly suggest the exist-
ence of supersymmetry in both cases. It remains open
whether they are equivalent to known models with
supersymmetry or provide new examples of supersym-
metric CFTs.
In general, it is nontrivial to confirm the existence of

supersymmetry in a given candidate CFT as it requires the
explicit construction of supercurrents as a linear combina-
tion of vertex operators of weight 3=2. In the GTVW
model, a supercurrent operator that generates a part of the
supersymmetry can be represented as a linear combination
of 26 primary operators. This structure has been identified
with a ½½6; 0�� qubit stabilizer code [46], where the super-
current is viewed as a one-dimensional code subspace in
the space of 6 qubits. It is desirable to find a connection, if
any, between their interpretation and our construction of the
GTVW model.
For bosonic Narain code CFTs constructed from a class

of CSS codes, we can exactly compute the averaged
partition function [34]. Our construction of the fermionized
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code CFTs enables us to take their average similarly. These
averaged theories may have a holographic description
related to an abelian Chern-Simons theory both in bosonic
[32,33] and fermionic [80] cases. It would be interesting to
give a holographic interpretation for our class of fer-
mionic CFTs.
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