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We devise a general setup to investigate the violation of the Bell-Clauser-Horne-Shimony-Holt
(Bell-CHSH) inequality in the vacuum state in the context of quantum field theory. We test the method
with massless spinor fields in (1þ 1)-dimensional Minkowski space-time. Alice’s and Bob’s test functions
are explicitly constructed, first by employing Haar wavelets which are then bumpified into proper test
functions via a smoothening procedure relying on the Planck-taper window function. Relativistic causality
is implemented by requiring the support of Alice’s and Bob’s test functions to be located in the left and right
Rindler wedges, respectively. Violations of the Bell-CHSH inequality as close as desired to Tsirelson’s
bound are reported. We briefly comment on the extra portal, compared to earlier works; this opens the
opportunity to scrutinize Bell-CHSH inequalities with generic, interacting quantum field theories.
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I. INTRODUCTION

Bell’s inequalities have been a pivotal issue in quantum
mechanics since their formulation [1,2]. It is certainly
appropriate to state that the principle of relativistic causality
plays a key role in understanding the nature of this
inequality. Requiring that Alice and Bob are spacelike
separated prevents any possible interference between their
respective measurements, and it is worth recalling that the
closure of the so-called causality loophole required highly
sophisticated experimental tools [3–8]. As far as relativistic
causality is concerned, it seems natural to look at the
Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequal-
ity within the realm of quantum field theory (QFT), a
quite difficult endeavor, already investigated in the pioneer-
ing works [9–11] (see also [12–16] for more recent
attempts). In particular, the authors of [9–11] have been
able to show, by using methods of algebraic QFT, that the
Bell-CHSH inequality can be maximally violated already at
the level of free fields.

II. GOAL

The aim of the present work is to exhibit an explicit
violation of the Bell-CHSH inequality in the vacuumwithin
the QFT framework, thus giving continuity to the work
done in [9–11]. More precisely, we shall be able to provide
a systematic construction of appropriate test functions
needed to detect the Bell-CHSH inequality violation by
means of wavelet representations. To our knowledge, this
is the first time in which such an explicit construction is
presented. We also highlight the difference between our
approach and that of [9–11].

III. METHOD

The whole procedure relies on the following steps.
(i) Identify a Hermitian dichotomic field operator A:

A† ¼ A and A2 ¼ 1.
(ii) Use smearing to localize the dichotomic field

operators entering the Bell-CHSH inequality in
suitable spacelike separated regions of Minkowski
space-time. Following [9–11], we shall employ two
pairs of smooth test functions with compact supports
ðf; f0Þ and ðg; g0Þ, referred to as Alice’s and Bob’s
test functions, also known as bump functions.
Relativistic causality is implemented by demanding
that the supports of ðf; f0Þ and ðg; g0Þ belong to
Rindler’s left and right wedges, respectively.
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(iii) Express the Bell-CHSH inequality in terms of the
inner products between ðf; f0Þ and ðg; g0Þ. The
vacuum expectation value of the Bell-CHSH corre-
lator in QFT,

hCi ¼ h0ji½ðAf þAf0 ÞAg þ ðAf −Af0 ÞAg0 �j0i; ð1Þ

can then be reexpressed in terms of inner products
between the test functions, namely,

hCi ¼ i
�hfjgi þ hfjg0i þ hf0jgi − hf0jg0i�; ð2Þ

where hfjgi stands for the Lorentz-invariant inner
product [see Eq. (15)].

(iv) Show that hfjgi, hfjg0i, hf0jgi, hf0jg0i can be
constructed so that the Bell-CHSH inequality is
violated, i.e.,

2 < jhCij ≤ 2
ffiffiffi
2

p
; ð3Þ

where the value 2
ffiffiffi
2

p
is Tsirelson’s bound [17]. We

shall proceed in two steps. First, we search for a
preliminary set of would-be test functions ðf̃; f̃0Þ,
ðg̃; g̃0Þ adopting a Haar wavelet finite series repre-
sentation. In the second step, the final form of the
test functions ðf; f0Þ, ðg; g0Þ is achieved via a
bumpification procedure based on the Planck-taper
window function. As a final result, we obtain
explicit violations of the Bell-CHSH inequality as
close as desired to Tsirelson’s bound.

IV. OUTLOOK

Let us emphasize that nowadays there is a great
interest in testing Bell-CHSH inequalities in high-energy
physics [18–24]. This allows one to probe entanglement in
an energy regime never explored before, in which the
appropriate description of the physical phenomena is in
the realm of QFT. Our approach might, in principle, be used
for any QFT, despite the numerical challenges that will
naturally come with more complicated models, covering as
well the case of interacting theories. Let us limit ourselves
here to mentioning that, in the interacting case, the inner
products between the test functions are modified in such a
way that the kernel corresponding to the free Wightman
two-point function gets replaced by the Källen-Lehmann
spectral density, encoding the information about the
interaction.

V. SPINOR FIELDS

Let us introduce a QFT for a free spinor field in (1þ 1)
dimensions, with action

S ¼
Z

d2x
�
ψ̄ðiγμ∂μ −mÞψ�: ð4Þ

In the above expression, ψα ¼ ðψ1;ψ2Þt is a Dirac field
described by a two-component spinor with complex ψ1, ψ2.
In this work, we shall restrict ourselves to the free case and
mainly consider the massless limit. The Clifford algebra
is given by fγμ; γνg ¼ 2gμν, where the metric is gμν ¼
diagðþ1;−1Þ and the Dirac matrices are chosen as γ0 ¼ σx
and γ1 ¼ iσy, with σx, σy being the Pauli matrices.
According to canonical quantization, we introduce the
nontrivial equal-time anticommutation relations

�
ψαðt; xÞ;ψ†

βðt; yÞ
� ¼ δαβδðx − yÞ: ð5Þ

The Dirac field can be written in a plane wave expansion,

ψðt; xÞ ¼
Z

dk
2π

m
ωk

�
uðkÞcke−ikμxμ þ vðkÞd†keþikμxμ

�
; ð6Þ

where kμxμ ¼ ωkt − kx and ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. For the

algebra of creation and annihilation operators, we get

fck; c†qg ¼ fdk; d†qg ¼ 2π
ωk

m
δðk − qÞ: ð7Þ

Evaluating the anticommutators for different space-time
points xμ and yμ, we find

fψαðxÞ; ψ̄ βðyÞg ¼ ðiγμ∂μ −mÞαβiΔPJðx − yÞ; ð8Þ

with

iΔPJðxÞ ¼
Z

dk
2π

1

2ωk

�
e−ikx − eþikx

�
: ð9Þ

The Pauli-Jordan distribution ΔPJ is a real, Lorentz-invari-
ant, odd under the exchange x → −x, solution of the Klein-
Gordon equation. Furthermore, this distribution vanishes
outside the light cone (i.e., ΔPJðxÞ ¼ 0 if x2 < 0), ensuring
that measurements at spacelike separated points do not
interfere (cf. relativistic causality).

VI. SMEARING

Quantum fields are operator-valued distributions [25]
and must be smeared in order to give well-defined operators
acting on the Hilbert space. In the present case, the
smearing procedure is achieved by considering two-
component spinor test functions of the form hαðxÞ ¼
ðh1ðxÞ; h2ðxÞÞt, where h1, h2 are commuting test functions
belonging to the space C∞

0 ðR4Þ of infinitely differentiable
functions with compact support. For the smeared spinor
quantum fields we have
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ψðhÞ ¼
Z

d2xh̄αðxÞψαðxÞ;

ψ†ðhÞ ¼
Z

d2xψ̄αðxÞhαðxÞ: ð10Þ

Owing to the causal structure of the Pauli-Jordan distri-
bution, if we consider two test functions ðh; h0Þ that
have spacelike separated supports, we will find fψðhÞ;
ψ†ðh0Þg ¼ 0, which reflects causality at the level of
smeared fields.
From the definition of the smeared spinor field, by

plugging the plane wave expansion, we find

ψðhÞ ¼ ch þ d†h; ψ†ðhÞ ¼ c†h þ dh; ð11Þ

where the smeared creation and annihilation operators
read as

ch ¼
Z

dk
2π

m
ωk

h̄ðkÞuðkÞck; dh ¼
Z

dk
2π

m
ωk

v̄ðkÞhð−kÞdk;

ð12Þ

with analogous equations for their conjugate expressions.
From the canonical anticommutation relations and the
above definitions, one can compute the nontrivial anti-
commutation relations in terms of the smeared creation and
annihilation operators,

�
ch; c

†
h0
� ¼

Z
dk
2π

1

2ωk
h̄ðkÞð=kþmÞh0ðkÞ;

�
dh; d

†
h0
� ¼

Z
dk
2π

1

2ωk
h̄0ð−kÞð=k −mÞhð−kÞ; ð13Þ

where in both expressions the constraint ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is

implicitly understood, and we denote =k≡ kμγμ.

VII. BELL SETUP

Let us face now the introduction of a Bell quantum field
operator, Hermitian and dichotomic. Following [9–11], we
shall consider the smeared operator

Ah ¼ ψðhÞ þ ψ†ðhÞ: ð14Þ

Immediately we see that A†
h ¼ Ah. As it is customary,

the inner product between test functions is obtained
through the two-point Wightman function associated with
the operator Ah, that is, hhjh0i≡ h0jAhAh0 j0i. Using the
anticommutation relations of the smeared creation and
annihilation operators, the vacuum expectation value of
the product AhAh0 is easily evaluated, yielding

hhjh0i ¼
Z

dk
2π

1

2ωk

�
h̄ðkÞð=kþmÞh0ðkÞ

þ h̄0ð−kÞð=k −mÞhð−kÞ�: ð15Þ

When h ¼ h0, we can identify the above expression as the
norm squared of the test function h. In particular, from the
anticommutation relations,

hA2
hi ¼ khk2; ð16Þ

showing that, as desired, Ah is a dichotomic operator,
provided the test function h is normalized to 1 [9–11]. For
the Bell-CHSH correlator in the vacuum, we write

hCi ¼ h0ji½ðAf þAf0 ÞAg þ ðAf −Af0 ÞAg0 �j0i; ð17Þ

where ðf; f0Þ and ðg; g0Þ are Alice’s and Bob’s test
functions whose supports are located in Rindler’s left
and right wedges, respectively, and the factor i is due to
the anticommuting nature of the spinor fields. The above
expression can also be written in a quantum-mechanics-like
version:

hCi ¼ i
�hfjgi þ hfjg0i þ hf0jgi − hf0jg0i�: ð18Þ

As already stated, the main goal of this work is to explicitly
construct test functions such that the Bell-CHSH in-
equality is violated. This amounts to finding test functions
ðf; f0; g; g0Þ belonging to the space C∞0 ðR4Þ, normalized
to 1, such that ðf; f0Þ and ðg; g0Þ have spacelike separated
supports and, finally, such that we have jhCij > 2. From the
definition, Eq. (15), imposing a reality condition on the test
functions of the form f�i ðkÞ ¼ fið−kÞ, g�i ðkÞ ¼ gið−kÞ,
there is a simplification of the inner product expression,
which becomes

hfjgi ¼
Z

dk
2π

	

ωk þ k
ωk

�
f�1ðkÞg1ðkÞ

þ


ωk − k
ωk

�
f�2ðkÞg2ðkÞ

�
: ð19Þ

In particular, considering the massless case, we can rewrite
the above expression as

hfjgi ¼
Z

dk
2π

�ð1þ sgnðkÞÞf�1ðkÞg1ðkÞ

þ ð1 − sgnðkÞÞf�2ðkÞg2ðkÞ
�
; ð20Þ

where sgnðkÞ ¼ k=jkj. Going back to configuration space,
we find hfjgi ¼ I1 þ I2, where
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I1 ¼
Z

dx
�
f�1ðxÞg1ðxÞ þ f�2ðxÞg2ðxÞ

�
;

I2 ¼ −
i
π

Z
dxdy



1

x− y

��
f�1ðxÞg1ðyÞ− f�2ðxÞg2ðyÞ

�
: ð21Þ

Here we will only consider real test functions. We remark
that, with this assumption, we immediately find that
hfjfi ¼ I1, since the contribution I2 vanishes by symmetry
arguments under the exchange of x and y. Furthermore, if f
and g have disjoint supports, hfjgi ¼ I2 ∈ iR.

VIII. WAVELETS

Daubechies wavelets [26,27] are widely used to treat
problems in signal processing and data compression
[28,29], and more recently, have been used in many
different contexts, in QFT and beyond [30–35]. The main
idea here is to expand the test functions in terms of a finite
number of Haar wavelets, a particularly useful type of
Daubechies wavelet, well-known for their approximation
abilities [36]. These functions provide an orthonormal basis
for the square-integrable functions on the real line and,
moreover, have a compact support whose maximum size
can be controlled. Let us introduce the mother wavelet ψ as

ψðxÞ ¼

8><
>:

þ1; if x∈
�
0; 1

2

�
;

−1; if x∈
�
1
2
; 1
�
;

0; otherwise:

ð22Þ

One can then define the generic Haar wavelet ψn;k as

ψn;kðxÞ ¼ 2n=2ψð2nx − kÞ ð23Þ

with support on In;k ¼ ½k2−n; ðkþ 1Þ2−nÞ and piecewise
constant, giving þ2

n
2 on the first half of In;k and −2n

2 on the
second half. They satisfyZ

dxψn;kðxÞψm;lðxÞ ¼ δnmδkl: ð24Þ

Accordingly, for each would-be test function entering the
Bell-CHSH inequality, we write

efjðxÞ ¼ Xnf
n¼ni

Xkf
k¼ki

fjðn; kÞψn;kðxÞ; ð25Þ

where fjðn; kÞ are the coefficients associated with the Haar
wavelet basis element ψn;k for the jth component of the
spinor test function fðxÞ. We remark that these parameters
fni; nf; ki; kfg set the range and resolution of the Haar
wavelet expansion.
In order to explicitly implement relativistic causality, we

will consider the hypersurface t ¼ 0 and adopt the supports
of ðf; f0Þ corresponding to Alice’s lab on the negative

position axis, as well as the supports of ðg; g0Þ correspond-
ing to Bob’s lab on the positive axis. This can be achieved
taking k ≤ −1 for ðf; f0Þ and k ≥ 0 for ðg; g0Þ.
For the norm of the test function f we obtain

hefjefi ¼ X
n;k

�
f21ðn; kÞ þ f22ðn; kÞ

� ð26Þ

with analogous expressions for fef0;eg;eg0g. In the same vein,
we can evaluate hefjegi, (naturally with similar expressions
for hef0jegi, hefjeg0i and hef0jeg0i), finding
hefjegi ¼ X

n;k;m;l

½f1ðn; kÞg1ðm; lÞ − f2ðn; kÞg2ðm; lÞ�

×

	
−
i
π

Z
dxdy



1

x − y

�
ψn;kðxÞψm;lðyÞ

�
: ð27Þ

The advantage of using the Haar wavelet expansion is that
all of the above integrals can be evaluated in closed form
thanks to the piecewise constant nature of the wavelets. We
refrain from listing the explicit expressions here as these
are quite lengthy. Needless to say, numerical integration
routines lead to consistent results. Therefore, given the
parameters fni; nf; ki; kfg, one can obtain all the inner
products, and then further manipulate the Bell-CHSH
inequality, searching for the conditions to achieve its
explicit violation. More precisely, we shall impose

hefjefi ¼ hef0jef0i ¼ hegjegi ¼ heg0jeg0i ¼ 1;

hefjegi ¼ hef0jegi ¼ hefjeg0i ¼ −hef0jeg0i ¼ −i
ffiffiffi
2

p
λ

1þ λ2
ð28Þ

with λ∈ ð ffiffiffi
2

p
− 1; 1Þ. It is then easily checked that jhCij ¼

4
ffiffi
2

p
λ

1þλ2
∈ ð2; 2 ffiffiffi

2
p Þ. Then, we can search for the wavelet

coefficients that satisfy this constraint through a suitable
numerical minimization procedure. Notice that the con-
straints (28) are quadratic in nature, which in general lead to
a well-posed problem; see, e.g., [37].

IX. BUMPIFICATION

The strategy presented above still needs to be refined.
The would-be test functions are not smooth, due to the
jumps in the Haar wavelets. Nevertheless, there is a class of
smooth bump functions with compact support, which can
be used to approximate the Haar wavelets as precisely as
desired.
Following [38], we define the basic Planck-taper win-

dow function with support on the interval [0, 1] by
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σ0ðx; εÞ ¼

8>>>>><
>>>>>:

h
1þ exp


εð2x−εÞ
xðx−εÞ

�i
−1
; if x∈ ð0; εÞ;

þ1; if x∈ ½ε; 1− ε�;h
1þ exp


εð−2x−εþ2Þ
ðx−1Þðxþε−1Þ

�i
−1
; if x∈ ð1− ε; 1Þ;

0; otherwise:

ð29Þ

In the above expression, the parameter ε regulates the
fraction of the window over which the function smoothly
rises from 0 to 1 and falls from 1 to 0. This gives a smooth
version of the basic rectangle, the deviation with which can
be made arbitrarily small by tuning ε.
With this object in hand, we then introduce the mother

bump function with support on [0, 1] by

σðx; εÞ ¼

8><
>:

þσ0ð2x; εÞ; if x∈
�
0; 1

2

�
;

−σ0ð2x − 1; εÞ; if x∈
�
1
2
; 1
�
;

0; otherwise:

ð30Þ

Finally, we can define the C∞
0 ðRÞ version of the Haar

wavelet,

σn;kðx; εÞ ¼ 2n=2σð2nx − k; εÞ: ð31Þ

This is indeed a smooth bump function with support on
the interval In;k that approximates as precisely as we want
ψn;kðxÞ per choice of ε, as illustrated in Fig. 1. As such,
each wavelet solution of the form (32) can be replaced by a
bumpified version,

fjðxÞ ¼
Xnf
n¼ni

Xkf
k¼ki

fjðn; kÞσn;kðx; εÞ; ð32Þ

whilst retaining the various expansion coefficients
fjðn; kÞ, so that all crucial properties encoded in (28)

are reproduced up to arbitrary precision if ε is chosen small
enough.
Results—Finally, we present and discuss our main

results for the test functions leading to the violation of
Bell-CHSH inequalities. We will search for a solution by a
numerical minimization (least squares fit so to say) ofR¼
jhefjefi− 1j2 þ jhef0jef0i− 1j2 þ jhegjegi− 1j2 þ jheg0jeg0i− 1j2þ
jhefjegi þ i

ffiffi
2

p
λ

1þλ2
j2 þ jhefjeg0i þ i

ffiffi
2

p
λ

1þλ2
j2 þ jhef0jegi þ i

ffiffi
2

p
λ

1þλ2
j2þ

jhefjeg0i− i
ffiffi
2

p
λ

1þλ2
j2. By choosing the wavelet basis sufficiently

large, R becomes zero up to the desired precision, after
which we stop the minimization. For the record, we also
tested that directly minimizing jhefjefi−1j2þjhef0jef0i−1j2þ
jhegjegi−1j2þjheg0jeg0i−1j2þjhCi−4

ffiffi
2

p
λ

1þλ2
j2 leads to the same

solution.
As a first test, we select λ ¼ 0.7, so that jhCij ≈ 2.66.

To find the solution, we adopted the following parameter
set: fni ¼ −5; nf ¼ 30; ki ¼ −4; kf ¼ −1g for ðef; ef0Þ
and fmi ¼ −5;mf ¼ 30;li ¼ 0;lf ¼ 3g for ðeg;eg0Þ, with
R ¼ Oð10−26Þ. This already illustrates the effectiveness of
our method and encourages us to search for larger viola-
tions. In order to do so, we need to correspondingly enlarge
our wavelet basis, especially if we intend to approach
Tsirelson’s bound, 2

ffiffiffi
2

p
, for λ → 1. The larger basis allows

not only for a larger covered sector of space, but in particular
for a more pronounced peak in the test functions near the
boundary of the causally disconnected intervals. Then the
inner products between the causally disjoint test functions
can get large enough toward an eventual saturation of the
bound. As a matter of fact, imposing hCi ≈ 2.82 for λ ¼ 0.99
and being willing to achieve precision at the percent level,
corresponding to R ¼ Oð10−5Þ, we were able to solve the
constraints (28) if we adopt the following set of parameters:
fni ¼ −10; nf ¼ 120; ki ¼ −5; kf ¼ −1g for ðf; f0Þ and
fmi ¼ −10;mf ¼ 120;li ¼ 0;lf ¼ 4g for ðg; g0Þ.1
For the bumpification, adopting the same set of wavelet

coefficients, we thus replace the Haar wavelets ψn;kðxÞ
with σn;kðxÞ. As a self-consistency test, we numerically
computed the inner products again, now with these smooth
functions expanded in terms of σn;kðxÞ, and checked
if they are correctly normalized and violate the Bell-
CHSH inequality up to the same precision as the under-
lying wavelet solution. For ε ¼ 10−10, we have found
an excellent numerical agreement, as expected, showing
that our strategy indeed works. The components of the
corresponding normalized test functions leading to the

FIG. 1. The mother Haar wavelet and two of its bumpifications.

1Higher precision can be reached upon further enlarging the set
of basis elements and, consequently, longer computation times.
To get an idea about the computing time on a single standard
laptop, solving the optimization presented here took a few
minutes for the λ ¼ 0.7 case with 1152 coefficients and a few
hours for the λ ¼ 0.99 case with 5240 coefficients. The wavelet
coefficients for both reported cases can be obtained from the
authors upon reasonable request.
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Bell-CHSH inequality violation are shown in Fig. 2 for the
case λ ¼ 0.99. It should be stressed that although the
functions seem to increase without bounds near the origin,
this is a misleading impression: all of them go to zero in the
limit x → 0, per construction. Also not visible in Fig. 2 is
the fact that all shown functions do have compact support,
again per construction.
Interestingly, there seem to be several reflection relations

between the various test function components upon visual
inspection of Fig. 2. To verify these, we reconstructed the
wavelet coefficients using an expansion with all the
expected reflection relations built in, which resulted in a
numerically indistinguishable solution from the one shown
in Fig. 2.

X. COMPARISON WITH EARLIER WORK
OF SUMMERS–WERNER

The seminal papers [9–11] heavily relied on Tomita-
Takesaki theory (see [39] for an introduction to the latter) to
prove the existence of a set of test functions so that the
Tsirelson bound can be approximated as precisely as
desired. To the best of our knowledge, the explicit form
of the Summers-Werner test functions is, unfortunately,
unknown. Notice that their construct is limited to the free
field case, as the Tomita-Takesaki theory has to date no
interacting counterpart. From [9–11], the test functions
ðf; f0Þ and ðg; g0Þ are linear combinations of another set of
causally disjoint test functions, ðf1; f2Þ and ðg1; g2Þ, with
certain constraints for the various inner products with
respect to Eq. (21). It is an open question if the solution
(strategy) proposed here leads to the same solution as the

one of [9–11]; we will come back to this question in a larger
forthcoming paper.2 As the number of test function con-
straints in [9–11] is larger than the ones we imposed—in fact
even more than necessary to attain the maximal violation
which is due to the specific proof of [9–11]—one might
expect that their and our solution would not be equivalent.

XI. CONCLUSIONS

We investigated the Bell-CHSH inequality in the context
of QFT for a free massless spinor field in 1þ 1 dimensions.
Introducing suitable Bell operators built with smeared
spinor fields, we defined an appropriate inner product
associated with these operators through their Wightman
functions. Expanding the would-be test functions used in
the smearing procedure as a finite sum over Haar wavelets,
we numerically constructed suitable coefficients leading to
the violation of Bell-CHSH inequality, arbitrarily close
to the maximal violation in fact. Using the Planck-taper
window function, the discontinuous Haar wavelet solution
set was then bumpified into C∞

0 ðRÞ smooth functions with
compact support up to arbitrary precision, allowing us to
adopt the same set of wavelet coefficients that we found
before. Therefore, we thus found a proper set of test
functions leading to the explicit violation of the Bell-
CHSH inequality in QFT. In future work, we foresee the
generalization to the massive case, including to scalar field
theories. Even more rewarding will be to test the here
presented bumpified wavelet method for interacting QFTs,
in which case far less is known about the possibility of
having maximal violation or not. An interacting (1þ 1)-
dimensional fermionic theory like the Thirring model [40]
will constitute the most interesting test bed, especially since
the spectral function is known exactly [41,42], and the latter
will enter the inner product as we already alluded to in the
main text. Finally, we plan to apply the method presented
here to field theories in 1þ 2 and 1þ 3 dimensions,
covering also the case of Bose fields by means of Weyl
operators; see [43]. We will report on these and other
matters in future work.
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FIG. 2. Test function components for λ ¼ 0.99 with the
following set of parameters: fni ¼ −10; nf ¼ 120; ki ¼ −5;
kf ¼ −1g for ðf; f0Þ and fmi ¼ −10;mf ¼ 120; li ¼ 0;

lf ¼ 4g for ðg; g0Þ.

2As far as we know, there can be multiple sets of test functions
leading to the same amount of Bell-CHSH violation. For
instance, it is trivial to see that switching the sign of all upper
or lower components of the spinor test functions does not change
anything in the relevant inner products.
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