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We use lattice simulations and the continuous renormalization group method, based on the gradient flow,
to calculate the β function and anomalous dimensions of the SU(3) gauge theory with Nf ¼ 10 flavors of
fermions in the fundamental representation. We employ several improvements to extend the range of
available renormalized couplings, including the addition of heavy Pauli-Villars bosons to reduce cutoff
effects and the combination of a range of gradient flow transformations. While in the weak coupling regime
our result is consistent with those of earlier studies, our techniques allow us to study the system at much
stronger couplings than previously possible. We find that the renormalization group β function develops a
zero, corresponding to an infrared-stable fixed point, at gradient-flow coupling g2 ¼ 15.0ð5Þ. We also
determine the mass and tensor anomalous dimensions: At the fixed point we find γm ≃ 0.6, suggesting that
this system might be deep inside the conformal window.

DOI: 10.1103/PhysRevD.108.L071503

I. INTRODUCTION

The SU(3) gauge theory with ten Dirac fermions in the
fundamental representation is the subject of continuing
debate. The question is whether its infrared physics is
confining or conformal, as determined by the absence or
presence of an infrared fixed point (IRFP). The system has
been studied by several groups, bothwith domainwall [1–5]
and staggered fermions [6–8]. All these studies have used
the finite-volume gradient flow (GF) scheme with a step-
scaling renormalization-group transformation [9–11].
While the results are in reasonable agreement at weak
gauge couplings, they differ at stronger couplings and reach
differing conclusions.
Using domain-wall fermions, Chiu [1,2] first claimed an

IRFP at g2 ≃ 7. His later study [3], however, gave a more
cautious assessment. Hasenfratz, Rebbi, and Witzel [4,5]
observed a step-scaling β function that increases in absolute
value up to g2 ≃ 9, where it appears to turn towards the
abscissa and thus hints at an IRFP at some g2 ≳ 11; these
simulations were limited by a first-order phase transition
blocking access to the g2 > 11 regime. Staggered-fermion
calculations by the LatHC Collaboration [6–8] studied this

system in larger volumes, reaching couplings up to g2 ≃ 10.
In this range their β function increases steadily in magni-
tude and remains in 2σ agreement with the result reported
in Refs. [4,5]. It does not, however, show any sign of a
developing IRFP. No definitive conclusion on the infrared
behavior of the Nf ¼ 10 model has been reached so far.
All the studies listed above were carried out in a range of

renormalized coupling limited by large cutoff effects.
Recently we have proposed adding heavy Pauli-Villars
(PV) bosons to remove ultraviolet fluctuations caused by
the many fermion fields [12]. The masses of the PV bosons
are kept at the cutoff scale. Thus they decouple in the
continuum limit but they do generate a local effective gauge
action with well-regularized short-distance properties. We
have applied PV improvement successfully in the SU(3)
gauge theory withNf ¼ 12 [12] andNf ¼ 8 [13] staggered
fermions in the fundamental representation, as well as in a
multirepresentation SU(4) gauge theory with Wilson fer-
mions [14]. In all cases we found that the PV improved
actions indeed reduced short-distance fluctuations and
allowed investigations at stronger renormalized couplings.
In Ref. [14] we applied the continuous β function (CBF)

method [15,16] and uncovered an IRFP at strong coupling.
Going beyond the use of PV bosons, we further extended
the coupling range by combining the results of a number of
lattice gradient flows that possess a common continuum
limit. Here we apply the techniques used in [14] to the
SU(3) gauge theory with Nf ¼ 10 fundamental flavors,
simulated using Wilson fermions. The presence of heavy
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PV bosons permits study of the system at much stronger
renormalized couplings than previously possible. When the
CBF method is extended by varying the GF transformation,
the accessible range of renormalized coupling is yet larger.
We summarize our main result—the β function of the
theory—in Fig. 1. By combining overlapping results from
different gradient flows, we cover the range 6.5≲ g2 ≲ 23.
At weak coupling our prediction is consistent with that of
LatHC [7,8] and overlaps with an CBF result [17] obtained
by reanalyzing the Möbius domain wall fermion (DWF)
data from Refs. [4,5] (labeled “DWF Wil” in the figure).1

Our β function turns around at g2 ≃ 10.0, confirming the
hint of an IRFP reported in [5]. At stronger coupling, the β
function rises steadily and crosses zero at an IRFP at
g2FP ¼ 15.0ð5Þ, implying the theory is infrared conformal.
This paper is organized as follows. In Sec. II we briefly

describe the numerical simulations and define the gradient
flow transformations. In the following sections we show
how we obtain our results and extrapolate them to the
infinite-volume and continuum limits. For the β function
see Sec. III and for anomalous dimensions of fermion
bilinears see Sec. IV. With the exception of the volume
extrapolation, the techniques used have been explained at
length in our recent paper [14] and hence our presentation
here is brief. We discuss our results further in Sec. V.

II. SIMULATION AND GRADIENT FLOW

Our data emerge from four-dimensional configurations
of the Euclidean gauge theory, generated by hybrid

Monte Carlo simulations of the lattice theory. Our lattice
action couples the gauge field to Wilson-clover fermions
after smearing the links with normalized hypercubic
(nHYP) smearing [19,20]. The clover coefficient is
cSW ¼ 1 [21,22] and the smearing parameters αi are the
original set (0.75, 0.6, 0.3). The plaquette gauge action is
supplemented by a term for nHYP dislocation suppression
(NDS) [23]. To further tame gauge field roughness, we add
30 Pauli-Villars (bosonic Dirac) fields—three for each
fermion flavor—with bare mass amPV ¼ 1 [12]. For each
lattice coupling β0 we set the hopping parameter κ ≃ κc so
that the fermion mass, calculated from the axial Ward
identity, is bounded by jamfj < 5 × 10−4. The ensembles
are listed in Table I. In the chiral limit the topology is
expected to be frozen at Q ¼ 0; we monitor the topological
charge and confirm this expectation.
We extract the β function and anomalous dimensions

using a continuous renormalization group (RG) transfor-
mation based on gradient flow [8,14–16,24–27]. The RG
length scale is given by

ffiffi

t
p

where t is the GF time [9]. In
continuum language, the GF running coupling at scale

ffiffi

t
p

is defined as

g2 ¼ N
ð1þ δÞ t

2hEðtÞi; ð2:1Þ

with the energy density E ¼ 1
4
Ga

μνGa
μν, calculated from the

flowed gauge field strength Ga
μν. The constant N ¼

128π2=ð3ðN2
c − 1ÞÞ is a normalization factor to match to

the 1-loop MS result, while δ is a small finite-volume
correction [11]. The average in Eq. (2.1) is over the
ensemble of configurations generated at given lattice
coupling β0. We have estimated the autocorrelation time
of our measurements by binning g2ðtÞ at the maximum flow
time used in our analysis; we bin all data in blocks of three
in our final analysis to account for the longest autocorre-
lations found.
The β function is simply

βðg2Þ ¼ −t
∂g2

∂t
: ð2:2Þ

FIG. 1. The β function obtained with four different gradient-
flow transformations in overlapping regions. The orange and
dark-green solid lines, with errors indicated by the dotted lines,
are results from staggered and DWF simulations [4–8,17]. Black
solid, dotted and dashed curves correspond to the universal 1- and
2-loop and the gradient flow 3-loop perturbative results [18].

TABLE I. List of the ensembles, showing the lattice coupling
constant β0, the hopping parameter κ, and the number of
configurations with volume L3 × ð2LÞ for the two volumes.

β0 κ L=a ¼ 24 L=a ¼ 28

6.0 0.12742 135 100
6.2 0.12695 100 100
6.3 0.12677 150 100
6.5 0.1265 155 100
6.7 0.1263 135 90
7.0 0.12612 160 110

1We have obtained the LatHC result from Fig. 10 of Ref. [8],
the most recent publication showing the continuous β function
obtained by the collaboration.
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The anomalous dimensions (see below) are determined
from the derivative of flowed correlation functions of the
fermion fields [14,24,28].
In the lattice theory, the GF transformation can be

performed with different flows, each originating in a
particular discretization of the gauge action. We make use
of four such lattice flows, corresponding to combinations of
plaquette and rectangle terms with coefficients cp and cr.
Imposing the perturbative normalization cp þ 8cr ¼ 1, we
define the Symanzik flow (cp ¼ 5=3), the Wilson flow
(cp ¼ 1), and flows called C23 (cp ¼ 2=3) and C13
(cp ¼ 1=3) [14]. The different flows correspond to different
renormalized trajectories (RT) of the RG transformation.
Ideally, we would choose the RG transformation whose RT
is closest to the simulation action. We find that GF with
smaller cp values are better for this purpose at stronger gauge
coupling.
Besides this, the energy operator EðtÞ can be defined by

a variety of discretizations. We calculate the W (Wilson),
S (Symanzik), and C (clover) operators in order to gauge
the approach of each to the continuum limit. The S operator
gives the smoothest approach, and so we will focus on
results obtained using this operator.

III. THE β FUNCTION

Raw data for the flowed coupling g2 and its derivative
βðg2Þ from Wilson and C13 flows, are shown for all
ensembles in Fig. 2. One sees an upward flow with
increasing t, ever faster for ensembles with larger coupling
g2. The C13 flow has the shortest paths as t grows,
indicating that its RT is closest. Moreover, while both
flows show that the β function approaches the axis for large
g2, the C13 flow actually shows a positive β function at the
strongest coupling, even before taking the continuum limit.
This is the first hint of an IRFP. Finally, the figure allows
comparison of lattice sizes L3 × ð2LÞ for L=a ¼ 24 and
L=a ¼ 28, whence it is seen that differences are very small
but not zero.
We determine the continuous β function via the follow-

ing four steps, ultimately carrying out the limits L → ∞
and a → 0 [16,27].

A. Infinite volume limit

We take the infinite volume limit, for both g2 and βðg2Þ,
at each bare coupling β0 and at selected flow times. Finite-
size scaling implies that the leading volume dependence of
the renormalized GF coupling is ∝ t2=L4.2 Higher-order
corrections can hence be suppressed by choosing t=L2

sufficiently small. In this study we consider two
volumes, L=a ¼ 24 and 28, and restrict the flow time to

2.8 ≤ t=a2 ≤ 3.8. With this restriction the finite volume
effects are well controlled in all ensembles as can be seen
already in Fig. 2. In Fig. 3 we plot βðg4Þ=g4, derived from
Wilson flow at fixed flow time t=a2 ¼ 3.8, at all six bare
coupling values (see Table I) and both volumes. The plot
also shows the infinite volume extrapolation, assuming the
leading order volume dependence is 1=L4. The colored
bands show quadratic interpolations of the data, which
furnish values of βðg2Þ at intermediate values of g2

(see below).
In the next two steps we consider mainly the infinite-

volume extrapolations. For a cross-check, we show in
Fig. 4 the approach of our final β function to infinite
volume by plotting directly the results of separately

FIG. 2. Raw data for the flowed coupling g2 and its derivative
βðg2Þ, calculated from the Symanzik operator. The upper panel
shows results for the Wilson flow; the lower, for C13 flow. Each
ensemble is represented by a group of data points: From right
to left: β0 ¼ 6.0, 6.2, 6.3, 6.5, 6.7, 7.0. In each group, the
ensemble average at t ¼ 2.8 is plotted as a circle, from which
rises the sequence of averages calculated at increasing t for
2.8 < t=a2 ≤ 3.8, rising as t grows. The lines at each point give a
sense for the magnitude and direction of the continuum extrapo-
lation a2=t → 0. The colors allow comparison of lattice size
L=a ¼ 24 (red) to L=a ¼ 28 (blue).

2This volume dependence has been extensively studied and
verified in other studies of the continuous β function [8,16,27].
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analyzing only L=a ¼ 24 or L=a ¼ 28. Comparison with
Fig. 1 shows that our results, particularly the existence and
location of the fixed point βðg2Þ ¼ 0, are essentially
independent of lattice volume.

B. Interpolation

In order to take the continuum limit of βðg2; t=a2Þ,
we need to determine pairs of (g2, βðg2Þ) at selected flow
times for values of g2 between those that emerge from
the ensembles. As in the example of Fig. 3, we interpo-
late βðg2; t=a2Þ with a quadratic form according to
βðg2; t=a2Þ=g4 ¼ c0 þ c1g2 þ c2g4 at a series of flow
times. (See Ref. [14] for details.) We do the same for

the other flows.3 The fit function with three free coefficients
describes the data well with p-value p≳ 0.3. As usual in
interpolating data, we will not use the interpolating curves
outside the range of the interpolation when taking the
continuum limit. The columns labelled g2min and g2max 1 in
Table II list the minimal and maximal values covered by the
interpolating curves.

C. Continuum limit

After determining interpolating curves as in Fig. 3 for
many values of t=a2 in the interval [2.8, 3.8], we extrapo-
late βðg2; t=a2Þ to t=a2 ¼ ∞ at fixed g2. One such
extrapolation is shown in Fig. 5. Repeating this in a range
of g2 gives the β function that is plotted in Fig. 1. We show
curves and error bands for the results of Symanzik, Wilson,
C23, and C13 flows. These must agree in the continuum
limit. Figure 5, in particular, shows the excellent agreement
of Wilson and C13 flows at g2 ¼ 15.0, and the fact that
βðg2Þ is consistent with zero there.
It can be seen in Fig. 1 that each flow is plotted in a

restricted range of g2. This stems from a requirement of
internal consistency, as follows.

D. Consistency tests

At any given physical coupling g2, the β functions based
on different discretizations of the flowed energy density—
the S, W, and C operators—must agree in the continuum
limit. For each flow, we use this requirement on the
operators to impose cuts on the range of g2 where that
flow can be trusted.
We return to the continuum extrapolation of Fig. 5, but

we step back to consider only a single volume (cf. Fig. 3)
where we compare the results stemming from the three
operators, S, W, and C. We show an example of these
continuum extrapolations in Fig. 6. For all flows and at

FIG. 3. Comparing the interpolations of L=a ¼ 24 (red) and
L=a ¼ 28 (blue), derived with Wilson flow, S operator at flow
time t=a2 ¼ 3.8 (the largest flow time we consider). The green
symbols show the extrapolation to infinite volume. The colored
bands correspond to quadratic interpolations as explained in
Sec. III B.

FIG. 4. Same as Fig. 1, but showing the β function obtained by
working at fixed lattice volumes L=a ¼ 24 (blue) and L=a ¼ 28
(green), as well as the infinite volume extrapolation (pink). For
simplicity, we do not distinguish among the different gradient
flows as we do in Fig. 1.

TABLE II. Ranges of g2 in which each flow is included in the
final result for βðg2Þ. g2min and g

2
max 1 result from the interpolations,

while g2max 2 and g2max 3 come from further demanding consistency
between the continuum extrapolations βS and βW (see Fig. 7). We
quote all numbers with a resolution of 0.5. g2min and g

2
max 2 give the

ranges reflected in Fig. 1. g2max 3, rather than g2max 2, gives the
stricter bounds shown in Fig. 8.

Flow g2min g2max 1 g2max 2 g2max 3

Sym 6.5 18.0 8.5 7.5
Wil 7.0 20.0 16.0 10.0
C23 8.0 21.0 18.0 16.0
C13 12.0 23.0 23.0 21.0

3The C13 flow shows strong cutoff effects at the weakest bare
gauge coupling β0 ¼ 7.0, and hence we do not include that value
in the interpolation. Similar phenomena were observed and
discussed in Ref. [14].
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every g2 we observe that the S operator’s extrapolation has
the smallest slope, meaning the smallest cutoff effects, with
the W operator coming next. The C operator is furthest
from the continuum limit, having the largest slopes. This
naturally leads to the choice of the S operator for our main
result, but we require consistency between the S and W
operators. We label the extrapolated values of the S and W
data at each value of g2 as βS and βW.
We base the criterion for consistency on plots like Fig. 7,

which is obtained from a bootstrap analysis and includes
correlations among the different operators. The green band
is the �1σ error band of the difference βS − βW. The solid
red curves represent � ffiffiffi

2
p

σS, where σS is the error in βS,

while the dashed red curves are �2σS. The green band is
much narrower than the span between the red curves; this
reflects the strong correlations between the operators. For a
consistency test we require jβS − βWj≲ 2σS on L ¼ 24 and
28 volumes separately and simultaneously. This require-
ment restricts the g2 values where a given flow can be
trusted. Table II lists the corresponding values for each
flow. The demand that jβS − βWj ≲ 2σS gives us the bounds
for each flow that are listed in columns 2 and 4 in the table
and shown in Fig. 1. A slightly stricter constraint is
obtained by requiring jβS − βWj≲

ffiffiffi

2
p

σS. This lowers some
of the upper bounds, as shown in the table (see column 5)
and in Fig. 8. In this case the Wilson flow no longer reaches
the fixed point, but there is little effect on the C23 and C13
flows, which do.

FIG. 5. Continuum extrapolation a2=t → 0 of the S operator for
Wilson and C13 flows at g2 ¼ 15.0 in the infinite-volume limit.
The solid symbols correspond to 2.8 ≤ t=a2 ≤ 3.8, the range of
flow time used in the extrapolations. The curvature observed at
small t (large a2=t) indicates that the flow has not yet reached the
renormalized trajectory.

FIG. 6. Continuum limits a2=t → 0 of data from theC23 flowon
the single volume 243 × 48 (cf. Fig. 5). We show the extrapolation
of data from S, W, and C operators. We use the S and W
extrapolations to test for consistency. The small curvature ob-
served in the data at large flow times (small a2=t) indicates finite
volume effects, absent from the L → ∞ limit shown in Fig. 5.

FIG. 7. Comparing the differences βS − βW (green) and βS − βC
(blue) with the standard deviation σ of the S operator on volume
243 × 48 for the C23 flow. We plot � ffiffiffi

2
p

σ (solid red curves) and
�2σ (dashed red curves). Together with a similar plot for volume
283 × 56, the crossings of βS − βW with the dashed and solid red
curves determine the bounds of validity g2max 2 and g

2
max 3 in Table II.

FIG. 8. Same as Fig. 1, but with stricter bounds on the domain
of validity of each flow. See Table II.
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We have verified that an alternative analysis using C
instead of W (also shown in Fig. 7) leads to consistency
bounds close to the above.

IV. ANOMALOUS DIMENSIONS

The calculation of anomalous dimensions follows that of
Ref. [14] closely, with the addition of an extrapolation to
infinite volume as described in Sec. III A above. We
calculated the two-point function of each flowed mesonic
density X0 with its unflowed source X,

hXð0ÞX0ðtÞi ∼ t−ðdþηþγÞ=2: ð4:1Þ
Here γ is the desired anomalous dimension of the operator
and η=2 is the anomalous dimension of the elementary
fermion field. To eliminate η, we divide hXð0ÞX0ðtÞi by the
two-point function of the conserved vector current.
Defining the ratio

RðtÞ ¼ hXð0ÞX0ðtÞi
hVð0ÞV 0ðtÞi ; ð4:2Þ

we have

RðtÞ ∼ t−γ=2; ð4:3Þ
and hence γ can be extracted from the logarithmic derivative,

γ ¼ −2
t
R
∂R
∂t

: ð4:4Þ

We require
ffiffiffiffi

8t
p

≪ x4, where x4 is the separation of X and
X0 in Euclidean time. This means that x4 is kept large
compared to the smearing of the operators by the flow. The
extrapolation from L=a ¼ 24, 28 to L ¼ ∞, the interpo-
lation in g2 at fixed t, and the continuum extrapolation
t=a2 → ∞ are as described above and in Ref. [14].
Final results for the mass anomalous dimension and

for that of the tensor density are shown in Fig. 9. In the

weak-coupling region, the anomalous dimensions agree
with one-loop perturbation theory,

γm ¼ 6g2C2

16π2
; γT ¼ −

1

3
γm; ð4:5Þ

where C2 ¼ 4=3 is the quadratic Casimir operator of the
fermion representation. At larger couplings, the magnitudes
of both γm and γT drop below the respective one-loop results.
At the IR fixed point g2 ≃ 15we find γm ≃ 0.6 and γT ≃ −0.2.
The LSD Collaboration [29,30] calculated γm in the

4þ 6 mass-split system using hyperscaling relations and
reported γm ¼ 0.47ð5Þ. That work performed simulations
near g2 ≃ 10. Accounting for the dependence of γm on g2

(cf. Fig. 9), the two values are consistent.

V. CONCLUSIONS

We have presented a calculation of the β function of the
SU(3) gauge theory with Nf ¼ 10. We have used Pauli-
Villars bosons to improve the gauge action [12] and new
techniques pioneered in [14] to combine multiple lattice
gradient flows. Our result is represented by a consistent set
of curves that derive from gradient-flow transformations
with overlapping regions of validity, giving overall a
smooth graph of the β function. Our work makes contact
with existing results at weak coupling and reaches much
larger couplings than previously attainable.
We obtain strong evidence for an infrared-stable fixed

point at g2 ≃ 15, whose location is consistently identified by
three different flows. This places the theory inside the con-
formalwindow for SU(3) gauge theories with fermions in the
fundamental representation. We remind the reader that the
Banks-Zaks fixed point [31], based on the two-loop β
function, places the sill of the window at Nf ¼ 8.05.
We have similarly calculated the anomalous dimensions

γm and γT . As shown above, the mass anomalous dimension
has the value γm ≃ 0.6 at the fixed point, in good agreement
with the value of 0.615 obtained by Ryttov and Shrock
using their scheme-independent series expansion to fourth
order [32,33]. Likewise, there is good agreement for the
tensor anomalous dimension, for which they obtained the
value of −0.149 at third order [34].
It is generally expected [35] that γm → 1 at the sill of the

conformal window. Our result suggests that the Nf ¼ 10

theory is well above the sill.
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FIG. 9. The anomalous dimension of the mass (scalar) operator,
γm, and that of the tensor operator, γT , obtainedwithWilsonandC13
flows, extrapolated to the continuum limit and to infinite volume.

ANNA HASENFRATZ et al. PHYS. REV. D 108, L071503 (2023)

L071503-6



[1] T.-W. Chiu, The β-function of SUð3Þ gauge theory with
Nf ¼ 10 massless fermions in the fundamental representa-
tion, arXiv:1603.08854.

[2] T.-W. Chiu, Discrete β-function of the SUð3Þ gauge theory
with 10 massless domain-wall fermions, Proc. Sci., LAT-
TICE2016 (2017) 228.

[3] T.-W. Chiu, Improved study of the β-function of SUð3Þ
gauge theory with Nf ¼ 10massless domain-wall fermions,
Phys. Rev. D 99, 014507 (2019).

[4] A. Hasenfratz, C. Rebbi, and O. Witzel, Nonperturbative
determination of β functions for SU(3) gauge theories with
10 and 12 fundamental flavors using domain wall fermions,
Phys. Lett. B 798, 134937 (2019).

[5] A. Hasenfratz, C. Rebbi, and O. Witzel, Gradient flow step-
scaling function for SU(3) with ten fundamental flavors,
Phys. Rev. D 101, 114508 (2020).

[6] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,
Fate of a recent conformal fixed point and β-function in the
SU(3) BSM gauge theory with ten massless flavors, Proc.
Sci., LATTICE2018 (2018) 199 [arXiv:1812.03972].

[7] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,
Case studies of near-conformal β-functions, Proc. Sci.,
LATTICE2019 (2019) 121 [arXiv:1912.07653].

[8] J. Kuti, Z. Fodor, K. Holland, and C. H. Wong, From ten-
flavor tests of the β-function to αs at the Z-pole, Proc. Sci.,
LATTICE2021 (2022) 321 [arXiv:2203.15847].

[9] M. Lüscher, Properties and uses of the Wilson flow in lattice
QCD, J. High Energy Phys. 08 (2010) 071; 03 (2014) 92.

[10] M. Lüscher, Chiral symmetry and the Yang–Mills gradient
flow, J. High Energy Phys. 04 (2013) 123.

[11] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,
The Yang-Mills gradient flow in finite volume, J. High
Energy Phys. 11 (2012) 007.

[12] A. Hasenfratz, Y. Shamir, and B. Svetitsky, Taming lattice
artifacts with Pauli-Villars fields, Phys. Rev. D 104, 074509
(2021).

[13] A. Hasenfratz, Emergent strongly coupled ultraviolet fixed
point in four dimensions with eight Kähler-Dirac fermions,
Phys. Rev. D 106, 014513 (2022).

[14] A. Hasenfratz, E. T. Neil, Y. Shamir, B. Svetitsky, and O.
Witzel, Infrared fixed point and anomalous dimensions in a
composite Higgs model, Phys. Rev. D 107, 114504 (2023).

[15] A. Hasenfratz and O. Witzel, Continuous renormalization
group β function from lattice simulations, Phys. Rev. D 101,
034514 (2020).

[16] A. Hasenfratz and O. Witzel, Continuous β function for the
SU(3)gaugesystemswith twoand twelve fundamental flavors,
Proc. Sci., LATTICE2019 (2019) 094 [arXiv:1911.11531].

[17] A. Hasenfratz and O. Witzel, Continuous β function for
SU(3) with Nf fundamental flavors, in Proceedings of “The
40th International Symposium on Lattice Field Theory”,
Fermilab, Batavia, IL, USA (2023), https://indico.fnal.gov/
event/57249/contributions/270626/.

[18] R. V. Harlander and T. Neumann, The perturbative QCD
gradient flow to three loops, J. High Energy Phys. 06 (2016)
161.

[19] A. Hasenfratz and F. Knechtli, Flavor symmetry and the
static potential with hypercubic blocking, Phys. Rev. D 64,
034504 (2001).

[20] A. Hasenfratz, R. Hoffmann, and S. Schaefer, Hypercubic
smeared links for dynamical fermions, J. High Energy Phys.
05 (2007) 029.

[21] C. W. Bernard and T. A. DeGrand, Perturbation theory for
fat link fermion actions, Nucl. Phys. B, Proc. Suppl. 83, 845
(2000).

[22] Y. Shamir, B. Svetitsky, and E. Yurkovsky, Improvement
via hypercubic smearing in triplet and sextet QCD, Phys.
Rev. D 83, 097502 (2011).

[23] T. DeGrand, Y. Shamir, and B. Svetitsky, Suppressing
dislocations in normalized hypercubic smearing, Phys.
Rev. D 90, 054501 (2014).

[24] A. Carosso, A. Hasenfratz, and E. T. Neil, Nonperturbative
Renormalization of Operators in Near-Conformal Systems
Using Gradient Flows, Phys. Rev. Lett. 121, 201601 (2018).

[25] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,
A new method for the beta function in the chiral symmetry
broken phase, EPJ Web Conf. 175, 08027 (2018).

[26] C. T. Peterson, A. Hasenfratz, J. van Sickle, and O. Witzel,
Determination of the continuous β function of SU(3)
Yang-Mills theory, Proc. Sci., LATTICE2021 (2022) 174
[arXiv:2109.09720].

[27] A. Hasenfratz, C. T. Peterson, J. van Sickle, and O. Witzel,
Λ parameter of the SU(3) Yang-Mills theory from the
continuous β function, Phys. Rev. D 108, 014502 (2023).

[28] A. Hasenfratz, C. J. Monahan, M. D. Rizik, A. Shindler, and
O. Witzel, A novel nonperturbative renormalization scheme
for local operators, Proc. Sci., LATTICE2021 (2022) 155
[arXiv:2201.09740].

[29] T. Appelquist et al. (Lattice Strong Dynamics Collabora-
tion), Near-conformal dynamics in a chirally broken system,
Phys. Rev. D 103, 014504 (2021).

[30] O. Witzel, A. Hasenfratz, and C. T. Peterson (Lattice Strong
Dynamics Collaboration), Composite Higgs scenario in
mass-split models, Proc. Sci., ICHEP2020 (2021) 675
[arXiv:2011.05175].

[31] T. Banks and A. Zaks, On the phase structure of vector-like
gauge theories with massless fermions, Nucl. Phys. B 196,
189 (1982).

[32] T. A. Ryttov and R. Shrock, Scheme-independent calcula-
tion of γψ̄ψ ;IR for an SU(3) gauge theory, Phys. Rev. D 94,
105014 (2016).

[33] T. A.RyttovandR.Shrock,Higher-order scheme-independent
series expansions of γψ̄ψ ;IR and β0IR in conformal field theories,
Phys. Rev. D 95, 105004 (2017).

[34] T. A. Ryttov and R. Shrock, Scheme-independent series
expansions at an infrared zero of the beta function in
asymptotically free gauge theories, Phys. Rev. D 94,
125005 (2016).

[35] B. S. Kim, D. K. Hong, and J.-W. Lee, Into the conformal
window: Multirepresentation gauge theories, Phys. Rev. D
101, 056008 (2020).

[36] MILC Collaboration, http://www.physics.utah.edu/~detar/
milc/.

INFRARED FIXED POINT OF THE SU(3) GAUGE THEORY … PHYS. REV. D 108, L071503 (2023)

L071503-7

https://arXiv.org/abs/1603.08854
https://doi.org/10.22323/1.256.0228
https://doi.org/10.22323/1.256.0228
https://doi.org/10.1103/PhysRevD.99.014507
https://doi.org/10.1016/j.physletb.2019.134937
https://doi.org/10.1103/PhysRevD.101.114508
https://doi.org/10.22323/1.334.0199
https://doi.org/10.22323/1.334.0199
https://arXiv.org/abs/1812.03972
https://doi.org/10.22323/1.363.0121
https://doi.org/10.22323/1.363.0121
https://arXiv.org/abs/1912.07653
https://doi.org/10.22323/1.396.0321
https://doi.org/10.22323/1.396.0321
https://arXiv.org/abs/2203.15847
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP04(2013)123
https://doi.org/10.1007/JHEP11(2012)007
https://doi.org/10.1007/JHEP11(2012)007
https://doi.org/10.1103/PhysRevD.104.074509
https://doi.org/10.1103/PhysRevD.104.074509
https://doi.org/10.1103/PhysRevD.106.014513
https://doi.org/10.1103/PhysRevD.107.114504
https://doi.org/10.1103/PhysRevD.101.034514
https://doi.org/10.1103/PhysRevD.101.034514
https://doi.org/10.22323/1.363.0094
https://arXiv.org/abs/1911.11531
https://indico.fnal.gov/event/57249/contributions/270626/
https://indico.fnal.gov/event/57249/contributions/270626/
https://indico.fnal.gov/event/57249/contributions/270626/
https://indico.fnal.gov/event/57249/contributions/270626/
https://doi.org/10.1007/JHEP06(2016)161
https://doi.org/10.1007/JHEP06(2016)161
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1088/1126-6708/2007/05/029
https://doi.org/10.1088/1126-6708/2007/05/029
https://doi.org/10.1016/S0920-5632(00)91822-X
https://doi.org/10.1016/S0920-5632(00)91822-X
https://doi.org/10.1103/PhysRevD.83.097502
https://doi.org/10.1103/PhysRevD.83.097502
https://doi.org/10.1103/PhysRevD.90.054501
https://doi.org/10.1103/PhysRevD.90.054501
https://doi.org/10.1103/PhysRevLett.121.201601
https://doi.org/10.1051/epjconf/201817508027
https://doi.org/10.22323/1.396.0174
https://arXiv.org/abs/2109.09720
https://doi.org/10.1103/PhysRevD.108.014502
https://doi.org/10.22323/1.396.0155
https://arXiv.org/abs/2201.09740
https://doi.org/10.1103/PhysRevD.103.014504
https://doi.org/10.22323/1.390.0675
https://arXiv.org/abs/2011.05175
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.101.056008
https://doi.org/10.1103/PhysRevD.101.056008
http://www.physics.utah.edu/%7Edetar/milc/
http://www.physics.utah.edu/%7Edetar/milc/
http://www.physics.utah.edu/%7Edetar/milc/
http://www.physics.utah.edu/%7Edetar/milc/
http://www.physics.utah.edu/%7Edetar/milc/

