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We investigate the survival probability of unstable states, the time-dependence of an initial state, in
coupled channels. First, we extend the formulation of the survival probability from single channel to
coupled channels (two channels). We derive an exact general expression of the two-channel survival
probability using uniformization, a method which makes the coupled-channel S matrix single valued, and
the Mittag-Leffler expansion, i.e., a pole expansion. Second, we calculate the time dependence of the two-
channel survival probability by employing the derived expression. It is the minimal distance between the
pole and the physical region in the complex energy plane, not the imaginary part of the pole energy, which
determines not only the energy spectrum of the Green’s function but also the survival probability. The
survival probability of the “threshold cusp” caused by a pole on the unusual complex-energy Riemann
sheet is shown to decay, not grow in time though the imaginary part of the pole energy is positive. We also
show that the decay of the “threshold cusp” is nonexponential. Thus, the “threshold cusp” is shown to be a
new type of unstable mode, which is found only in coupled channels.
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Recently, many peaks have been observed in various
processes at the threshold of hadronic channels, which are
potential candidates of exotic hadrons [1–8]. These peaks
are supposed to be caused by the poles of the coupled-
channel S matrix located on the (unusual) complex-energy
Riemann sheets different from those on which the poles of
usual resonances are located, or in their neighborhood [9].
In particular, the imaginary parts of the complex energy
of these poles on the unusual sheets are positive, while
those of usual resonances are negative [9]. Naively, the
states associated with these poles on the unusual sheets
grow in time in contrast to the resonant states’ decay as
follows. Consider the two-channel scattering with the

time-dependent Schrödinger equation for definiteness.
Time-evolution of the wave function is given as

i
∂

∂t
Ψð1; 2; tÞ ¼ HΨð1; 2; tÞ; ð1Þ

where 1 and 2 symbolically represent the coordinates of
channels 1 and 2, respectively. For the eigenstateΦð1; 2Þ of
the Hamiltonian with eigenenergy E, time evolution of Ψ is

Ψð1; 2; tÞ ¼ Φð1; 2Þe−iEt: ð2Þ
The complex eigenenergy of the time-independent
Schrödinger equation gives the pole of the S matrix and
vice versa. Then, the probability of the state Ψð1; 2; tÞ is

jΨð1; 2; tÞj2 ¼ jΦð1; 2Þj2e2ImEt; ð3Þ
which grows (decays) in time if ImE > 0 (ImE < 0). Of
course, this argument is too naive, and the time dependence
of the unstable state has to be treated in a more legitimate
manner.
There has been a history of study concerning the time

dependence of unstable states [10–23], which is called
survival probability [12,13]. Theoretically, it has been
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shown that the law of resonance decay deviates from the
exponential behavior at short and long times. The time
dependence is expected to be quadratic at short times
[14,16] and inverse power at long times [12,14]. Possible
implications of quadratic short-time behavior in the Zeno
effects and the proton decay have been discussed in
Refs. [16–18]. Experimentally, in nuclear and particle
physics, there have been attempts to observe deviations
from purely exponential behavior, but they have been
unsuccessful (see Ref. [19] and references therein). The
nonexponential behavior at large times was found in an
experiment measuring the luminescence decays of dis-
solved organic materials after pulsed laser excitation [20]. It
should be noted, however, that the study of the time
dependence of the unstable state has been limited to the
problems of one open channel, single channel as far as we
know, while the time dependence of the unstable state
associated with the “threshold cusp” is a problem in coupled
channels.
The purpose of the present paper is twofold. The first is to

extend the formulation of the survival probability in single
channels to the one in coupled channels (two channels). We
derive an exact general expression of the two-channel
survival probability from the Mittag-Leffler expansion
[24,25], i.e., a pole expansion, of the Green’s function in
the uniformization variable [26,27], in terms of which the
Green’s function is represented single valued. This is based
on themethod developed and applied to the study of unstable
states in coupled channels in Refs. [9,28–31]. The second is
to examine the time dependence of the two-channel survival
probability, particularly for the “threshold cusp” by employ-
ing the derived expression. We show that the survival
probability for the “threshold-cusp” decays, not grows in
time against the above naive argument. In general, and in
particular, for the “threshold cusp” it is the minimal distance
between the pole and the physical region in the complex
energy plane, not the imaginary part of the pole energy, that
determines not only the energy spectrum of the Green’s
function but also the time dependence.We also show that the
decay of the “threshold cusp” is nonexponential in contrast
to the exponential decay of the resonance.
Consider an unstable state, jψðtÞi, time evolving under

the Hamiltonain, H, as jψðtÞi ¼ e−iHtjψð0Þi. Following
Refs. [22,23], we define the “survival amplitude,” AðtÞ, of
the state jψð0Þi by

AðtÞ ¼ hψð0Þje−iHtjψð0Þi

¼ 1

2πi

Z
C
dehψð0Þj 1

e −H
jψð0Þie−iet

¼
X
B

jhψð0ÞjϕBij2e−ieBt þAcutðtÞ; ð4Þ

where

AcutðtÞ ¼
1

2πi

�Z
0

∞
dehψð0Þj 1

e −H þ i0
jψð0Þie−iet

þ
Z

∞

0

dehψð0Þj 1

e −H − i0
jψð0Þie−iet

�
;

¼ −
1

2πi

Z
∞

0

de½Gðeþ i0Þ − Gðe − i0Þ�e−iet: ð5Þ

e is the dimensionless energy with e ¼ 0 taken as the
lowest threshold and e ¼ 1 as the other threshold in the
two-channel case. fjϕBig and feBg are the bound states
and their eigenenergies, respectively. The sum is taken over
by all bound states. C is the contour from infinity to the
lowest eigenenergy along the real axis below the cut and
back to infinity above the cut. GðeÞ is the Green’s function
of the Hamiltonian. The probability that jψðtÞi is in its
initial state, which we will call the survival probability,
PðtÞ, is then given by PðtÞ ¼ jAðtÞj2.
The Green’s function,GðeÞ, can be expanded by aMittag-

Leffler expansion [24,25] in the uniformization variable
[26,27], symbolically written as u for the moment, as

GðeÞ ¼
X
n

rnGn; Gn ¼
1

u − un
: ð6Þ

The residues, rn, satisfy the condition,
P

n rn ¼ 0 (see the
Supplemental Material [32]). Then, the cut contribution,
Acut, can be expressed by a sum of pole terms as [23,28]

AcutðtÞ ¼
X
n

rnAn;

An ¼−
1

2πi

Z
∞

0

de½Gnðeþ i0Þ−Gnðe− i0Þ�e−iet: ð7Þ

Before proceeding to the two-channel survival proba-
bility, we briefly review the single-channel survival prob-
ability for comparison.
For the single-channel case, dimensionless momentum,

k ¼ e1=2, plays a role of the uniformization variable. We
can define the minimal distance between the pole and the
physical domain on the e plane, den, based on the distance
on the uniformized k plane, dkn, as

den ¼
���� dedk

����
k¼kn

× dkn ¼ 2jknImknj; ð8Þ

where kn is the position of the pole of the Green’s function
on the k plane. Pole energy en is given by en ¼ k2n. For
resonance poles sufficiently distant from the threshold,
jenj ≫ Γn=2, the distance, den, coincides with the imaginary
part of the pole energy, i.e., den ≈ jImenj ¼ Γn=2, where
en ¼ εn − iΓn=2.
The pole contribution of the Green’s function, Gn, is

given as
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Gn ¼
1

k − kn
¼ e1=2 þ e1=2n

e − en
; ð9Þ

and the survival probability, An, as

An ¼ −
1

iπ

Z
∞

0

de
ffiffiffi
e

p
e − en

e−iet

¼ −
1

iπ

� ffiffiffiffi
π

it

r
− iπ

ffiffiffiffiffi
en

p
e−ienterfcði

ffiffiffiffiffiffiffiffi
ient

p
Þ
�

≡ Iðt; enÞ; ð10Þ
erfcðzÞ is the complementary error function. [Note thatffiffi
t

p
Iðt; enÞ is a function of ten implying a time scale of

jenj−1.]
Consider the contributions from a typical resonance pole

(en ¼ εn − iΓn=2, Γn=εn ≪ 1) and its counterpart, antire-
sonance pole, (e�n ¼ εn þ iΓn=2).
In the vicinity of the resonance pole energy, Gn can be

approximated as

Gn ¼
1

k − kn
≈

2e1=2n

e − en
¼ ren

e − en
; ð11Þ

where ren ¼ 2e1=2n . jGnj2 is then given by the Breit-Wigner
form [33],

jGnj2 ≈
���� ren
e − en

����
2

¼ jrenj2
ðe − εnÞ2 þ Γ2

n=4
: ð12Þ

The width of the resonance peak in the spectrum is
Γn ≈ 2den.
The survival amplitude can also be approximated for a

resonance and an antiresonance as

Iðt;enÞ≈−
ren
2πi

Z
∞

−∞
de

1

e−en
e−iet¼−θðtÞrene−ient; ð13Þ

Iðt;e�nÞ≈−
re�n
2πi

Z
∞

−∞
de

1

e−e�n
e−iet¼θð−tÞre�n e−ie

�
nt; ð14Þ

where θðtÞ is the Heaviside step function. The survival
probability for the resonance and antiresonance contribu-
tions are, therefore,

jIðt; enÞj2 ≈ θðtÞjrenj2e−Γnt;

jIðt; e�nÞj2 ≈ θð−tÞjrenj2eΓnt; ð15Þ
respectively. When contributions from other poles are
negligible, one expects an exponential decay (growth) of
the survival probability in the t > 0 (t < 0) region with a
characteristic time scale, which in this case is the “lifetime,”
1=Γn. This characteristic timescale is the inverse of the
width of the spectrum, which corresponds to the minimal
distance between the pole and the physical region.
At long and short times, the above approximation breaks

down, resulting in deviations from the exponential behavior
of the survival probability. The large t behavior of Iðt; enÞ

can be obtained from the asymptotic expansion of the
complementary error function in Eq. (10) as

Iðt; enÞ ¼
iffiffiffiffiffiffi
4π

p e−1n eiπ=4e−itt−3=2 þOðt−5=2Þ; ð16Þ

which coincides with the t−3 inverse-power decay law of
the survival probability obtained in previous studies [14].
At short times (small t), the survival amplitude, AðtÞ, is
known to behave as quadratic in time as long as all the
matrix elements of the integer power of the Hamiltonian
hψð0ÞjHnjψð0Þi are finite [15]. As can be seen from
Eq. (10), however, each pole contribution, Iðt; enÞ, has a
singular term, t−1=2. By summing up contributions from all
poles, the leading singular terms of t−1=2 cancel out due to
the condition of the residues,

P
n rn ¼ 0. Other nonleading

singular terms should also vanish so that AðtÞ is quadratic.
Nevertheless, to discuss the short-time behavior of the
survival amplitude,AðtÞ, all the pole contributions must be
summed up, which will not be pursued here. See the
Supplemental Material [32] for examples of the energy
spectrum and the survival probability.
Let us extend the argument above to the two-channel

case. The uniformization variable, z, of a two-channel
system can be given by [26,27]

z ¼ k1 þ k2 ¼ e1=2 þ ðe − 1Þ1=2; ð17Þ

k1 ¼
1

2

�
zþ 1

z

�
; k2 ¼

1

2

�
z −

1

z

�
;

e ¼ k21 ¼ k22 þ 1 ¼ 1

4

�
z2 þ 1

z2
þ 2

�
; ð18Þ

where e is the dimensionless energy, and ki is the
momentum of channel i (i ¼ 1, 2). Let us specify eight

FIG. 1. Schematic figure of the uniformized z plane. The red
line shows the physical region. th1 (th2) is the lower (upper)
threshold. A (A�), B (B�), and C (C�) correspond to the poles
specified in Table I.
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domains of the four-sheeted e plane by a set of the sign of
the imaginary part of channel momenta, together with a
label þ (−) representing the upper half (lower half) part of
the e plane, e.g., ½tb�þ means Imk1 > 0, Imk2 < 0, and
Ime > 0. The correspondence between the z plane and the
e plane is shown in Fig. 1.
Analogously to the single-channel case, we can define

the minimal distance between the pole and the physical
domain on the e plane, den, based on the distance on the
uniformized z plane, dzn, as

den ¼
���� dedz

����
z¼zn

× dzn ¼
1

2

����z − 1

z3

����
z¼zn

× dzn; ð19Þ

where

dzn ¼
8<
:

1 − jznj ½bt�−pole
j1 − znj ½tb�þpole
Imzn ½bb�−pole

: ð20Þ

zn is the pole position of Green’s function on the z plane.
Pole energy en is given by en ¼ ðzn þ z−1n Þ2=4. For
resonance poles on ½bt�−, and ½bb�−, sufficiently dis-
tant from the threshold, den ≈ jImenj ¼ Γn=2, where
en ¼ εn − iΓn=2. In contrast, for poles near the upper
threshold, especially the ones on ½tb�þ, which cause
enhanced “threshold cusp” structures in the spectra,
den ≈ 2jen − 1j.
The pole contribution of the Green’s function, Gn, is

explicitly given as

Gn ¼
1

z − zn
¼

�
1 − 1

z2n

	
e1=2 þ

�
1þ 1

z2n

	
ðe − 1Þ1=2 þ 2

zn
e1=2ðe − 1Þ1=2 þ zn − 1

zn
ð2e − 1Þ

4ðe − enÞ
; ð21Þ

and the survival probability, An, as

An ¼ −
1

4iπ

��
1 −

1

z2n

�Z
∞

0

de
ffiffiffi
e

p
e − en

e−iet þ
�
1þ 1

z2n

�Z
∞

1

de

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p

e − en
e−iet þ i

2

zn

Z
1

0

de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1 − eÞp
e − en

e−iet
�

¼ 1

4iπ

��
1 −

1

z2n

�
iπIðt; enÞ þ

�
1þ 1

z2n

�
e−itiπIðt; en − 1Þ − i

2

zn
Jðt; enÞ

�
; ð22Þ

where Iðt; enÞ is given by Eq. (10) and

Jðt; enÞ ¼
Z

1

0

de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eð1 − eÞp
e − en

e−iet: ð23Þ

From Eqs. (7), (10), (22), and (23), we obtain an exact
general expression of the two-channel survival amplitude.
Iðt; enÞ corresponds to the pole contribution in the single-
channel case. The pole contribution in the two-channel
case, Anðt; znÞ, comprises three terms. Two terms with
Iðt; enÞ and Iðt; en − 1Þ are the single-channel contribu-
tions from the lower and upper threshold, respectively, and
the additional term with Jðt; enÞ is a term involving both
thresholds. An analytic expression of Jðt; enÞ is yet to be
known but can be easily calculated numerically.
Let us consider the contribution from a single pole in

more detail.

In the case where the pole is on ½bt�− or ½bb�−, and is
sufficiently distant from both thresholds, Gn can be
approximated as

Gn ¼
1

z − zn
≈
znð1 − z−4n Þ

2

1

e − en
¼ ren

e − en
; ð24Þ

where ren ¼ znð1 − z−4n Þ=2. The Breit-Wigner form approx-
imates the spectrum; hence, the survival amplitude would
behave like the single-channel case.
If the pole is positioned near the upper threshold, i.e.,

jzn − 1j ≪ 1, Gn can be approximated as

Gn ¼
1

z − zn
≈
1þ 1=z2n

2

1

k2 − k2n
¼ rkn

k2 − k2n
; ð25Þ

where k2n ¼ ðzn − z−1n Þ=2 and rkn ¼ ð1þ z−2n Þ=2. jGnj2 is
then given by the Dalitz-Deloff form [34,35] as

jGnj2 ≈
���� rkn
k2 − k2n

����
2

¼
8<
:

jrknj2
jk2nj2

1
ð1þkαÞ2þðkβÞ2 ¼

jrknj2
jk2nj2 ½1 − 2kαþOðk2Þ� ðe > 1Þ

jrknj2
jk2nj2

1
ð1þκβÞ2þðκαÞ2 ¼ jrknj2

jk2nj2 ½1 − 2κβ þOðκ2Þ� ðe < 1Þ
: ð26Þ

α and β are the real and imaginary parts of the complex scattering length, a, satisfying, a ¼ αþ iβ ≈ −i=k2n. The width of
the peak structure in the spectrum would be 4jk2nj2 ¼ 4jen − 1j ≈ 2den, rather than the imaginary part of the pole position.
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The pole contribution, An, can also be approximated by
neglecting the lower threshold as

An ≈
rkn
2πi

�Z
0

i∞
þ
Z

∞

0

�
dk22k2

1

k2 − k2n
e−ið1þk2

2
Þt

¼ θðtÞ r
k
n

iπ
e−itIðt; k22nÞ: ð27Þ

Thus,

jAnj2 ≈ θðtÞ 1

π2
jrknj2jIðt; k22nÞj2: ð28Þ

When contributions from other poles are negligible, we
expect a decay of the survival probability in the t > 0

region governed by the behavior of jIðt; k22nÞj2. From the
expression of I, we see a characteristic timescale of decay
proportional to jen − 1j−1, corresponding to the inverse of
the width of the peak structure in the spectrum. The
argument dependence of jIðt; k22nÞj2 is shown in
Supplemental Material [32]. Most importantly, we observe
a decay rather than a growth for poles on ½tb�þ, though they
have a positive imaginary part in complex energy.
jIðt; k2nÞj2 shows a nonexponential decay for all t, in
regions of ½tb�þ, and in the neighboring regions on ½bt�−
and ½bb�−. An exponential behavior gradually emerges as
the pole continuously moves away from the upper thresh-
old but stays close to the physical region.
The behavior of the survival probability at large t

exhibits an inverse-power decay. The asymptotic expansion
of An can be obtained by applying the method of steepest
descent to J, leading to

TABLE I. Pole position in terms of the uniformization variable,
zn, its complex energy, en, the minimal distance between the pole
and the physical region, den, and the sheet configurations of where
the poles are located for cases A, B, and C.

A B C

zn 0.7281þ 0.5290i 0.9293 − 0.0707i 1.6 − 0.1i
en 0.6580 − 0.1009i 0.9992þ 0.0107i 1.234 − 0.0679i
den 0.1083 0.0222 0.0685
Sheet ½bt�− ½tb�þ ½bb�−

FIG. 2. Energy spectrum jGnj2 (left), and the survival probability jAnj2 (middle, right), of cases A, B, and C. Labels, “Exact,” “BW,”
and “DD” in the left figures, correspond to Gn of Eqs. (21), (24), and (25), respectively. Labels, “Exact,” “Effective Single Channel,” and
“Inverse Power” in the right figures, correspond to An of Eqs. (22), (27), and (29), respectively.
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An ∼
iffiffiffiffiffiffi
4π

p eiπ=4e−it=2t−3=2½eit=2ðzn − iÞ−2þ e−it=2ðzn − 1Þ−2�

þOðt−5=2Þ: ð29Þ
As in the single-channel case, the survival probability
decreases by a power of t−3. However, there are additional
oscillations due to two terms weighted by the inverse square
of the distance between the pole and the two thresholds.
To confirm the argument above, we consider three cases,

A, B, and C, which correspond to a lower-channel
resonance, a “threshold cusp”, and an upper-channel
resonance. Table I shows the pole position in terms of
the uniformization variable, zn, its complex energy, en, the
minimal distance between the pole and the physical region
on the e plane, den, and the sheet configuration where the
poles are located. Figure 2 shows the energy spectrum,
jGnj2, and the survival probability, jAnj2, of the three cases,
A, B, and C.
As we can see, the results in Fig. 2 coincide with our

arguments above. For resonance cases A and C, one can see
a transition from exponential to inverse-power decay. In
contrast, the “threshold cusp” case B, exhibits a nonexpo-
nential decay for all time regions matching the behavior
of jIj2. The width, Γ, of the spectrum’s peak for cases A
and C are approximately Γ ≈ 2jImenj ≈ 2den, whereas Γ ≈
4jen − 1j ≈ 2den for case B. In all cases, the spectra width
corresponds with the minimal distance between the pole
and the physical region. The timescale for the exponential
decay in cases A and C are given by jImenj−1, and for
case B, is given by jen − 1j, which in both cases correspond
to the inverse of the width of the spectrum. We also point
out that for cases A and C, the resonance (antiresonance)
contribution, which is the contribution from the pole with a
negative (positive) imaginary part of complex energy, is
dominant in the t > 0 (t < 0) region. On the contrary, for
case B, the contribution from the pole with a positive
(negative) imaginary part of complex energy is dominant in
the region t > 0 (t < 0).
Finally, we show an example of the total survival prob-

ability, which includes contributions of multiple poles. We
adopt a model in which a bare state is coupled to two open

channels with a zero-range interaction [36] for simplicity.
Due to the zero-range interaction, peculiarities exist in the
small-time behavior of a power of t1=2 [15]. Here, wewill not
be concerned with this short-time behavior. There are four
poles in this model, and G is given by the Flatté form [37] as

G ¼ 1

ε −mþ iγ1
ffiffiffi
ε

p þ iγ2
ffiffiffiffiffiffiffiffiffiffi
ε − 1

p ¼
X4
n¼1

rn
z − zn

: ð30Þ

Figure 3 shows the energy spectrum and the survival
probability for the case m ¼ 1.1, γ1 ¼ 0.1, γ2 ¼ 0.9. The
pole positions are z1¼0.861−0.087i, z2 ¼ 0.707–0.913i,
z3 ¼ −z�1, and z4 ¼ −z�2. For this parameter set, the energy
spectrum and the survival probability of t > 0 are domi-
nated by a single pole, pole 1, which corresponds with the
“threshold cusp” pole of case B in the argument above.
In conclusion, we have clarified the time dependence of

unstable states in the context of two channels. We have
shown that not only the energy spectrum but also the time
dependence of unstable states are determined by the
minimal distance in energy between the pole and the
physical region, not by the imaginary part of the complex
pole energy, in general. This fact emerges most crucially in
the time dependence of near-threshold unstable states, in
particular, “threshold-cusp” states, whose pole energy has a
positive imaginary part but decays, not grows in time. We
have also shown that the decay of the “threshold cusp” is
nonexponential in contrast to the resonance. Thus, we have
shown that the “threshold cusp” is a new class of unstable
mode, which shows up only in coupled channels.
In experimental nuclear or particle physics, it would be

extremely difficult or almost impossible to observe the
nonexponential decay of the “threshold cusp” found in the
present letter due to the characteristic timescale of the order
of 100 MeV−1 ∼ 10−23 s. Some materials might have an
excitation mode with multiple decay channels, in which the
relation between the associated pole and the thresholds of
decay channels is similar to the “threshold cusp” discussed
in the present paper. It would be exciting if such an
excitation were found, given that nonexponential behavior
at large times was found in an experiment measuring the
luminescence decays of dissolved organic materials [20].

FIG. 3. Energy spectrum (left) and the survival probability (center, right) for m ¼ 1.1, γ1 ¼ 0.1, γ2 ¼ 0.9. “Exact,” “Effective Single
Channel,” and “Inverse Power” correspond to A of Eqs. (22), (27), and (29), respectively.
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