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We consider three-dimensional quantum electrodynamics in the presence of a Chern-Simons term at
level k and Nf flavors, in the limit of large Nf and k with k=Nf fixed. We consider either bosonic or
fermionic matter fields, with and without quartic terms at criticality: the resulting theories are critical and
tricritical bosonic QED3, Gross-Neveu, and fermionic QED3. For all such theories we compute the effective
potentials and the β functions of classically marginal couplings, at the leading order in the large Nf limit
and to all orders in k=Nf and in the couplings. We determine the renormalization group fixed points and
discuss the quantum stability of the corresponding vacua. While critical bosonic and fermionic QED3 are
always stable conformal field theories, we find that tricritical bosonic and Gross-Neveu QED3 exist as
stable conformal field theories only for specific values of k=Nf. Finally, we discuss the phase diagrams of
these theories as a function of their relevant deformations.
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I. INTRODUCTION

Three-dimensional quantum electrodynamics (QEDs)
with either bosonic or fermionic degrees of freedom are
among the simplest and yet very rich examples of gauge
theories. At high energies, these theories are defined in
terms of a three-dimensional Uð1Þ Maxwell field a with
gauge coupling e2 (of mass dimension one) and a Chern-
Simons term at level k, coupled to Nf flavors of charged
bosons or fermions. The Lagrangian is (we will always
work in Euclidean signature)

L ¼ 1

2e2
da ∧ ⋆daþ ik

4π
a ∧ daþ Lmatter: ð1Þ

In absence of charged matter, if k ¼ 0 the theory is dual to a
compact scalar and it confines in the sense of [1,2], whereas
if k ≠ 0 it flows to a pureUð1Þk Chern-Simons theory. With
charged matter, the low-energy behavior of QED theories
for small Nf has not been rigorously established, and this
question remains an open problem which has been studied
with a variety of approaches (see e.g. Refs. [3–28]),
including lattice simulations (see e.g. Refs. [29–35]) and

conformal bootstrap (see e.g. [27,36–44] and references
therein). When Nf is large enough, these theories are
generically expected to flow to interacting conformal field
theories (CFTs) at low energies. This expectation is
corroborated by the existence of fixed points of the
renormalization group (RG) flow, which can be found in
the limit of large Nf. However, as we will discuss in this
work, some of these fixed points happen to lie in a region of
instability of the theory.1

In order to clarify this issue, we will compute the
effective potentials Veff for a few instances of such quantum
electrodynamics (to be defined below): two bosonic, called
“tricritical” and “critical” QED3, and two fermionic, called
“Gross-Neveu (GN)” and “fermionic”QED3. While critical
and fermionic QED3 do not admit any marginal deforma-
tions, tricritical and Gross-Neveu QED3 admit classically
marginal couplings. Requiring that the quantum vacuum is
stable constrains such couplings. We will perform these
computations by working at the leading order in the 1=Nf

expansion, with Λ ¼ e2Nf and κ ¼ k=Nf held fixed. The
low-energy limit is reached by taking Λ → ∞ while
retaining the dimensionless parameter κ, which does not
run. The gauge interactions do not enter Veff at the leading
order in the large-Nf limit, nevertheless the parameter κ
will play an important role in the following analysis.
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1In this paper by “stability” we refer to the condition that the
potential has a stable minimum, not to the RG stability of the
fixed point under deformations by some coupling.
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Next, we will compute the β functions of classically
marginal couplings of tricritical and Gross-Neveu QEDs, at
leading order in the 1=Nf expansion and to all orders in κ
and in the couplings. Details of the RG computations will
be presented elsewhere [45]. The zeroes of the β functions
determine families of RG fixed points parametrized by κ.
We finally impose on those fixed points the constraint of

vacuum stability from Veff . The result of this analysis is
shown in Figs. 1 and 2, which summarize the main results
of this paper. In the Supplemental Material [46] we discuss
the large-Nf phase diagrams of all four QEDs in presence
of relevant deformations.
A general takeaway of our analysis is the importance of a

joint study of the zeroes of the β function and of the
stability of the potential when looking for perturbative
fixed points. Another example where this joint analysis
is important are Banks-Zaks fixed points in 4D gauge
theories, see e.g. [47].

II. BOSONIC THEORIES

A. Tricritical QED

The first theory we consider is that of Nf massless
complex scalars ϕm (m ¼ 1;…; Nf) coupled to Uð1Þk and
with the quartic coupling tuned to zero. The matter
Lagrangian is

Lmatter ¼ ðDμϕ
mÞ†ðDμϕ

mÞ þ h
N2

f

ðϕ†mϕmÞ3: ð2Þ

Here Dμ ¼ ∂μ þ iaμ denotes the covariant derivative and h
is held fixed in the large-Nf limit. The continuous part of

the global symmetry is SUðNfÞ ×Uð1Þm, where the first
factor is a flavor symmetry and the second one is the
magnetic symmetry of the gauge field. For κ ¼ 0 the theory
further enjoys parity symmetry. In the κ → ∞ limit the
gauge field decouples and the theory describes 2Nf real
scalars with a sextic interaction, restricted to the Uð1Þ-
invariant sector.
Our first goal is to compute the effective potential of (2),

at the leading order in the 1=Nf expansion and exactly in κ
and h. Following the standard strategy [48], we rewrite the
sextic interaction in (2) in terms of two auxiliary fields
σ and ρ

σ

�
ϕ†mϕmffiffiffiffiffiffi

Nf
p − ρ

�
þ hffiffiffiffiffiffi

Nf
p ρ3: ð3Þ

Here σ is a Lagrange multiplier, while ρ is identified
with the composite operator ϕ†mϕm=

ffiffiffiffiffiffi
Nf

p
. Then, we let

ϕm¼ ffiffiffiffiffiffi
Nf

p
vmþδϕm,ρ¼ ffiffiffiffiffiffi

Nf
p

ηþδρ, andσ¼ ffiffiffiffiffiffi
Nf

p
Σþδσ,

being vm, η, and Σ vacuum expectation values (VEV) that
scale as OðN0

fÞ. Finally we path integrate over the fluctua-
tions δϕm, δρ, and δσ to get (in dimensional regularization)

Veffðv2;Σ; ηÞ ¼ Nf

�
Σv2 − Σηþ hη3 −

1

6π
Σ3

2

�
; ð4Þ

where v2 ¼ vmvm ≥ 0 (without loss of generality we take
vm ¼ vδm1), and we require Σ ≥ 0. The derivatives of the
potential with respect to v, Σ, and η are
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FIG. 1. Fixed points of βh as a function of κ for tricritical QED3.
Stable vacua must lie inside the gray region, see (8).
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FIG. 2. Fixed points of βy as a function of κ for Gross-Neveu
QED3. Stable vacua must lie inside the gray region, see Eq. (18).
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2Σv ¼ 0; v2 − η −
ffiffiffi
Σ

p

4π
¼ 0; −Σþ 3hη2 ¼ 0: ð5Þ

We refer to these as “gap equations” for v, Σ, and η,
respectively. The only stationary point is at ðΣ; v; ηÞ ¼
P� ≡ ð0; 0; 0Þ, as it should since the problem has no scale.
Note that if we restrict to the gap equations for v and Σ, we
find two classes of solutions:

v ≠ 0; Σ ¼ 0; η ¼ v2 > 0; ðHiggsedÞ;

v ¼ 0; Σ ≥ 0; η ¼ −
ffiffiffi
Σ

p

4π
≤ 0; ðunHiggsedÞ: ð6Þ

We now discuss quantum stability. Unlike ρ, σ does not
correspond on shell to a physical operator of the theory.
Hence we do not study the stability as a function of its
expectation value Σ, but rather we “integrate out Σ” by
plugging its gap equation back into (4) to find

Veffðv2; ηÞ ¼ Nf

�
16π2

3
ðv2 − ηÞ3 þ hη3

�
; η ≤ v2; ð7Þ

where the rightmost condition comes from Σ ≥ 0. There is
a global minimum if2

0 < h <
16π2

3
: ð8Þ

Note that, while classically η ≥ 0 (and so h ≥ 0), quan-
tum mechanically η can be negative, but consequently
Eq. (8) must hold. In other words, bosonic self-interactions
are repulsive and tend to destabilize the vacuum. In the
Supplemental Material [46], we discuss the effective
potential and the phases of the theory in presence of a
massive and a quartic deformation.
As a consistency check, note that the determinant of the

Hessian of (4) restricted to the Higgsed and unHiggsed
directions (6) reads, respectively,

detHH ¼ −24hη2; detHuH ¼ ð6h − 32π2Þη2; ð9Þ

which are both negative everywhere (except at P�) pre-
cisely when (8) is satisfied. This has to be the case: a stable
quantum vacuum P� for this theory should be at the same
time a minimum of Veff in two directions and a maximum
in the third direction. Indeed, while in the path integrals for
δϕm and δρ the integration contours run along the real axis,

in the one for δσ it runs along the imaginary axis.
Correspondingly, the Hessian of Veff must have two
positive and one negative eigenvalues in a neighborhood
of P�.
Our next task will be to verify whether (8) is satisfied at

the RG fixed points of tricritical QED3. The β function for
h, at the leading order in the 1=Nf expansion and to all
orders in κ and h reads [45,50]

βhðh; κÞ ¼
1

π2Nf

�
−

9

256
h3 þ 9

4
h2 þ 128π2ðπ2 − 128κ2Þ

ðπ2 þ 64κ2Þ2 h

−
16384π4ðπ2 − 192κ2Þ

3ðπ2 þ 64κ2Þ3
�
: ð10Þ

Being an even function of κ, we can assume κ > 0 while
solving for its zeros.
Let us first inspect the zeros of βh for κ → ∞. In this limit

(10) reproduces the known results [51] for the β function of
the sextic coupling in the free ungauged OðNÞ model.3 It
has a double zero at h� ¼ 0 (free CFT) and a single zero at
h� ¼ 64. At the free point ðϕ†ϕÞ3 has a dimension of
exactly 3, while being marginally irrelevant (relevant) for
h > 0 (h < 0). At the single zero it is relevant, since
∂hβhðh� ¼ 64;∞Þ < 0. Note that h� ¼ 64 is outside the
window (8) of vacuum stability, while h� ¼ 0 is at the
boundary of the window and the corresponding theory has a
stable vacuum since it is free.
For κ ¼ 0 we find a total of three fixed points: a first one

at h� ¼ 32ð ffiffiffiffiffi
17

p
− 1Þ=3, where ðϕ†ϕÞ3 is irrelevant, and

two more with relevant ðϕ†ϕÞ3 at h� ¼ 256=3 and at
h� ¼ −32ð ffiffiffiffiffi

17
p þ 1Þ=3. Only the former lies within the

stability region (8), and we identify it with tricritical QED3

at large Nf and k ¼ 0. Besides these special values of κ, we
can solve numerically for the zeros of βh and plot them as
functions of κ, as shown in Fig. 1. We see that there are
three families of solutions. A family of zeros with relevant
ðϕ†ϕÞ3 (depicted in red in the figure) that exists for any
value of κ ≥ 0, and two families of zeros with ðϕ†ϕÞ3
irrelevant/relevant (depicted in blue/green, respectively)
that exist for κ ≤ κ0 ≃ 0.229, above which they annihilate
and move to the complex plane, until they reappear at
ðκ; hÞ ¼ ð∞; 0Þ. In the figure, the region highlighted in
gray corresponds to the values of h inside (8). The blue
curve, which is “tricritical,” is inside the stability region for
κ between κ ¼ 0 [where h� ¼ 32ð ffiffiffiffiffi

17
p

− 1Þ=3] and κ ¼
π=8

ffiffiffi
3

p
≃ 0.227 (where h� ¼ 0). The red curve, which is

“tetracritical,” is inside the stability region in the interval
0.518≲ κ ≲ 1.082. Outside these values of κ there is no
CFT with a stable vacuum.

2This result is consistent with Eq. (1.10) in [49], where the
κ → ∞ limit of the stability bound can be recovered as the limit
λB → 0. We find perfect agreement using the dictionary
4π2λ2Bx6 ¼ h. A discussion on the stability of the multicritical
point in the large N bosonic vector model can also be found
in Sec. 10.2 of Ref. [48]. Our stability bound agrees with
Eq. (10.22) therein.

3In particular, our result matches Eq. (2a) of [51], using the
dictionary N ¼ 2Nf and 8π2λ ¼ 3hN2

f.
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B. Critical QED

The second theory we consider is that of the Nf massless
complex scalars, with quartic coupling λ tuned at its
nontrivial critical point, i.e. λ ¼ ∞:

Lmatter ¼ ðDμϕ
mÞ†ðDμϕ

mÞ þ σffiffiffiffiffiffi
Nf

p ϕ†mϕm; ð11Þ

with Dμ ¼ ∂μ þ iaμ and σ is the Hubbard-Stratonovich
(HS) field with scaling dimension 2þOð1=NfÞ. We did
not include a sextic term in the Lagrangian, as from the
equation of motion of σ we get that ϕ†mϕm ¼ 0. As in the
case of tricritical QED3, the continuous global symmetry is
SUðNfÞ ×Uð1Þm and the theory further enjoys parity
symmetry when κ ¼ 0. In the limit κ → ∞ the gauge field
decouples and theory becomes the critical Oð2NfÞ vector
model restricted to the Uð1Þ-singlet sector. As it turns out,
at the leading order in the 1=Nf expansion, critical QED3

exists as a stable CFT for any value of κ. One can verify
this by computing the effective potential Veff of the theory
at large Nf. Following a similar strategy as in the case
of tricritical QED3, we write ϕm ¼ ffiffiffiffiffiffi

Nf
p

vm þ δϕm and
σ ¼ ffiffiffiffiffiffi

Nf
p

Σþ δσ, and we path integrate over the fluctua-
tions δϕm and δσ to get

Veffðv2;ΣÞ ¼ Nf

�
Σv2 −

1

6π
Σ3

2

�
; ð12Þ

with again the condition Σ ≥ 0. The gap equations for v and
Σ read, respectively,

2Σv ¼ 0; v2 −
ffiffiffi
Σ

p

4π
¼ 0; ð13Þ

which imply that the vacuum is ðv;ΣÞ ¼ P� ≡ ð0; 0Þ. In
order for P� to be a stable vacuum, in the neighborhood of
P� one eigenvalue of the Hessian is positive and one is
negative. A necessary condition is therefore

detH ¼ −
ffiffiffi
Σ

p

4π
− 4v2 < 0; ð14Þ

which is satisfied everywhere (except at most P�). Since the
eigenvalues never change sign, this condition turns out to
be also sufficient and we conclude that the vacuum of
critical QED3 is always stable for any value of κ.

III. FERMIONIC THEORIES

A. Gross-Neveu QED

The third theory we consider is that ofNf massless Dirac
fermions ψm (m ¼ 1;…; Nf), coupled to Uð1Þk and with
the quartic coupling g at the UV fixed point, i.e. g ¼ ∞:

Lmatter ¼ ψ̄m=Dψm þ σffiffiffiffiffiffi
Nf

p ψ̄mψm þ yffiffiffiffiffiffi
Nf

p σ3; ð15Þ

where Dμ ¼ ∂μ þ iaμ and σ is the HS field with scaling
dimension 1þOð1=NfÞ, whose equation of motion
imposes ψ̄mψm ¼ 0. We have included in the Lagrangian
the classically marginal coupling y (held fixed in the large
Nf limit), which is generated for any finite κ ≠ 0. Similarly
to the bosonic case, the continuous global symmetry is
SUðNfÞ ×Uð1Þm, and theory also enjoys parity symmetry
if κ ¼ y ¼ 0 and Nf is even. In the limit κ → ∞ we recover
the Oð2NfÞ Gross-Neveu model restricted to the Uð1Þ-
singlet sector.
To study the vacuum stability of this theory we shall

compute Veff to leading order in the 1=Nf expansion and to
all orders in κ and y. We write σ ¼ ffiffiffiffiffiffi

Nf
p

Σþ δσ, being Σ a
VEV that scales as OðN0

fÞ, and we path integrate over ψm

and δσ. Importantly, in contrast to the bosonic case, for
fermionic vector models the HS field has to be path
integrated along the real axis in order to get a convergent
path integral. All in all we get

VeffðΣÞ ¼ Nf

�
yΣ3 þ 1

6π
jΣj3

�
: ð16Þ

In this equation the first term is the classical contribution,
whereas the second term comes from quantum fluctuations.
Due to the real path-integration contour of σ, the stability of
the vacuum at Σ ¼ 0 now requires that

detH ¼ 6

�
y signðΣÞ þ 1

6π

�
jΣj > 0; ð17Þ

and therefore we get the stability bound4

jyj < 1

6π
: ð18Þ

Again, this condition implies that the local minimum is also
a global one, since the second derivative never changes its
sign. As is turns out, a cubic scalar potential for Σ—which
would be classically unbounded from below since Σ can
have both signs, corresponding to the sign of the effective
fermion mass—is allowed by quantum corrections as long
as y lies within the region (18). This is due to the fact that
fermionic self-interactions are attractive and tend to stabi-
lize the vacuum, as opposite to what happens in the bosonic
case. In the Supplemental Material [46], we discuss the
effective potential and the phases of the theory in presence
of a massive and a quartic deformation.

4This result is consistent with Ref. [49], where the κ → ∞ limit
of the stability bound can be recovered as a particular case of their
Eq. (1.10), namely in the limit jλFj ¼ 1 − jλBj → 0. We find
perfect agreement using the dictionary x6=λF ¼ −16πy.
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Next, we shall check whether (18) is satisfied at the RG
fixed points of Gross-Neveu QED3. For the β function for
y, to leading order in the 1=Nf expansion and to all orders
in κ and y we find [45]

βyðy; κÞ

¼ 32

3π2Nf

�
−864y3 þ 3ð4096κ4 þ 640π2κ2 − 3π4Þ

ðπ2 þ 64κ2Þ2 y

þ 4π3ð320κ2 − 3π2Þκ
ðπ2 þ 64κ2Þ3

�
: ð19Þ

Since the zeros of βy are odd functions of κ, we can assume
κ > 0 without loss of generality.
When κ ¼ 0, the only real zero of (19) is y� ¼ 0, which

lies in the middle of the stability region of Eq. (18). At this
point σ3 is relevant, since ∂yβyðy� ¼ 0; 0Þ < 0, so tuning of
y is needed.
When κ ¼ ∞ the β function agrees with the findings of

Ref. [49] for the ungauged Gross-Neveu model.5 This β
function has a fixed point at y� ¼ 0 with σ3 irrelevant, and
two (parity-related) zeros at y� ¼ � ffiffiffi

2
p

=24 with σ3 rel-
evant. Only the fixed point at y� ¼ 0 lies within the vacuum
stability bound, and corresponds to the usual Gross-Neveu
CFT. The zeros of βy as functions of κ are presented in
Fig. 2. The first family of fixed points (the red curve in
the figure) has a relevant σ3 and exists for any value of κ,
interpolating from ðκ; yÞ ¼ ð0; 0Þ to ðκ; yÞ ¼ ð∞;−

ffiffiffi
2

p
=24Þ.

Along this curve, the fixed points are stable only for
κ ≲ 0.162. There are two more families of fixed points,
the blue and green curves. These exist for κ ≥ κ1 ≃ 0.273,
below which they annihilate and become complex con-
jugate. For κ → ∞ they reach the values y ¼ 0 (blue) and
y ¼ þ ffiffiffi

2
p

=24 (green). The fixed points along the blue
curve, where σ3 is seen to be irrelevant, always lie within
the region of vacuum stability. The fixed points on the
green curve, where σ3 is seen to be relevant, have a stable
vacuum only if κ1 ≲ κ ≲ 0.283. For 0.162≲ κ ≲ κ1 there is
a “blind spot” with no stable CFT.

B. Fermionic QED

Finally, we consider Nf massless Dirac fermions with no
quartic fermionic self-interaction:

Lmatter ¼ ψ̄m=Dψm; ð20Þ

where Dμ ¼ ∂μ þ iaμ. At large Nf this theory leads to a
stable CFT for any κ: the effective potential does not
depend on gauge interactions and the stability analysis is
analogous to that for free fermions.

IV. DISCUSSION

In this work, we have studied the fixed points of either
bosonic or fermionic three-dimensional large-Nf QEDs
coupled to a Chern-Simons term at level k, with fixed
κ ¼ k=Nf. For each of these theories we computed the
effective potential, as well as the β functions of the
classically marginal couplings, at the leading order in
the 1=Nf expansion and to all orders in κ and in the
couplings. As a byproduct we obtained the following
anomalous dimensions for critical/GN QEDs:

γσ ¼ −
16

3π2Nf

9π4 − 896π2κ2 þ 4096κ4

ðπ2 þ 64κ2Þ2 ; ð21Þ

and for tricritical/fermionic QEDs:

γψ̄ψ ¼ γϕ†ϕ ¼ 128

3Nf

π2 − 128κ2

ðπ2 þ 64κ2Þ2 : ð22Þ

For tricritical bosonic (GN) QED our analysis shows that a
CFTwith a stable vacuum can only exist when κ lies in the
gray region of Fig. 1 (2). There is no such restriction for
critical bosonic or fermionic QEDs.
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