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We present analytic stationary and axially symmetric black hole solutions to the semiclassical Einstein
equations that are sourced by the trace anomaly. We also find evidence that the same spacetime geometry
satisfies the field equations of a subset of Horndeski theories featuring a conformally coupled scalar field.
We explore various properties of these solutions and determine the domain of existence of black holes.
These black holes display distinctive features, such as noncircularity, a non-spherically-symmetric event
horizon, and violations of the Kerr bound.
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I. INTRODUCTION

The trace anomaly [1,2] is a quantum-level phenomenon
related to the breaking of the conformal symmetry of a
conformally invariant classical theory. It occurs due to one-
loop quantum corrections that result in a renormalized
stress-energy tensor with expectation value hTμνi and a
nonzero trace. This is a general feature of quantum theories
in gravitational fields, on the same footing [3–8] as the
chiral anomaly in QCD, which led to the successful
prediction of the decay rate of the neutral pion into two
photons [9,10]. The anomalous trace is only dependent on
the local curvature of spacetime and is not affected by the
quantum state of the quantum fields. In a four-dimensional
spacetime, it can be expressed as

gμνhTμνi ¼
β

2
C2 −

α

2
G; ð1Þ

where C2 ¼ 1
3
R2 − 2RμνRμν þ RμνρσRμνρσ is the square of

the Weyl tensor, G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ is the
Gauss-Bonnet scalar, and β and α are coupling constants.
The Gauss-Bonnet and Weyl contributions to the anomaly
are named type-A and type-B anomalies [11], respectively.
Unlike most other modifications of general relativity,

incorporating the contributions from the trace anomaly into
the low-energy effective field theory of gravity is essential,
and it is expected to result in macroscopic effects (see the
discussion in Refs. [6–8]). To account for the effects of the
trace anomaly on the spacetime geometry, a semiclassical

approach can be used. This involves treating spacetime
classically while considering the backreaction of quantum
fields. The semiclassical Einstein equations take the form

Rμν −
1

2
gμνR ¼ 8πGhTμνi; ð2Þ

where contributions from other matter sources are
neglected.
Investigating the backreaction of quantum fields is often

challenging, primarily because the expectation value of
the renormalized stress-energy tensor hTμνi is typically
unknown. Exceptions exist, such as in the case of a homo-
geneous and isotropic spacetime, where the trace anomaly
(1) completely determines the renormalized stress-energy
tensor [12–14]. However, in a static and spherically
symmetric system, the renormalized stress-energy tensor
can only be determined up to an arbitrary function of
position [15–18]. To overcome this difficulty, Ref. [19]
imposed an additional condition: that the geometry should
depend solely on one free function. In light of the field
equations (2), this assumption is equivalent to imposing an
additional equation of state on the stress-energy tensor. By
doing so and considering only the type-A anomaly (β ¼ 0),
Ref. [19] was able to fully determine the renormalized
stress-energy tensor. This approach led to the successful
derivation of analytic static and spherically symmetric
black hole solutions to the semiclassical Einstein equa-
tions (2). Interestingly, the black hole solutions obtained
in Ref. [19] exhibit a logarithmic correction to their
entropy. This is consistent with the expectation that the
leading-order quantum corrections to black hole entropy
are logarithmic [20,21]. Similar quantum corrections
were also studied, e.g., in Refs. [22–26], and in the scope
of the recently formulated 4D Einstein-Gauss-Bonnet
theory [27–31].
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In this paper, we will tackle the challenge of studying the
backreaction of quantum fields sourcing the trace anomaly
in a stationary and axially-symmetric setting. To achieve
this, we will adopt a Kerr-Schild ansatz [32] for the metric,
which will allow us to have just one free function in the
geometry. By doing so, we can fully determine the
renormalized stress-energy tensor and derive exact analytic
stationary and axially symmetric black hole solutions to
semiclassical Einstein equations (2). These solutions
present quantum-corrected alternatives to the Kerr black
hole [33]. Throughout this paper, we will use units
where 8πG ¼ c ¼ 1.

II. SETUP

We are interested in stationary and axially symmetric
spacetimes. The simplest choice for this class of metrics
follows from a Kerr-Schild ansatz [32,34,35]:

ds2 ¼ ds2flat þHðxÞðlμdxμÞ2; ð3Þ

where ds2flat is the line element of Minkowski spacetime,
HðxÞ is a scalar function, and lμ is the tangent vector to a
shear-free and geodesic null congruence. In ingoing Kerr-
like coordinates xμ ¼ ðv; r; θ;φÞ, the line element we will
employ reads

ds2 ¼ −
�
1 −

2rMðr; θÞ
Σ

�
ðdv − a sin2 θdφÞ2

þ 2ðdv − a sin2 θdφÞðdr − a sin2 θdφÞ
þ Σðdθ2 þ sin2 θdφ2Þ; ð4Þ

where we have taken HðxÞ ¼ 2rMðr; θÞ=Σ in Eq. (3),
Σ ¼ r2 þ a2 cos2 θ, and where Mðr; θÞ is the mass func-
tion defining the spacetime. When we set Mðr; θÞ ¼ M,
where M is a constant that represents the ADM mass, we
recover the Kerr metric [33], which is the stationary and
axially symmetric black hole solution to the vacuum
Einstein equations.1

The expectation value of the renormalized stress-energy
tensor should be compatible with the metric (4) and its
symmetries, and it must reduce to the anisotropic stress-
energy tensor employed in Ref. [19] in the static limit.
Moreover, it is important to note that the trace anomaly in
Eq. (1) is insensitive to traceless contributions to the stress-
energy tensor. The most general nontrivial ansatz that
satisfies these constraints is [42]

hTμνi ¼ 2ðρþ ptÞlðμnνÞ þ ptgμν þ μlμlν − 4Refωlðμm̄νÞg;
ð5Þ

where lμ, nμ, and mμ form a complex null tetrad eμ̂μ ¼
ðlμ; nμ; mμ; m̄μÞ (given in Appendix A) and obey the usual
relations lμnμ ¼ −mμm̄μ ¼ −1, with all other inner prod-
ucts vanishing. The quantities ρ, pt, μ, and ω are all
functions of the coordinates r and θ, and the brackets
denote symmetrization in the usual way. The energy
density and transverse pressure of the quantum fields are
given by ρ and pt, respectively, and both are Lorentz
invariant. On the other hand, μ and ω are not Lorentz
invariant and are associated with a traceless contribution.
Stress-energy tensors of a similar form to Eq. (5) have been
previously used to construct rotating radiating black
holes [42–44], and their matter content interpreted as
a combination of an anisotropic fluid and a null string
fluid [45,46].
The trace of the semiclassical Einstein equations (2)

together with the trace anomaly (1) yields a useful relation
that depends solely on the geometry

Rþ β

2
C2 −

α

2
G ¼ 0: ð6Þ

III. SOLVING THE SEMICLASSICAL
EINSTEIN EQUATIONS

To obtain exact analytical solutions, we will set β ¼ 0 for
now, focusing on the type-A anomaly. The nonvanishing β
case will be addressed later. We have five unknowns—
namely, ρ, pt, μ, ω, and M—and four independent
equations provided by the semiclassical Einstein equa-
tions (2) [shown in Appendix A for the metric ansatz (4)]
and the covariant conservation of the stress-energy tensor,
∇μhTμνi ¼ 0. One additional equation is needed to close
the system, which can be chosen as either the trace anomaly
(1) or the trace equation (6). To expedite the solution-
finding process, we will take a shortcut by solving the trace
equation (6) and then determining the stress-energy tensor
quantities from the semiclassical Einstein equations. Note
that we can only take this shortcut because our “equation
of state,” the trace anomaly, is such that the trace of the
renormalized stress-energy tensor depends only on the
metric. An alternative approach, which is equally valid,
involves fully determining the stress-energy tensor using its
covariant conservation and the trace anomaly (1), and
subsequently employing it in the semiclassical Einstein
equations to obtain a solution, as is done, e.g., in
Refs. [12,19]. Both approaches lead to the same outcome.
For our spacetime ansatz (4), it can be shown that the

following relations hold:

ΣR ¼ 2∂2rðrMÞ; ΣG ¼ 8∂2r

�
r2M2ξ

Σ3

�
; ð7Þ

where ξ ¼ r2 − 3a2 cos2 θ. To solve the trace
equation (6), we use these expressions for the Ricci

1See also, e.g., Refs. [35–41] for other examples of black hole
solutions of Kerr-Schild form in modified theories of gravity.
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and Gauss-Bonnet scalars, obtaining the following equiv-
alent condition:

∂
2
r

�
rM − 2α

r2M2ξ

Σ3

�
¼ 0: ð8Þ

This equation can trivially be solved by integrating twice
and solving algebraically for M, resulting in the general
solution

Mðr; θÞ ¼ 2ðM − q
2rÞ

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8αrξ

Σ3 ðM − q
2rÞ

q ; ð9Þ

where M ≡MðθÞ and q≡ qðθÞ are integration constants.
Using the Einstein equations (2), we fully determine the
renormalized stress-energy tensor by obtaining the profiles
for ρ, pt, μ, and ω.

IV. NATURE OF THE STRESS-ENERGY
TENSOR

To better understand the physical origins of the stress-
energy tensor (5) that sources the semiclassical Einstein
equations with the type-A trace anomaly (1), one possible
approach is to consider an appropriate effective action
that captures the trace anomaly in a gravitational theory
[6,26,38,47–50]. Such an effective action can be written
as S ¼ R

d4xL, where the Lagrangian density L takes the
form [38,50]

Lffiffiffiffiffiffi−gp ¼ R
2
−
1

2
ð∂ϕÞ2 − ϕ2

12
Rþ α

2

�
lnðϕÞG −

4Gμν
∂μϕ∂νϕ

ϕ2

−
4□ϕð∂ϕÞ2

ϕ3
þ 2ð∂ϕÞ4

ϕ4

�
; ð10Þ

modulo other conformally invariant terms. Observe that the
Einstein-Hilbert term is supplemented with a conformally
coupled scalar field [38,51–53]. It can be shown that the on-
shell trace of the stress-energy tensor of the scalar gives
the type-A trace anomaly (1) [38]. The theory described by
the above action belongs to the Horndeski class [38,54] and
is intimately connected to the well-defined scalar-tensor
formulations of the 4D Einstein-Gauss-Bonnet class of
theories [27–31].
The field equations resulting from the action (10) are

highly complex and challenging to solve in a stationary
and axially symmetric setting. They are presented in
Appendix B. However, we have been able to obtain a
“simple solution” to these field equations by considering
the metric ansatz (4). As discussed earlier, the mass
function in Eq. (9) solves the trace condition of the theory,
R − α

2
G ¼ 0. The remaining field equations are then auto-

matically identically satisfied by choosing a constant but
nonzero scalar field ϕ ¼ � ffiffiffi

6
p

, for which the theory

becomes pathological. Namely, the Einstein equations are
identically satisfied and reduce to Gμν ¼ Gμν. Hairy black
hole solutions supported by a constant conformally coupled
scalar field have been previously studied, e.g., inRef. [55].A
strong coupling issue arises for the scalar field at this
particular constant value [52], which leads to a divergent
effectiveNewton’s constant.Nevertheless, it is plausible that
for the class of theories in Eq. (10) and Ref. [38] alternative
scalar profiles exist, resulting in the same geometry, similar
to what has been observed in the static and spherically
symmetric case [38] and the slowly rotating case [56,57]. To
bolster this assertion, we have undertaken the task of solving
the field equations for the class of theories as presented in
Ref. [38]. This was done order by order in a large r
expansion, where we assumed a scalar field following the
behavior ϕðr; θÞ ¼ P∞

n¼1 cnðθÞ=rn. During our investiga-
tion, we consistently found suitable nonsingular coefficients
cnðθÞ that satisfied all the field equations up to the orders we
examined. Furthermore, this perturbative solution aligns
with the known scalar field profiles in the static and slowly
rotating limits [38,56,57]. Although this result does not
guarantee the existence of a scalar field profile consistent
with our geometry in a nonperturbative manner, it provides
further evidence supporting the existence of alternative
scalar profiles that maintain the desired geometric proper-
ties. With the proposed asymptotic expansion for the scalar
field profile, no strong coupling issue is expected to arise.
This is because the scalar field is nonconstant according
to this expansion, avoiding a divergence in the effective
Newton’s constant everywhere. Additionally, the terms
containing derivatives of the scalar field in the stress-energy
tensor and scalar field equation provide nontrivial contri-
butions. This differs from the problematic case of a constant
scalar field, where the Einstein equations reduce to the
pathological form Gμν ¼ Gμν, indicating a strong coupling
issue. By instead employing a scalar field profile following
the suggested asymptotic expansion, we can circumvent the
strong coupling pathologies that emerge for a constant scalar
field scenario. This toy model serves as an illustrative
example that can help clarify the nature of the matter/energy
content of the stress-energy tensor, given its unconven-
tional form.
The fulfillment of energy conditions [58] is crucial for

the viability of classical solutions to the Einstein equations.
However, there is a growing body of evidence, derived
from both experimental and theoretical sources, suggesting
that quantum effects are likely to lead to the widespread
violation of some or potentially all of these conditions
(see Refs. [58–64] and references therein, as well as
Refs. [65,66] for explicit examples of energy condition
violations due to the trace anomaly). Due to the purely
quantum nature of hTμνi, it is anticipated that our system
will exhibit violations of at least some energy conditions.
In fact, a straightforward analysis demonstrates that vio-
lations, e.g., of the weak energy condition, are already
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generically present in static solutions.2 A detailed analysis
of these violations in the rotating case can be done using
the results of Ref. [42], but further exploration of these
considerations is reserved for future investigations.

V. PROPERTIES OF THE SOLUTION

The mass function in Eq. (9) defines the spacetime, and it
contains two integration constants,MðθÞ and qðθÞ, and two
different branches of solutions (as indicated by the � sign
in the denominator). Imposing the boundary condition that
the mass function should approach a constant at infinity,
which is interpreted as the ADM mass, leads us to choose
the solution with the plus sign as the physical one, and
constant M.
The integration constant qðθÞ can be understood through

the falloff behavior of the energy density and transversal
pressure near spatial infinity, which is given by ρ ≈ pt≈
qðθÞ=r4 þOðr−5Þ. This falloff is characteristic of a con-
formal field theory with Uð1Þ squared conserved charge
proportional to q. Therefore, q is interpreted as an artifact
of considering all possible suitable traceless contributions
to the stress-energy tensor and plays a role similar to that of
an electric charge [19]. For simplicity, we set q ¼ 0 from
now on. The same conditions on the integration constants
could be obtained by demanding that the Kerr metric is
recovered as α approaches zero.
From the asymptotic behavior of the metric component

gvϕ, we can determine the angular momentum (per unit
mass), which is given by a. This solution is algebraically
special—namely, Petrov type II in the Petrov classification
scheme [34,67]. Moreover, this solution does not satisfy
the circularity conditions [68,69] in general3 because of the
angular dependency of the function M [70]. Other exam-
ples of noncircular black hole solutions can be found, e.g.,
in Refs. [71–73], in the context of scalar and vector-tensor
theories.
Although the solution of Ref. [19] can be obtained in

the limit where a approaches zero, it is not possible to
derive the solution (9) directly by applying the Newman-
Janis algorithm [74] to the static solution in Ref. [19].
This algorithm is known to fail in modified theories of
gravity [75,76], and in our case, it results in a geometry that
violates the trace condition (6). Our findings demonstrate
the importance of not blindly applying the Newman-Janis
algorithm. Additionally, in the limit of slow rotation, we
also recover the slowly rotating black holes of 4D Einstein-
Gauss-Bonnet gravity [56,57].
The physical singularities of the spacetime (9) can be

analyzed by computing, for example, the Ricci scalar in
Eq. (8). We can observe the presence of two singularities.

The first one is the usual ring singularity, located at
Σ ¼ 0—i.e., r ¼ 0 and θ ¼ π=2. The second singularity is
introduced by Gauss-Bonnet quantum effects and is located
where the quantity inside the square root in the mass
function (9) vanishes:

1 −
8αrξ
Σ3

M ¼ 0; ð11Þ

where r is to be evaluated at rsðθÞ, the location of the
singularity. This condition has to be solved numerically,
except for θ ¼ π=2, where we obtain rsðπ=2Þ ¼ 2ðMαÞ1=3.
It is worth noting that finite-radius singularities are a
common feature of theories containing Gauss-Bonnet
terms, and they have been extensively studied, for instance,
in Ref. [77].
To confirm that the solution (9) describes a black hole

spacetime, we need to investigate the existence of the event
and Killing horizons. In vacuum general relativity, the
rigidity theorem holds [78], and both types of horizons
coincide. However, this is not necessarily the case for the
solution (9). The coordinate location of the event horizon
rH depends on the coordinate θ and is given by the solution
to the differential equation [71,79,80]

½∂θrHðθÞ�2 þ Δjr¼rHðθÞ ¼ 0; ð12Þ

where

Δ ¼ r2 þ a2 − 2rMðr; θÞ: ð13Þ

The location of the Killing horizon is given by the solution
to the equation Δ ¼ 0 [79,80].
To solve the differential equation (12), we used a

pseudospectral method (see, e.g., Refs. [81,82]) by expand-
ing rHðθÞ in a spectral series of even cosines, taking
into account the symmetries of the problem, ∂θrHð0Þ ¼
∂θrHðπ=2Þ ¼ 0. We verified the existence of regular event
horizons for the solution (9) in a domain, confirming that it
is a black hole spacetime. The coordinate locations of the
event and Killing horizons both depend on the angular
coordinate θ, thereby deviating from spherical symmetry,
and they coincide at the poles and equator. We remark that
this angular dependence is a consequence of noncircularity.
As an example, in Fig. 1, we plot the locations of the event
horizon, the Killing horizon, and that of the curvature
singularity in Eq. (11) for a solution with a=M ¼ 0.85 and
α=M2 ¼ 2, where we observe that the singularity is hidden
inside the event horizon.
In Fig. 2, the shaded region shows the domain of

existence of black holes. For values −1 ≤ α=M2 ≲
6.2754, the domain is bounded by extremal black holes.
As we approach the blue line for positive (negative)
couplings, the event and inner horizons, the two roots of Δ,
overlap at the poles (equator). However, for higher values

2In the static case, in an orthonormal frame, the stress-energy
tensor assumes a simple diagonal form, hT μ̂ ν̂i¼diagðρ;−ρ;pt;ptÞ.3This is true for nonvanishing α and a. If either is zero, the
solution is Petrov type D and obeys the circularity conditions.
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of α=M2, we observe the overlap of the location of the
event horizon and the curvature singularity (11) at the
equator as we approach the red line, resulting in a singular
solution. We find violations of the Kerr bound, a=M ≤ 1,
for values 4.5698≲ α=M2 ≲ 6.4976, with a maximum
value of a=M ≈ 1.07109 for α=M2 ≈ 6.2754. This is the
point at which the extremal and singular black hole
branches come together. This kind of behavior was also
observed in previous studies of black holes in Einstein-
dilaton-Gauss-Bonnet gravity [83].
The region where the normalized timelike Killing vector

field at infinity ∂v becomes null is known as the ergoregion.
In the spacetime described by Eq. (4), ergoregions are

located at points where the condition gvv ¼ 0 is satisfied.
We have confirmed that ergoregions are present in the
entire domain of existence of black holes with the usual S2

topology.

VI. ADDRESSING THE FULL ANOMALY

When β is nonvanishing, the Weyl tensor introduces
nonlinearities into the system and closed-form solutions are
not known, even in the static and spherically symmetric
case [19,23]. To address the full anomaly, we take β ¼ kα
for some proportionality constant k ∼Oð1Þ and solve the
trace condition (6) perturbatively in powers of α=M2. There
are two special cases to consider: when k ¼ 0, we recover
the results and solution presented in previous sections;
when k ¼ 1, all terms proportional to the square of the
Riemann tensor cancel in Eq. (6), leaving us with a trace
condition depending solely on the Ricci tensor and scalar.
In this case, it follows that the (Ricci-flat) Kerr solution
Mðr; θÞ ¼ M solves the field equations for a vanishing
stress-energy tensor. For general k, we can consider
perturbative solutions in an expansion in α=M2 away from
the Kerr solution4

Mðr; θÞ ¼ M þ
X∞
n¼1

�
α

M2

�
n
M̃nðr; θÞ: ð14Þ

By solving the trace condition (6) order by order, we obtain
the following perturbative solution to order ðα=M2Þ2:

M̃1 ¼
2ð1 − kÞM4rξ

Σ3
; M̃2 ¼

8ð1 − kÞ2M7r2ξ2

Σ6
: ð15Þ

The perturbative solutions retain many of the characteristics
of the solution (9), such as a function M that is dependent
on both r and θ, leading to noncircularity and an event
horizon that is not spherically symmetric.
It is interesting to note that in the static limit of the

perturbative solution (15), a direct application of the first
law of thermodynamics [19] shows that to leading order in
the coupling, the black hole entropy S obeys

S ¼ AH

4
− 2παð1 − kÞ ln

�
AH

A0

�
; ð16Þ

where AH is the event horizon area, and A0 is a (squared)
length scale to be set by the ultraviolet complete theory.
This means that the leading-order logarithmic corrections
to the black hole entropy are a general prediction of trace
anomaly quantum corrections and are not limited to the
β ¼ 0 case [19].

FIG. 1. Profile for the event (black solid line) and Killing (black
dashed line) horizons’ coordinate locations as a function of
the angular coordinate θ for a black hole with a=M ¼ 0.85 and
α=M2 ¼ 2. The red dot-dashed line indicates the location of the
curvature singularity in Eq. (11). The singularity is hidden by
the event horizon.

FIG. 2. Domain of existence for black hole solutions in the
ðα=M2; a=MÞ plane. The shaded region represents the parameter
space in which black hole solutions exist. The boundary of
this region is formed by extremal (blue) and singular black
holes (red).

4An expansion in powers of (1 − k) away from the Kerr metric
could also be considered.
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VII. DISCUSSION

The stationary and axially symmetric solution (9) found
in this paper describes a spinning black hole that incorpo-
rates trace anomaly quantum corrections. This solution
possesses distinctive characteristics, including a non-
spherically-symmetric event horizon and violations of
the Kerr bound. It provides an alternative to the traditional
Kerr black hole geometry and serves as an analytical black
hole solution within the framework of scalar Gauss-Bonnet
gravity [83–89], broadly defined. These unique features
make it a subject worthy of further investigation and study.
Suggested follow-up work includes studying the quasinor-
mal modes, light rings, innermost stable circular orbit, and
black hole mechanics/thermodynamics in depth. Regarding
the latter, it is straightforward to verify that in the static
limit, the surface gravity remains constant on the event
horizon and that the first law of black hole mechanics,
dM ¼ TdS, holds. However, a more meticulous analysis is
necessary for the rotating case due to the angular depend-
ence of the horizons on the coordinate θ resulting from
noncircularity, and the fact that the Killing and event
horizons do not coincide (except at the poles and equator).
The potential departure from the standard laws of black
hole mechanics would originate solely from quantum

mechanical aspects, as the Kerr metric is recovered when
we approach the classical limit (α → 0).
Additionally, it would be important to study the image

features and shadow of this black hole geometry in light of
observations by the Event Horizon Telescope Collaboration
[90,91]. The noncircularity of the spacetime is anticipated
to give rise to interesting image features [68,80,92].
Another direction for new analytic solutions would be to
generalize this solution to include the effects of a cosmo-
logical constant [24].
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APPENDIX A: COMPLEX NULL TETRAD
AND THE EINSTEIN EQUATIONS

We define the complex null tetrad eμ̂μ ¼ ðlμ; nμ;
mμ; m̄μÞ, where

lμ ¼ f0; 1; 0; 0g; nμ ¼ −
1

Σ
fðr2 þ a2Þ;Δ=2; 0; ag; mμ ¼ 1ffiffiffi

2
p

σ
fia sin θ; 0;−1; i= sin θg; ðA1Þ

with the overline denoting complex conjugation, σ ¼ rþ ia cos θ, and Δ is defined in Eq. (13). In the null basis (A1), the
nonvanishing components of the stress-energy tensor take the simple form

hTv̂ r̂i ¼ ρ; hTr̂ r̂i ¼ μ; hTr̂ θ̂i ¼ hTr̂ φ̂i ¼ ω; hT θ̂ φ̂i ¼ pt; ðA2Þ

and the nontrivial components of the Einstein tensor are

Gv̂ r̂ ¼
2r2∂rM

Σ2
; Gr̂ r̂ ¼ −

rðcot θ∂θ þ ∂
2
θÞM

Σ2
;

Gr̂ θ̂ ¼ Gr̂ φ̂ ¼ ð−σ∂θ þ rσ̄∂r∂θÞMffiffiffi
2

p
Σ2

; Gθ̂ φ̂ ¼ −
ð2a2 cos2 θ∂r þ rΣ∂2rÞM

Σ2
: ðA3Þ

APPENDIX B: FIELD EQUATIONS FOR THE CONFORMALLY COUPLED SCALAR FIELD THEORY

The conformally coupled scalar field theory in Eq. (10) has field equations given by (2) with [38]

hTμνi ¼ α
h
2Gμνð∂φÞ2 − 4�R�

μανβð∇αφ∇βφ −∇β∇αφÞ þ 4ð∇αφ∇μφ −∇α∇μφÞð∇αφ∇νφ −∇α∇νφÞ

þ 4ð∇μφ∇νφ −∇ν∇μφÞ□φþ gμν
�
2ð□φÞ2 − ð∂φÞ4 þ 2∇β∇αφð2∇αφ∇βφ −∇β∇αφÞ�i

þ 1

6
e2φ

h
Gμν þ 2∇μφ∇νφ − 2∇μ∇νφþ gμν

�
2□φþ ð∂φÞ2�i; ðB1Þ

where, for simplicity, we used the auxiliary field φ ¼ lnϕ, and �R�
μανβ is the double-dual of the Riemann tensor. The scalar

field equation resulting from the action (10) is given by
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−
α

2

	
G − 8Rμν∇μφ∇νφþ 8Gμν∇μ∇νφþ 8□φð∂φÞ2 − 8ð∇μ∇νφÞ2 þ 8ð□φÞ2 þ 16ð∇μφ∇νφÞð∇μ∇νφÞ


þ 1

6
e2φ

	
R − 6□φ − 6ð∂φÞ2
 ¼ 0: ðB2Þ

Using the equation of motion for the scalar field, we can confirm that gμνhTμνi ¼ − α
2
G. We can verify that ϕ ¼ � ffiffiffi

6
p

solves
the Einstein equations (2). The equation of motion for the scalar field then simplifies to R − α

2
G ¼ 0, which can be solved by

using the metric (4) and the mass function presented in Eq. (9).
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