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According to general relativity, the generic early Universe dynamics is chaotic. Various quantum-gravity
effects have been suggested that may change this behavior in different ways. Here, it is shown how key
mathematical properties of the classical dynamics can be extended to evolving quantum states using
quasiclassical methods, making it possible to apply the established dynamical-systems approach to chaos
even to quantum evolution. As a result, it is found that quantum fluctuations contribute to the reduction of
the primordial chaos in early Universe models.
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A powerful statement about the complicated nature of
the primordial state of the Universe is made by generic
features of chaotic dynamics in classical descriptions
based on general relativity [1,2]. The evolving anisotropy
of space in the early, high-curvature Universe can be
described by an effective potential that encodes the
effects of space-time curvature by walls that restrict the
anisotropy parameters to a finite region. Mathematical
results about billiard dynamics applied to these walls,
which happen to be convex and therefore defocusing, then
guarantee chaos [3]. Quantum effects, such as fluctuations
or various geometrical implications of approaches to
quantum gravity, may be expected to make this behavior
even more counterintuitive and harder to unravel. Finding
reliable knowledge of the initial state of the Universe
could then be impossible.
In particular, a long series of studies in supergravity and

string theory has confirmed this expectation to some
degree, showing that the dynamics remains chaotic [4,5]
when extra dimensions and fields relevant for unification

are included. Such new ingredients extend the classical
configuration space of anisotropy parameters for the
Universe by including new independent degrees of free-
dom. Nevertheless, they come along with their own
curvature contributions that share qualitative features of
the walls in the effective anisotropy potential, maintaining
the classical chaotic dynamics. These models, however, are
not fully quantum because they do not consider states with
fluctuations and correlations obeying uncertainty relations.
Independently, quantum cosmology with fluctuating

states has also been applied to this question, but so far
with mixed results [6–9], owing for instance to the difficult
task of evaluating dynamical properties of the quantum
wave function of a single Universe. The large number of
degrees of freedom contained in a quantum wave function,
compared with the corresponding classical degrees of
freedom, makes it hard to disentangle different, potentially
competing, dynamical features. Specific properties are
therefore identified in these approaches that may reduce
chaos, such as by isotropization or bounded curvature.
These effects may help to avoid the strong anisotropy
potential that implies chaos in the classical dynamics, but
they do not directly confront it.
Here, we apply a systematic quasiclassical expansion to

quantum cosmology and provide the first generic example
of a suppression of chaos in primordial cosmology, based

*bojowald@psu.edu
†david.brizuela@ehu.eus
‡pcaliz1@lsu.edu
§sara.fernandezu@ehu.eus

PHYSICAL REVIEW D 108, L061501 (2023)
Letter

2470-0010=2023=108(6)=L061501(6) L061501-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8009-5518
https://orcid.org/0000-0001-6228-983X
https://orcid.org/0000-0003-2562-4170
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L061501&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevD.108.L061501
https://doi.org/10.1103/PhysRevD.108.L061501
https://doi.org/10.1103/PhysRevD.108.L061501
https://doi.org/10.1103/PhysRevD.108.L061501


on general features of quantum fluctuations. This new result
relies on a minimal inclusion of quantum effects that
implement the spread-out nature of quantum states along
classical trajectories. It should therefore be present in any
model of quantumgravity because it does not require specific
assumptions about the nature of quantum space-time.
To this end, we derive a new effective potential that

extends the classical anisotropy potential into a higher-
dimensional quasiclassical configuration space in which
the classical anisotropy parameters are accompanied by
fluctuation degrees of freedom that also parametrize higher
moments of an evolving quantum state. This description
makes it possible to retain the appealing geometrical picture
of billiard models [5], also extended by new degrees of
freedom, but with a specific modification of the classical
walls that has not been considered before. (Related methods
have recently been applied to individual reflections in the
anisotropy potential [10].) At the same time, established
methods from dynamical-systems theory can be applied in
the quasiclassical description in order to analyze detailed
quantitative properties of the primordial chaos. While chaos
is not completely removed, its strength is noticeably reduced.
Following the Belinskii-Khalatnikov-Lifshitz scenario

[1], the high-curvature dynamics close to the big bang can
be studied by analyzing a spatially homogeneous space-
time model with line element

ds2 ¼ −N2ðtÞdt2 þ
X3

i¼1

a2i ðtÞσ2i ; ð1Þ

whereNðtÞ is the lapse function, σi, with i ¼ 1, 2, 3, form a
basis of differential forms on the manifold of the rotation
group SO(3), parametrized for instance by Euler angles,
and aiðtÞ are three independent functions of time. As the
aiðtÞ change at different rates, the anisotropy of the
Universe evolves, while space expands if the product
a1ðtÞa2ðtÞa3ðtÞ increases. The approach to the big-bang
singularity can be studied by inverting the direction of time.
It is useful to separate the changing size of space from

the evolution of its anisotropy, which can conveniently be
achieved by introducing Misner variables [2]: The expan-
sion rate is described logarithmically by a real parameter

α ¼ 1

3
lnða1a2a3Þ; ð2Þ

such that the big-bang singularity is approached for
α → −∞. The two remaining degrees of freedom indepen-
dent of α are the anisotropy parameters

βþ ¼ 1

6
lnða1a2=a23Þ and β− ¼ 1

2
ffiffiffi
3

p lnða1=a2Þ: ð3Þ

General relativity implies that the dynamics of α and
β� in a universe with line element (1) is described by
the expression

C ¼ 1

2
e−3αð−p2

α þ p2
− þ p2þÞ þ eαVðβþ; β−Þ ¼ 0; ð4Þ

with the anisotropy potential

Vðβþ; β−Þ ≔
1

6
½e−8βþ þ 2e4βþðcoshð4

ffiffiffi
3

p
β−Þ − 1Þ

−4e−2βþ coshð2
ffiffiffi
3

p
β−Þ�: ð5Þ

[The simple coefficients in the quadraticmomentumdepend-
ence are a consequence of the choice of defining (3).]
The expression C defined in (4) serves as a Hamiltonian

constraint: It imposes an energy-balance constraint by
being required to vanish, and, at the same time, it generates
Hamilton’s equations for α, β�, and their momenta pα ≔
− e3α

N
dα
dt and p� ≔ e3α

N
dβ�
dt . Since α changes monotonically

and we are interested in the dynamics of β� during
expansion or contraction, we can solve the constraint
equation (4) for

H ≔ −pα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ 2e4αVðβþ; β−Þ
q

; ð6Þ

and view it as the Hamilton function (no longer constrained
to vanish) for β� and their momenta evolving with respect
to α. The dynamics is then determined by the two-
dimensional motion in the anisotropy potential (5). It
has steep exponential walls for large anisotropy and a
triangular symmetry that can best be seen by looking at the
contour plot in Fig. 1.
Note that in (6) this potential is multiplied by a factor of

e4α. The potential walls therefore shrink close to the
singularity, giving room for larger anisotropy. The dynam-
ics of β� is characterized by a sequence of reflections at the
potential walls. As shown by Fig. 1, these walls are always
convex. General mathematical results can then be invoked
to conclude that the dynamics of anisotropies is chaotic.
Previous results that suggested a reduction or disappear-

ance of chaos exploited possible ways to tear down the
walls of the anisotropy potential, for instance by using
modified dynamics that isotropizes the evolution or limits
the values of curvature and therefore the height of the walls.
A problematic aspect of such modified dynamics is that it
would also undermine the Belinskii-Khalatnikov-Lifshitz
scenario, which in classical general relativity justifies the
application of a spatially homogeneous geometry close to
any (spacelike) singularity. Our new quantum effect does
not tear down the walls, but rather, as we will show,
reshapes them by making them partially concave. Concave
and therefore focusing walls may or may not imply
chaos [11]. According to our dedicated analysis of the
new system encountered here, the strength of chaos is
reduced by a certain degree depending on how much
concavity is included.
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As already commented above, the walls are reshaped by
quantum effects. Heuristically, a wave function on the
anisotropy plane with coordinates β� is spread out and the
corners of the triangular region are therefore washed out,
partially closing them off by concave caps. In order to make
this precise, we have to be able to derive a sufficiently
general effective potential that retains the geometrical
picture of the classical model even while it includes
quantum effects. Since the anisotropy parameters may
change rapidly when curvature is large, the quantum
potential should be able to capture nonadiabatic effects,
ruling out standard methods such as low-energy effective
potentials or other derivative expansions. As we will show,
the expected effect is described well by quasiclassical
methods based on a parametrization of states by moments.
We will consider only quantum states of the anisotropy

parameters and their momenta, and therefore include the
central moments

Δðβiþβj−pkþpl
−Þ

≔ hðβ̂þ−βþÞiðβ̂−−β−Þjðp̂þ−pþÞkðp̂−−p−ÞliWeyl; ð7Þ

in completely symmetric or Weyl ordering. The dynamics
of a state described by the moments is governed by a
Hamilton operator quantizing (4). Its expectation value hĈi,
taken in a state described by (7), is a function of the
moments, for which a series expansion can be obtained if
the anisotropy potential is first expanded in a Taylor series.
As in (6), a square root then defines the effective
Hamiltonian HQ with respect to α:

H2
Q ¼ hĤ2ðβ̂þ; β̂−; p̂þ; p̂−Þi ¼ p2þ þΔðp2þÞþp2

−þΔðp2
−Þ

þ e4α
Xþ∞

i;j¼0

1

i!j!
∂
iþjVðβþ;β−Þ
∂βiþ∂βj−

Δðβiþβj−Þ: ð8Þ

To simplify the notation, here and from now on we refer to
expectation values by their classical names, β� ¼ hβ̂�i
and p� ¼ hp̂�i.
By keeping the moments as independent degrees of

freedom, in addition to the expectation values β� and p�,
we are able to capture nonadiabatic effects inwhichmoments
may change rapidly compared with the corresponding
classical degrees of freedom. In the anisotropy potential of
relevance here, such rapid changes may happen when a state
gets squeezed into the corners of the triangular potential,
precisely where we expect spread-out wave functions to
introduce concave components to the walls. However, keep-
ing all the moments independent takes us from a two-
dimensional configuration plane to an infinite-dimensional
space. For tractability, we have to find a compromise in
which some moment degrees of freedom are kept indepen-
dentwhilemost of themare strictly related to the independent
ones. An example is a Gaussian approximation, in which the
expectation values and a fluctuation parameter s are free,
while all other moments are specific functions of s.
The quasiclassical formulation is open to studies of

different classes of states, defined through specific relation-
ships between the moments. Our main interest here is to
analyze a succession of reflections at steep walls, which
(unlike, say, tunneling) is expected to preserve the shape of
a wave packet. Moments of a single wave packet, such as
Gaussian one in which we have two independent fluc-
tuation parameters, s� for β�, should therefore be reliable.
Anisotropy moments are then defined as

Δðβ2nþ β2m− Þ ¼ s2nþ s2m−
2n2m

ð2nÞ!ð2mÞ!
n!m!

: ð9Þ

The Hamiltonian also contains the momentum terms p2
�,

which, in an expectation value, imply fluctuation terms:
hp̂2

�i ¼ p2
� þ Δðp2

�Þ. In order to obtain a standard dynami-
cal system, we should express the momentum fluctuations
Δðp2

�Þ in terms of momenta ps� canonically conjugate to
the anisotropy parameters s�. Methods from Poisson
geometry, which relate the quantum commutator of oper-
ators to a Poisson bracket of their expectation values
[12–14], show that momentum fluctuations expressed in
terms of fluctuation momenta must be such that

Δðβ�p�Þ ¼ s�ps� ; Δðp2
�Þ ¼ p2

s� þ U�
s2�

; ð10Þ

where U� ¼ Δðp2
�ÞΔðβ2�Þ − Δðβ�p�Þ2 ≥ ℏ2=4 deter-

mines saturation properties of the state. Similar paramet-
rizations have been used in a variety of fields [15–18].

FIG. 1. Contour plot of the classical anisotropy potential (5).
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To conclude this part of our construction, the quantum
anisotropy potential in the four-dimensional space with
coordinates β� and s� receives two types of new terms:
(i) repulsive potentials U�=s2� from the kinetic energy
operator, which prevent the fluctuation parameters from
reaching zero and thereby enforce uncertainty relations,
and (ii) a series expansion in s� that follows from replacing
(8) with (9). In fact, after inserting the parametrization of
the moments (9), this series can be summed up explicitly,
resulting in the extended anisotropy potential

VQðβþ; β−; sþ; s−Þ ¼
1

6
½e−8βþþ32s2þ þ 2e4βþþ8s2þ

× ðe24s2− coshð4
ffiffiffi
3

p
β−Þ − 1Þ

− 4e−2βþþ2s2þþ6s2− coshð2
ffiffiffi
3

p
β−Þ�:

ð11Þ
The four-dimensional nature of the new configuration

space complicates our heuristic arguments because the
expected concave caps around the triangular corners of the
classical potential depend on which two-dimensional cross
section we consider. Nevertheless, a crucial difference
implied by nonzero s� can be seen by considering,
for instance, the cross section defined by β− ¼ 0.
The classical potential is then reduced to the simple
function 6Vðβþ; 0Þ ¼ e−8βþ − 4e−2βþ . The two exponen-
tially decreasing terms illustrate the steep exponential wall
on the left of Fig. 1, which approaches zero on the right
where the confined region is stretched out into a narrow
channel. The extended potential, evaluated on the same
cross section, implies the reduced potential

6VQðβþ; 0; sþ; s−Þ ¼ e−8βþþ32s2þ − 4e−2βþþ2s2þþ6s2−

þ 2e4βþþ8s2þðe24s2− − 1Þ; ð12Þ

in which an exponentially increasing function contributes
as well. Since s− cannot be zero, owing to the U−=s2− term
in the Hamiltonian, even a small value will eventually lead
to the increasing expð4βþÞ to dominate for positive βþ. The
classical channel has thus been closed off, which requires a
concave contribution to the walls. (In fact, for large s−,
almost the entire wall would become concave.) Actually,
this is a generic feature for any quantum state since the
operator ðcoshð4 ffiffiffi

3
p

β̂−Þ − 1Þ, which multiplies expð4β̂þÞ in
the potential (5), is positive definite. Therefore, in the
effective potential, hexpð4β̂þÞðcoshð4

ffiffiffi
3

p
β̂−Þ − 1Þi produ-

ces a dominant exponential contribution for large βþ,
regardless of the value of β−, which closes the classical
channel on the right corner. Similar arguments can be
applied to the other two classical channels located at
β− ¼ � ffiffiffi

3
p

βþ. (See the Appendix for proofs of these
statements.)
Since the four-dimensional dynamics in the extended

anisotropy potential (11) is given by a dynamical system

in canonical form, its properties of chaos can be unambig-
uously analyzed. Details of such an analysis are presented in
Ref. [19], and we note that the two main methods that have
been used in the past to derive coordinate-independent
properties of chaos agree in that quasiclassical effects lead
to a reduction of its degree. First, there exists a canonical
transformation that maps our four-dimensional dynamical
system tomotion within a finite region of a four-dimensional
spacewith constant negative curvature, generalizing a crucial
property of the Misner-Chitre transformation [20] used in
[21] to conclude that all Lyapunov exponents are positive.
The quasiclassical dynamics therefore remains chaotic.
Second, a quantitative measure of chaos can be obtained

from the fractal dimension of subsets of different dynamical
outcomes in the space of initial values [22,23]. Here, three
different outcomes are naturally defined by which of the
three corners in the classical anisotropy plane will be
approached first, a definition that can also be used in the
quasiclassical potential.
In our analysis, we have chosen 160 different sets of

initial data for the quantum variables ðs�; p�; U�Þ, and
divide the space of initial data in corresponding outcomes.
For our sample, the dimension of the boundary between
different regions has been computed to be in the range
[1.21, 1.58], depending on the specific initial values of the
quantum variables, while the classical repeller has a fractal

1.345 1.350 1.355 1.360

1.300

1.305

1.310

1.315

1.320

FIG. 2. Subsets of three outcomes in a plane of initial values of
the anisotropies, classical (top) and quasiclassical (bottom). Each
color (red, blue, and green) stands for the corner of the potential
that the corresponding point hits first.
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dimension of 1.86 (see Ref. [19] for more details).
Therefore, in all the analyzed cases, quantum fluctuations
decrease this dimension, which implies a reduction of the
chaotic behavior. This can be clearly seen in Fig. 2, where
the fractal picture is smoothed out in the quantum case. In
particular, specific details of the reduction depend on
quantum-information properties of the primordial state of
the Universe.
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APPENDIX

1. State-independent closure of corners

Here we prove that the corners of the classical potential
are closed off in any effective potential, not only for
the quantum states with high-order moments parametrized
by (9).
We first demonstrate the strict inequality

hcoshð4 ffiffiffi
3

p
β̂−Þi > 1 for any state of our model quantized

on the Hilbert space L2ðR2; dβþdβ−Þ. Using the β repre-
sentation of wave functions ψðβþ; β−Þ, we conclude that the
operator sinh2ð4 ffiffiffi

3
p

β̂−Þ is positive definite because there is
no (normalizable) state in which hsinh2ð4 ffiffiffi

3
p

β̂−Þi ¼ 0,
which can be seen on the spectral decomposition of β̂−:
On the spectrum, the operator sinh2ð4 ffiffiffi

3
p

β̂−Þ takes positive
values unlessβ− ¼ 0. Since the spectrum is continuous, there
is no normalizable state solely supported on this value, and
therefore hsinh2ð4 ffiffiffi

3
p

β̂−Þi cannot be zero.
Then, since sinh2ð4 ffiffiffi

3
p

β̂−Þ ¼ cosh2ð4 ffiffiffi
3

p
β̂−Þ−1¼

ðcoshð4 ffiffiffi
3

p
β̂−Þ−1Þðcoshð4

ffiffiffi
3

p
β̂−Þþ1Þ, and coshð4 ffiffiffi

3
p

β̂−Þþ
1 is also positive definite, coshð4 ffiffiffi

3
p

β̂−Þ − 1 must be
positive definite as well. Therefore, hcoshð4 ffiffiffi

3
p

β̂−Þi > 1
in any state.
We now apply this result to a generic effective

potential obtained by taking the expectation value of a
quantized (5) in some family of states, with high-order
moments not necessarily parametrized by (9). Since e4β̂þ

and coshð4 ffiffiffi
3

p
β̂−Þ − 1 are two commuting positive definite

operators, their product is positive definite. Therefore,

he4β̂þðcoshð4 ffiffiffi
3

p
β̂−Þ − 1Þi cannot be zero. The correspond-

ing reduced potential, defined as in (12), then always retains
a contribution from the term e4β̂þðcoshð4 ffiffiffi

3
p

β̂−Þ − 1Þ, which
is unbounded in βþ, and implies an exponential wall for any
family of states with increasing βþ, irrespective of the value
of β−. This is in contrast with the classical case, for
which this term exactly vanishes at the axis β− ¼ 0, and,
since the remaining terms in the classical potential decrease
with βþ, the classical exit channel on the right corner of
Fig. 1 is open.
The reduced potential (12) is an explicit expression

obtained for states red with moments parametrized by (9),
but its crucial feature remains valid for any family of states.
By means of symmetry, the same argument can be applied
for the remaining two corners β− ¼ � ffiffiffi

3
p

βþ.

2. Turnover from convex to concave

For simplicity, let us analyze the convexity of the wall
around the corner to the right of the trapped region (see
Fig. 1). This wall is described by the term

Wðβþ; β−; s−Þ ¼ e4βþðe24s2− coshð4
ffiffiffi
3

p
β−Þ − 1Þ;

because the other terms in the effective potential (11)
decrease exponentially for large βþ. Convexity of the wall
means that the gradient vector of W, which is normal to
constant-W surfaces, has a decreasing angle with the βþ
axis as β− increases. A straightforward calculation deter-
mines this angle θ through

tan θ ¼
ffiffiffi
3

p sinhð4 ffiffiffi
3

p
β−Þ

coshð4 ffiffiffi
3

p
β−Þ − e−24s

2
−
:

Hence, the wall is convex while ∂ tan θ=∂β− < 0. For the
classical model (s− ¼ 0), this is always the case, which, as
mentioned, is an indicator of chaos. However, once the
quantum effects are taken into account, some parts of the
wall become concave. In particular, it turns into concave
behavior when

∂ tan θ
∂β−

¼ 12
1 − e−24s

2
− coshð4 ffiffiffi

3
p

β−Þ
ðcoshð4 ffiffiffi

3
p

β−Þ − e−24s
2
−Þ2 ¼ 0;

at which point we have

tan θ ¼
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−48s

2
−

p :

For large s−, this turnover point takes place at tan θ ¼ ffiffiffi
3

p
,

or θ ¼ 60°, that is, just about the middle of the wall.
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