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If the dark matter is composed of axions, then axion stars are expected to be abundant in the Universe.
We demonstrate in fully nonlinear (3þ 1) numerical relativity the instability of compact axion stars due to
the electromagnetic Chern-Simons term. We show that above the critical coupling constant gcritaγ ∝ M−1.35

s ,
compact axion stars of massMs are unstable. The instability is caused by parametric resonance between the
axion and the electromagnetic field. The existence of stable compact axion stars requires approximately
Planck-suppressed couplings to photons. If the coupling exceeds the critical value, then all stable axion
stars are necessarily noncompact. Unstable axion stars decay leaving behind a less massive, less compact,
remnant. The emitted radiation peaks at a frequency ω ∼ 1=Rs, where Rs is the axion star radius.
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I. INTRODUCTION

If darkmatter (DM) is composed of theQCDaxion [1–11]
or axionlike particles [12–17] (henceforth, axions), thenDM
halos are predicted to host an abundance of so-called
axion stars (see, e.g., Refs. [18–22] for initial formation
mechanism, and Ref. [23] for the abundance and merger
rates). Axion stars are self-gravitating, time periodic, finite
mass solutions of the Klein-Gordon-Einstein equations,
which fall under the class of solitonic objects known as
oscillatons [24,25].
A defining property of axions is that they are real

pseudoscalars, and necessarily couple to gauge fields via
the Chern-Simons term. In the case of electromagnetism,
this leads to a coupling between the axion and two photons
specified by a coupling constant gaγ with mass dimension
−1. In terms of classical fields, the axion couples to E⃗ · B⃗.
It is known that this coupling can lead to an instability of

the axion field [26–28]. In particular, within the context of
axion stars, this nonlinearity is destabilizing, as was
demonstrated in the weak field perturbative regime in
Refs. [29,30], and first suggested in Ref. [31]. In the
strong field regime, it was also recently shown that complex
scalar boson stars with a coupling to the Chern-Simons
term can also become unstable [32].

In this paper, we investigate for the first time, the stability
of compact, relativistic axion stars in the presence of a
weak propagating electromagnetic (EM) wave modeling a
bath of ambient photons. Objects for which the radius
approaches the Schwarszchild radius, R ¼ 2GM, are
known as compact objects where strong gravity effects
are of relevance. We therefore use the 3þ 1 numerical
relativity code GRCHOMBO [33–35] for our results, includ-
ing strong-field gravitational effects and backreactions.
Compact axion stars have Ms ∼m2

Pl=m, which is obtained
by setting the axion Compton wavelength to the
Schwarzschild radius. We use these units to measure axion
star mass in our simulations.
We find that, as long as (i) the EM wavelength is

approximately the size of the axion star and (ii) the
coupling exceeds a critical coupling gcritaγ ∝ M−1.35

s , where
Ms is the axion star mass for fixed axion mass m, the star
will experience an instability, losing mass via potentially
detectable EM emissions.
To be specific, we find the following:
(i) The instability is induced by parametric resonance,

with an instability band roughly with a bandwidth
Δω ∼ R−1

s , where Rs is the size of the axion star,
centered around ω ∼ R−1

s . EM energy is generated
exponentially.

(ii) The critical threshold for the coupling is

gcritaγ ≈
1.66 × 10−17

GeV

��
Ms

M⊙

��
m

10−11 eV

��
−1.35

;

where we have chosen to scale our results to m ¼
10−11 eV corresponding to OðM⊙Þ compact axion
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stars [36]. We emphasize this result is true for all
axion masses m by rescaling symmetry.

(iii) The timescale of the instability is a power law,

τ ∝ ðgaγ − gcritaγ Þ−0.87;

and independent of the initial EM seed amplitude.
(iv) The instability is largely insensitive to the initial

amplitude of the ambient EM field E0—since the
instability is exponential, the time to trigger it
depends on t0 ∼ ln E0 at best.

The presence of this instability forbids axion stars from
existing above the critical line gcritaγ ðMsÞ in the ðMs; gaγÞ
plane, as shown in Fig. 1. Our results imply that stable
compact axion stars can exist only if the axion-photon
coupling is approximately Planck suppressed. (This insta-
bility is in addition to that due to the self-interaction
potential [37–40]. Suppressed self-couplings relative to
EM couplings are required for the EM instability to
dominate; this does not occur for the QCD axion but
can in alternative models [41–43].)

II. THEORY

The electromagnetic field strength tensor and its dual are

Fμν ¼ ∂μAν − ∂νAμ; F̃μν ¼ 1

2
ffiffiffiffiffiffi−gp εμνρσFρσ; ð1Þ

with εμνρσ being the totally antisymmetric Levi-Civita
symbol with ε0123 ¼ þ1. We write the total action as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

16π
R −

1

2
∂μϕ∂

μϕ −
1

2
m2ϕ2

−
1

4
FμνFμν −

gaγ
4

ϕFμνF̃μν

�
; ð2Þ

where ϕ is the axion field, and R is the Ricci scalar. The last
term in this action is the Chern-Simons term, which acts as
a boundary term and hence, does not contribute to the
stress-tensor. The stress-energy tensor is derived from
Eq. (2) to find Einstein’s equations Gμν ¼ 8πm−2

Pl Tμν

(see, e.g., Ref. [44]).
The equations of motion in the matter sector are

∇μ∇μϕ −m2ϕ ¼ gaγ
4

FμνF̃μν; ð3Þ

∇μFμν ¼ −gaγJν; ð4Þ

where the current Jν is defined as Jν ¼ ∂μϕF̃μν. The
parametric resonance is driven by the EM sector Eq. (4),
as long as the photon frequency is within the resonance
band of the axion field. Since the axion oscillates
ω ∼m ∼ R−1

s , if the photon wavelength is OðRsÞ, reso-
nance will commence.
We solve the full system with numerical relativity using

GRCHOMBO [33–35] following the methodology in
Refs. [45–49]. For a summary, please see Appendix A.
We construct initial conditions for compact axion stars with
ADM [50] masses 0.41m2

Pl=m ≤ Ms ≤ 0.60m2
Pl=m, which

corresponds to

5.4M⊙

�
10−11 eV

m

�
≤ Ms ≤ 8.1M⊙

�
10−11 eV

m

�
; ð5Þ

following the method used in Refs. [24,36,37,40,51–53].
These masses are near the Kaup [54] limit for black hole
formation, above which all axion stars are unstable inde-
pendent of gaγ.
For the EM field initial conditions, we approximate the

initial spacetime as Minkowski, since we are interested
in the case where the EM field is subdominant to the
energy density of the axion star. This approximation
decouples the oscillaton and EM initial conditions from
each other, with minimal violations to the initial constraint
equations. We choose the components of our gauge
field, Aμ ¼ Cμeið−kμzþωμtÞ, to describe a single plane
wave polarized in the x direction, with wave vector

kðxÞμ ¼ ðωðxÞ; 0; 0;−kðxÞÞ such that ωðxÞ ¼ kðxÞ initially.
We identify A0 and Az with the gauge mode, and set
C0 ¼ Cz ¼ Cy ¼ 0 at the initial time. This ansatz satisfies
both the Lorenz gauge kμAμ ¼ 0, and the Bianchi iden-
tities, which set the dispersion relation for each wave
mode. Using these simplifications, the only nonzero
components of the electric and magnetic fields are

FIG. 1. The critical coupling (in black) along our simulation
data (in red), with triangular simulation points representing a
decaying star through scalar, electromagnetic, and gravitational
radiation (see diagram in top right corner). Our simulations cover
Ms ¼ 0.60; 0.53; 0.46; 0.41m2

Pl=m, and we have plotted the mass
ranges scaled to m ¼ 10−11 eV, which correspond to compact
axion stars of OðM⊙Þ. Note that our result is true for all axion
masses m, which simply rescales the x-axis units.
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Ex ¼ By ¼ −ωðxÞCx sin ðkðxÞzþ ωðxÞtÞ, where we have
used the real part of the gauge fields. We use kðxÞ ≡
2π=λ ∼ 0.10m, and the amplitude Cx ¼ 0.001mPl as our
initial conditions. Numerically solving the full nonlinear
equations to evolve our system implies that all classical
backreactions are included in our simulations. Periodic
boundary conditions were used throughout the simulations.
We show that the constraint equations are satisfied and
tested their convergence during evolution in Appendix B.

III. RESULTS

Slices through our simulation box for the Ms ¼
0.60m2

Pl=m, and gaγ ¼ 16m−1
Pl case illustrating the evolution

of the axion and EM energy density are shown in Fig. 2. An
incoming seed EM wave (not visible on the scale shown)
causes the axion star to emit a strong burst of EM radia-
tion at t ∼ 100m−1. At a later time, t ∼ 200m−1, the EM
radiation becomes less intense, and the axion star begins to
settle into a stable lower mass, less compact, and larger
configuration. As the star dilutes and increases in radius Rs,
its characteristic frequency drifts out of the instability band,
shutting down the parametric resonance process.
We next show in Fig. 3 (top panel) the time evolution of

the total energy in axions and EM radiation, which can be

obtained by integrating their respective energy densities
(see Appendix A). In order to describe the decay process,
we fit a tanh function for the amplification of the energy of
the EM field Eγ ,

EγðtÞ ¼ A

�
e2ðt−t0Þ=τ þ 1

e2ðt−t0Þ=τ − 1

�
þ B; ð6Þ

where the constants A and B depend on the simulation
box size.
The amplification in the EM energy sets two timescales:

the parameter t0 determines how fast the amplification
process begins after the start of the simulation, and τ can be
seen as a measure of the lifetime of the star in the decay
process. The dependence of t0 and τ on the axion-photon
coupling gaγ is demonstrated in Fig. 3 (bottom panel); they
follow a decaying power law, which has an asymptote at a
critical value of gaγ ≈ 12.1m−1

Pl based on our simulation
data. We find τ ∝ g−0.87aγ . We compare this result to the
parametric resonance instability timescale for a homo-
geneous cosmological axion field, which is proportional
to g−1aγ , although the instability is blocked by the expansion
of the Universe [8]. A gravitational potential well, provided
by the axion star itself, is required to allow for the

FIG. 2. Energy densities of the electromagnetic and scalar fields as a slice through the centre of the star for the Ms ¼ 0.60m2
Pl=m,

gaγ ¼ 16m−1
Pl case. The EM field (bottom panel), initially polarized in the x direction, is initially propagating from the right to the left. As

parametric resonance kicks in, the axion star undergoes rapid dilution and mass loss, with a corresponding burst in the EM energy which
is roughly isotropic (see t ¼ 175=m). The process stops when the axion star dilutes and expands to a size away from the characteristic
frequency of the EM spectra. A movie of our simulations for coupling gaγ ¼ 16m−1

Pl can be found in [55].
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instability to develop [31]. Our results indicate that the
decay scaling for relativistic highly inhomogeneous com-
pact axion stars is comparable but different from the
homogeneous case.
We verified the dependence of t0 and τ on the EM seed

amplitude. We find that τ is independent of the amplitude
for fixed photon-axion coupling gaγ. We note that A from
Eq. (6) is also constant, indicating that the EM field is
amplified by the same amount of energy, and hence, the
amplification has the same shape independent of the
amplitude of the EM seed E0. Furthermore, we confirm
that t0 has a logarithmic dependence on the initial
amplitude of the EM seed, t0 ∼ ln E0 [e.g., we find
t0 ≈ −31.3m−1 lnð1860ðmPlmÞ−1E0Þ þ 174m−1 for Ms ¼
0.60m2

Pl=m and gaγ ¼ 15m−1
Pl , with the constants being

parameter dependent], as the growth of the EM field is an
exponential process EðtÞ ∼ E0 expððt − t0Þ=τÞ.

Weak field calculations of nonrelativistic (and hence,
noncompact) axion star decay suggest a critical value for
the axion-photon coupling gcritaγ ¼ 7.66mPl=

ffiffiffiffiffiffi
8π

p
mMs, or

gcritaγ ∝ M−1
s [30]. While the power law is different, the

proximity of the coefficient suggests that decay dynamics
are broadly similar in both the weak and strong gravity
limits (in agreement with complex scalar boson stars [32]).
A possible explanation is that it is driven by matter
couplings, with gravity playing only a second order role
(see, e.g., Refs. [56,57]). We also compared the critical
mass given in Ref. [30] to the remnant axion star mass from
our simulations and find they were of the same order of
magnitude with our remnants having slightly lower mass.
In Fig. 4, we show the power spectra PðkÞ of the x, y, and

z components of the electric field at t ¼ 350m−1 for
gaγ ¼ 16m−1

Pl , after the decay process has happened, along
with the original seed (black dashed line), demonstrating
the frequency of the EM radiation emitted by the axion star
as it decays. We obtained the power spectrum by perform-
ing a fast Fourier transform on the spatial electric field and
then integrating the square of the transform in k space. We
note two salient points. First, around the incoming fre-
quency k ¼ 0.1m, the Ex power broadens, with a corre-
sponding smaller power in Ez and Ey power, but no large
amplification. Second, the primary power of the emission
lies around k ∼ 0.5m, equipartitioned between the x, y and
z components. This scale corresponds to the diameter 2Rs
of the axion star 2kRs ∼ 2π; k ∼ 0.6m, capturing the emis-
sion from parametric resonance. This equipartition of
energies arises from (i) the total momentum of the system
must remain small as the initial EM waves carry negligible

FIG. 3. Top: The total energy in the scalar (solid line) and
electromagnetic fields (dashed line) for several values of the
coupling gaγ for the Ms ¼ 0.60m2

Pl=m case. Total energy con-
servation (including gravitational energy) is checked by ensuring
the Hamiltonian constraint is not violated (see Appendix B).
Bottom: The values of the parameters t0 and τ from the hyperbolic
tangent fit Eq. (6) to the EM energy profile as a function of the
axion-photon coupling gaγ . The power law function fitted can be
seen in the legend. This gives a critical value for the coupling of
∼12.1m−1

Pl . The simulation errors found through higher resolution
runs were of order 0.1% for t0 and 1% for τ. The values for gcrit

and p were 12.1m−1
Pl and 0.83, respectively, for t0, and 12.2m−1

Pl
and 0.87 for τ.

FIG. 4. Power spectra of the electric field for gaγ ¼ 16m−1
Pl at

time t ¼ 350m−1, which is after the decay process has ended, for
the Ms ¼ 0.60m2

Pl=m. The excitation of the wave mode corre-
sponding to the inherent frequency scale of the axion star around
k ∼ 0.5m is clearly visible, where the energy is equipartitioned.
The black dashed line demonstrates the power spectrum of the
initial EM seed, polarized in the x direction.
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momenta, and (ii) the source current for the radiation is the
initially spherically symmetric axion star Jμ ∝ ∂μϕ. We
note that while we saw evidence of birefringence between
the x and y components before decay, postdecay this effect
is subdominant. We leave to future work a complete study
of the emission power and possibly circularly polarized
emission due to CP violation.

IV. CONCLUSIONS

We have demonstrated in fully nonlinear simulations that
axion stars are unstable above a critical line gcritaγ ∝ M−1.35

s in
the plane of mass and coupling constant, exploding into EM
radiation. Crucially, we have shown this decay process with
a log dependence on the amplitude of the plane wave,
suggesting that ambient radiation alone would be sufficient
to destabilize compact axion stars on Hubble timescales.
As an example, assuming the resonant band δω ∼m and
gaγ ¼ 15m−1

Pl , destabilization ofOðM⊙Þ compact axion stars
stimulated by the cosmic microwave background photons
will take approximately t0 ∼ 0.05 seconds, smaller than the
Hubble expansion time by many orders of magnitude.
If axion stars are unstable above a critical mass, one

might ask how such unstable stars might form in the first
place, and what the observable consequences are. In
hierarchical structure formation, the lightest axion stars
form first in low mass dark matter halos near the axion
Jeans scale [18]. These lightest axion stars will be stable
and can grow to criticality via (major) mergers. We have
shown in two related works to this one [23,58] how the
axion star formation and merger rate can be computed, and
how the resulting radio emission leads to a new channel for
indirect axion detection via heating of the intergalactic
medium. High compactness axion stars, like the ones
studied in this work, are required for their mergers to
produce observable gravitational waves [59], with axion
massesm ∼ 10−11 eV placing the high compactness stars in
the LIGO frequency band (hence, our reference mass
choices throughout this work). The required high compact-
ness seeds can be formed by direct collapse of primordial
perturbations [20] or under modified thermal histories [60].
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APPENDIX A: NUMERICAL METHODOLOGY

Our numerical implementation on GRCHOMBO [33–35]
evolves the gravity sector using the CCZ4 formalism
[61,62], together with the integrated moving puncture
gauge [63,64]. The decomposition of the matter sector is
based on [46] (see Appendix A in that paper in particular),
with an additional Chern-Simons coupling between the EM
and scalar sector,

LCS ¼ −
gaγ
4

ϕFμνF̃μν;

and no gauge coupling (i.e., e ¼ 0).
We use as diagnostic quantities the energy densities

in both the scalar ρϕ ¼ nμnνTϕ
μν and the EM field

ργ ¼ nμnνTγ
μν, which are obtained projecting their respec-

tive energy momentum tensor with the normal vector nμ to
the three-dimensional hypersurface. In terms of the fields,
these are expressed as

Tϕ
μν ¼ ∇μϕ∇νϕ −

gμν
2

ð∇σϕ∇σϕþm2ϕ2Þ; ðA1Þ

Tγ
μν ¼ FμαFα

ν −
1

4
gμνFαβFαβ: ðA2Þ

Note that the Chern-Simons term does not contribute to the
stress tensor as it is topological. The total energy in axions
and the EM field can then be calculated integrating the
energy densities over a volume V,

Efϕ;γg ¼
Z
V

ffiffiffi
γ

p
ρfϕ;γgdV: ðA3Þ

APPENDIX B: CONVERGENCE TESTING

We monitor the evolution of the average Hamiltonian
and momentum constraints in a sphere of radius 64m−1

centered around the axion star. For the initial conditions of
the (subdominant) EM field, we approximate the initial
spacetime as Minkowski, which introduces minimal vio-
lations to the constraints that are quickly damped via
CCZ4. In addition, we checked that the gauge field
constraint violation was negligible and under control
throughout the simulations.
We tested convergence for the gaγ ¼ 16m−1

Pl case com-
paring the evolution of the Hamiltonian and momentum
constraint violations for two resolutions in a simulation
with box size L ¼ 256m−1 and seven refinement levels.
For the low and high resolutions, we increased the number
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of coarse grid points from N3 ¼ 1283 to N3 ¼ 1923,
resulting in finest grid sizes of Δx ≈ 1.6 × 10−2m−1 and
Δx ≈ 10−2m−1, respectively.1 In Fig. 5, we show how the
errors in the Hamiltonian and momentum constraints were
reduced by a factor consistent with second order conver-
gence when the resolution was increased.
One might worry about the self-amplification of the EM

field due to the periodic boundary conditions. By doubling
the size of the simulation box, we tested that the evolution
of the EM field was not altered by the reflected energy
density until the resonance phase had finished (but can
spoil the second order convergence of the constraints as
shown in Fig. 5).
Additionally, we found that the postdecay electro-

magnetic energy density in Fig. 3 drops due to the fact
that the standard resolution used in our simulations cannot
track the highest frequency modes generated during the
resonant phase. The Kreiss-Oliger dissipation used in
GRCHOMBO to remove the noise introduced by regridding
also removes EM modes with wavelengths of the order of
the grid spacing. We checked that these higher modes
can be recovered by increasing the resolution of the
simulation, and estimated that the errors in the physical variables characterizing the amplification of the EM

field (see Fig. 3) are negligible—order 1% at most. For
the case of nondecaying stars, we evolved the system
until t ≈ 1500=m.
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