
Graviton-photon production with a massive spin-2 particle

Joshua A. Gill , Dipan Sengupta , and Anthony G. Williams
ARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics,

University of Adelaide, South Australia 5005, Australia

(Received 14 March 2023; accepted 9 August 2023; published 12 September 2023)

A recent paper [1] within a phenomenological dark matter framework with a massive graviton in the
external state argued that a divergence with increasing center-of-momentum energy arising from the
longitudinal polarizations of the graviton. In this paper we point out that in processes such as graviton-
photon production from matter annihilation, ff̄ → Gγ, no such anomalous divergences occur at tree level.
This then applies to other tree-level amplitudes related by crossing symmetry such as γf → Gf, Gf → γf,
γf̄ → Gf̄, f → fGγ and so on. We show this by explicitly computing the relevant tree-level diagrams,
where we find that delicate cancellations ensure that all anomalously growing terms are well-regulated.
Effectively at tree level this is consistent with the operation of a Ward identity associated with the external
photon for such amplitudes. The same tree-level results apply if the photon is replaced by a gluon. These
results have important consequences for model construction in areas including dark matter, gravity and
high-energy physics.
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In the last few years, there has been a renewed interest in
dark matter and phenomenological models with massive
spin-2 particles [1–6]. While some of these approaches are
simplified constructions of an underlying compact extra-
dimensional theory [7], others are effective field theories
with a single massive graviton [8]. In a number of these
approaches, it has been shown that there are enhancements
in matrix elements and cross sections due to the longitudinal
polarizations of the graviton, which grow like Oðs=M2

GÞ at
high energies, where

ffiffiffi
s

p
is the center-of-momentum energy

andMG themass of themassive spin-2 particle [1,2,8]. These
require a lower bound on the graviton massMG in order for
the theory to be effective at large s.1 This high-energy scaling
is expected in a naive Fierz-Pauli theory [11] or extensions
like bigravity/dRGT gravity [12–14].2 However, in Kaluza-
Klein (KK) theories with compact extra dimensions [17–19],
spin-2 KK mode scatterings are unitarized due to the

underlying higher-dimensional diffeomorphism invariance
[20–22].3 InKK theories, these results have been extended to
coupling with matter localized on the four-dimensional
brane [25].
In a recent letter [1], the authors claimed that in a simple

graviton-gluon production process, ff̄ → Gg, with a gluon
and a massive spin-2 particle in the external state, there is a
chiral symmetry breaking enhancement due to a massive on
shell external fermion. They concluded that the squared
matrix elements for the longitudinal polarizations grow
proportional to ½ðs=M2

PlÞðm4
f=M

4
GÞ� at high energies, imply-

ing an increase with increasing fermion mass mf and a very
strong enhancement with decreasing graviton mass,
MG → 0. This should be compared with a growth of the
form jMj2 ∝ Oðs=M2

PlÞ < 1 for a massless graviton theory
since theories involving gravitons are effective field theories
which are valid for s ≪ MPl. In Ref. [1] the resulting
enhancement was then used to estimate the relic density
in a freeze-in darkmatter model with a cosmologically stable
light KK graviton. This model then showed a dramatic
enhancement in the velocity-averaged cross section for
MG ≪ mf.
The result also implied that even in a compactified

extradimensional setup with massive KK modes in the
external state, this enhancement should persist even when
the full KK spectrum is taken into account, since there is no

1The MG → 0 limit is not smooth and leads to the famous
vanDam-Veltman-Zakharov discontinuity [9,10].

2At high energies the scattering amplitudes of massive grav-
itons (GG → GG) in the Fierz-Pauli theory grows as
s5=ðM8

GM
2
PlÞ, which can be estimated from power-counting

arguments [13–16]. It can be shown that in extensions like
dRGT gravity, this scaling can be improved to s3=ðM4

GM
2
PlÞ by

adding higher-order terms in the potential, but not beyond [12].
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3It can be shown through a rigorous calculation that these
cancellations persist even when the radial mode, the radion, gets a
mass via the Goldberger-Wise mechanism [23,24].
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cancellation mechanism, in contrast to expectations of
scaling of KK graviton scatterings respecting higher-
dimensional gauge/diffeomorphism invariance.
Such an enhancement would also have significant phe-

nomenological consequences for the production of KK
gravitons at high-energy colliders within extradimensional
models, which would predict anomalously growing cross
sections for fermion-initiated processes, in conflict with
previous estimates performed in the massless case [26].
Furthermore, such a scenariowould alsomean that evenwith
extremely feeble couplings, this process could be detectable
in direct detection experiments. Phenomenological calcula-
tionswith amassive spin-2 particle in the external state or as a
portal to a dark sector have been plagued with issues such as
low scale unitarity violation and infrared cutoffs induced
by a massive graviton or a massive spin-2 KK particle.
Such calculations range from relic density calculations
[1,2,4,27,28] to direct detection estimates [29]. It is important
to understand from fundamental principles whether these
calculations are consistent from a field theory perspective.
The results presented here provide a simple first check on all
such calculations and indeed our results have already proved
of use4

In this paper we explicitly calculate the graviton-photon
production process,5

ff̄ → Gγ; ð1Þ

where G represents a massive spin-2 particle, and γ the
massless on shell photon. We show that the full tree-level
squared amplitude at high energies grows as jMj2 ∝
Oðs=M2

PlÞ, and there are no terms proportional to
m4

f=M
4
G, implying no enhancements or divergences as

MG → 0 for finite fermion masses, contrary to the sugges-
tion in [1]. We demonstrate that although individual terms
in the s, t, u and contact interactions grow as Oð1=M2

GÞ,
due to the longitudinal polarizations of the massive
graviton, delicate cancellations at tree level ensure that
the full amplitude has no low-energy cutoff, for all
incoming helicities of the fermion and outgoing helicities
of the massless photon and the massive graviton. An
identical scaling of amplitudes at high energies is observed
if a gluon replaces the photon. The only difference is
replacing the electromagnetic coupling with the strong
coupling. In what follows, we detail the calculation and
present the full amplitude as a function of the center-of-
momentum energy

ffiffiffi
s

p
and scattering angle θ.

We use the ‘mostly minus’ metric convention for the flat
four-dimensional Minkowski spacetime background (4D)

ημν ≡ Diagðþ1;−1;−1;−1Þ, which is also used to raise
and lower indices. Metric fluctuations hμνðxÞ6 around the
flat Minkowski background is expressed as

ημν → ημν þ κhμνðxÞ≡ G̃μνðxÞ; ð2Þ

which define the spin-2 graviton in 4D. The dimensionful
coupling κ is related to the fundamental 4D Planck mass
as κ ¼ 2=MPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
. A theory of massive gravity,

dubbed as the Fierz-Pauli theory, can be expressed as

L ¼ M2
Pl

2

ffiffiffiffiffiffiffiffiffiffi
−jG̃j

q
RþM2

G

2
ðh2 − h2μνÞ: ð3Þ

Here jG̃j is the determinant of 4D metric with fluctuations
and h≡ ημνhμν. The first term represents the Einstein-
Hilbert piece, R being the Ricci scalar, while the second
represents the Fierz-Pauli mass term. In theories of compact
extra dimensions, the same mass terms for spin-2 KK
gravitons appear after compactification, along with the
massless graviton. For example, in Randall-Sundrum
models in warped extra dimensions, the masses of the
nth modes of the spin-2 KK gravitons are given by (in
the large curvature limit) mn ≃ xnke−πkrc , where xn are the
zeros of the Bessel function of the first kind, k is the
curvature and rc the radius of the compactification.
The couplings of the graviton to matter (scalars, fermions

or vectors) can be expressed by the following action:

SM ¼
Z

d4xLðG̃; s; v; fÞ; ð4Þ

which upon expanding to order κ in the metric fluctuation
yields,

SM ¼ −
κ

2

Z
d4x hμνTμνðs; v; fÞ: ð5Þ

The stress-energy tensor Tμν is given by

Tμν ¼
�
−ημνLþ 2

δL

δG̃μν

�����
G̃¼η

: ð6Þ

For fermions, the stress-energy tensor must be calculated
using the Vielbein formalism as performed in [17,26]. We
follow [17,26] for the conventions and Feynman rules. The
process of interest here is graviton-photon production via the
annihilation of a fermion and antifermion pair, as expressed
in Eq. (1). The four diagrams shown in Fig. 1, t-, u-,
s-channels and a contact term, respectively, are the only
tree-level interactions.

4Following our paper, Refs. [30,31] have appeared with appli-
cations in direct-detection experiments and forward-physics ex-
periments that confirm our results.

5Graviton photoproduction γf → Gf has been calculated
previously in [32] for massless gravitons.

6From here on we will drop the spacetime index x, and in
momentum space k unless explicitly specified.
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The vertex rules are derived in [17] and are listed in the
Appendix. The coupling between the fermion and the
photon is gfe, where e≡ jej is the magnitude of the charge
of the electron.
We define the following variable, which will appear in

the s-channel diagram with a gauge parameter ξ, as

Wμναβðk1; k2; ξÞ ¼ ð1=2Þημνðk1βk2α − k1 · k2ηαβÞ
þ ημαðk1 · k2ηνβ − k1βk2νÞ
þ ηαβk1μk2ν − ημβk1νk2α

− ð1=ξÞfðηνβk1μk1α þ ηναk2μk2βÞ
−ð1=2Þημνðk1αk1β þ k2αk2β þ k1αk2βÞg:

ð7Þ

The photon propagator is defined as

ΔμνðQÞ ¼ −
i
Q2

�
ημν þ ðξ − 1ÞQμQν

Q2

�
: ð8Þ

For simplicity, we work in Feynman gauge ξ ¼ 1. The
fermion propagator with momentum Q and mass mf

traveling in the direction of the fermion flow is given by

SFðQÞ ¼ ið=QþmfÞ
Q2 −m2

f

: ð9Þ

We define the Mandelstam variables such that

s ¼ ðp1 þ p2Þ2 ¼ ðk1 þ k2Þ2; ð10Þ

t ¼ ðp1 − k1Þ2 ¼ ðp2 − k2Þ2; ð11Þ

u ¼ ðp1 − k2Þ2 ¼ ðp2 − k1Þ2: ð12Þ

Choosing the ẑ direction as the center-of-momentum frame,
with an outgoing massless photon and a massive graviton
with massMG, we can express the four-momenta of various
particles as

pμ
1 ¼ ðEp1

; jpjẑÞ; p2
1 ¼ m2

f; ð13Þ

pμ
2 ¼ ðEp2

;−jpjẑÞ; p2
2 ¼ m2

f; ð14Þ

kμ1 ¼ Ek1ð1;−k̂Þ; k21 ¼ 0; ð15Þ

kμ2 ¼ ðEk2 ; kÞ; k22 ¼ M2
G: ð16Þ

The momentum (k) of the outgoing graviton and photon are
given in terms of the inclination and azimuthal angle
pairing ðθ;ϕÞ as k ¼ jkjðsθcϕ; sθsϕ; cθÞ, where cθ ≡
cos θ and sθ ≡ sin θ. The polarizations for the external
on shell photon are defined in the usual way,

εμ�1ðk1Þ ¼�e�iϕffiffiffi
2

p ð0;−cθcϕ� isϕ;−cθsϕ ∓ icϕ; sθÞ: ð17Þ

A helicity-λG massive graviton carries five polarizations
εμνλGðkÞ. These are grouped into two transverse, and three
longitudinal polarizations, which can be split into two
helicity-1 modes and one helicity-0 mode, defined respec-
tively as [20],

λG ¼ �2; εμν�2 ¼ εμ�1ε
ν
�1; ð18Þ

λG ¼ �1; εμν�1 ¼
1ffiffiffi
2

p
h
εμ�1ε

ν
0 þ εμ0ε

ν
�1

i
; ð19Þ

λG ¼ 0; εμν0 ¼ 1ffiffiffi
6

p
h
εμþ1ε

ν
−1 þ εμ−1ε

ν
þ1 þ 2εμ0ε

ν
0

i
; ð20Þ

where εμ�1 are the usual polarization vectors for the photon
defined in Eq. (17), while the helicity-0 polarization is
defined by

εμ0ðk2Þ ¼
Ek2

MG

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2
G

E2
k2

s
; k̂

!
: ð21Þ

The polarization vectors for momentum k2 are defined
using the same angle pairs ðθ;ϕÞ. Without loss of general-
ity, we have chosen ϕ ¼ 0 in the calculation.
Choosing the center-of-momentum frame for the incom-

ing particles with four-vectors p1 and p2, and outgoing
four-vectors k1 and k2, the outgoing energies Ek1 and Ek2
can be expressed in terms of the Mandelstam variable s and
the mass of the graviton MG as

Ek1 ¼
s −M2

G

2
ffiffiffi
s

p ; Ek2 ¼
sþM2

G

2
ffiffiffi
s

p : ð22Þ

For the Feynman diagrams depicted in Fig. 1, with an
incoming fermion fðp1Þ and antifermion f̄ðp2Þ scattering
to a photon with polarization ελðk1Þ and a massive graviton

FIG. 1. Feynman diagrams for the process fðp1Þ þ f̄ðp2Þ →
γðk1Þ þ Gðk2Þ.
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with polarization εμνλG , the matrix elements7 for the t, u, s and
the contact diagrams are respectively given by

Mt ¼ −
κgfe

8
v̄λ1ðp2Þ½γμPν þ γνPμ − 2ημνðP − 2mfÞ�

×

�
p1 − =k1 þmf

t −m2
f

�
=ε�λγ ðk1Þε

�μν
λG

ðk2Þuλ2ðp1Þ; ð23Þ

Mu ¼ −
κgfe

8
v̄λ1ðp2Þ=ε�λγ ðk1Þ

�
p1 − =k2 þmf

u −m2
f

�

× ½γμKν þ γνKμ − 2ημνð=K − 2mfÞ�ε�μνλG
ðk2Þuλ2ðp1Þ;

ð24Þ

Ms ¼
κgfe

2s
v̄λ1ðp2Þγα½WμναβðQ; k1; ξÞ

þWνμαβðQ; k1; ξÞ�ε�βλγ ðk1Þε
�μν
λG

ðk2Þuλ2ðp1Þ; ð25Þ

Mc ¼
κgfe

4
v̄λ1ðp2Þ½γμηνα þ γνημα − 2ημνγα�

× ε�αλγ ðk1Þε
�μν
λG

ðk2Þuλ2ðp1Þ: ð26Þ

Here, P≡ ðp1 − k1 − p2Þ ¼ ðk2 − 2p2Þ, Q≡ −ðp1 þ p2Þ
and K ≡ ðp1 þ k1 − p2Þ ¼ ð2p1 − k2Þ. The fermions have
spin states states λ1; λ2 ¼ ↑ or ↓, and the photon has
polarization states λγ ¼ �1. The graviton has polarization
states λG ¼ �2;�1 and 0.
We first note that there are 40 combinations of outgoing

helicities, with the corresponding incoming states of the
spinors, with 16 each in helicity-2 and helicity-1 modes
supplemented by 8 in helicity-0 modes. The helicity-2
modes correspond to polarizations of the massless graviton
and have no bad small-mass behavior. The helicity-0 mode
exhibits the worst growth with decreasing graviton mass
due to two factors of εμ0, where each factor grows as
Oð1=MGÞ. The total matrix element is the sum of s, t, u and
contact diagrams, which we, therefore, expand as a series in
the mass of the graviton MG to analyze if there are any
divergences in the massless limit MG → 0,

Mðs; θÞ ¼
X
σ ∈Z

Mσ
GMðθÞ: ð27Þ

The entire matrix element for these diagrams is nontrivial,
and thus Mathematica [33] was employed to compute the
matrix element for each polarization symbolically. We also
observe that several polarization combinations vanish simply
by helicity conservation and selection rules, as tabulated in
the Appendix.

Suppose that we choose some polarization state to inves-
tigate and interrogate the results from each Feynman diagram
to determine the origin of the divergence.
The leading divergent terms for the longitudinal polari-

zation mode ðu; v̄; γ; GÞ ¼ ð↑;↑;þ1; 0Þ, are demonstrated
in Table I for the s, t, u and contact diagrams. We notice
that while each of the s, t, u diagrams grow proportional to
(mf=M2

G), as expected from power counting arguments, the
sum vanishes identically, leading to regular behavior in the
limit as MG → 0.
Scanning through every possible combination of the

helicities, we find that the divergences in each channel
exactly cancel when all channels are summed.8

Therefore, the leading-order term in the limit asMG → 0
for all polarization combinations is a constant, including
the scalar, vector and longitudinal polarizations of the
graviton. Thus, no divergences persists once all diagrams
are summed and hence, σ ≥ 0 in Eq. (27).
Squaring the amplitude we find no divergences in the

limit as the graviton becomes massless MG → 0. The
leading order in the limit is a constant term with respect
to the graviton mass MG,

lim
MG→0

jMðs; θÞj2 ¼ OðM0
GÞ: ð28Þ

Considering now the high-energy limit with a finite
graviton mass MG, the leading high-energy contribution to
the matrix element for the helicity-0 modes is proportional
to the fermion mass and is given by,9

lim
s→∞

X
λG¼0

jMðs; θÞj ¼ 2κgfeffiffiffi
3

p mf csc θ þOðs−1Þ: ð29Þ

The series expansion in the high-energy limit
ffiffiffi
s

p
→ ∞ is

a physically interesting one. For example, we observe no

TABLE I. The cancellations for a helicity-0 external graviton
are presented. Note that Mt;u;s;c represent the matrix element
contributions for the diagrams depicted in Fig. 1.

Helicity-0 external graviton: ðu; v̄; γ; GÞ ¼ ð↑;↑;þ1; 0Þ
Coefficient: sðκgfe=4

ffiffiffi
3

p Þðmf=M2
GÞ sin θ

Mt 1þ cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

Mu 1 − cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

Ms −2
Mc 0P

M 0

7The matrix elements of above disagree with [1] in the
u-channel only of Eq. (24). This can be a potential cause of
the differing results.

8It is reasonable to question if the cancellations occur when the
amplitude is squared since mixing terms between diagrams
become relevant. We have checked that this holds by virtue of
L’Hôpital’s rule.

9Similar cancellations occur for helicity-1 modes and is
documented in the Appendix.
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anomalous behavior in the high-energy limit for the
unpolarized process,10

lim
s→∞

X
all spins

jMðs; θÞj2

¼ ðκgfeÞ2
24

f6s½3þ cosð2θÞ�
þ ½27M2

G − 14m2
f − 6½M2

G þ 12m2
f� cosð2θÞ

þ 3½M2
G þ 2m2

f� cosð4θÞ�csc2θ þOðs−1Þg: ð30Þ

We next attempt to understand if there are underlying
symmetry arguments that enforce the cancellation in terms
proportional to powers of 1=MG. Pathologies in massive
gravity theories come primarily from massive internal
graviton propagators [12]. Since we do not have them at
tree-level for the process of interest, it is interesting to
contemplate whether some QED-like Ward identity might
effectively survive in this situation. The inclusion of an
external graviton source in QED does not alter the global
Uð1Þ symmetry and so a conserved current will result. It
seems reasonable to anticipate that an effective QED Ward
identity might emerge in a careful treatment.11 We have
directly verified for our amplitudes that we do have an
effective QED Ward identity operating since we find

kα1Mα ¼ 0; ð31Þ

where the quantities Mα and Mμν are defined such
that M≡Mμναε

αðk1Þεμνðk2Þ¼Mαε
αðk1Þ¼Mμνε

μνðk2Þ.
Furthermore we also anticipate that as long as the
energy-momentum tensor Tμν is conserved, an analogous
identity should hold on the gravitational side, which we
verify explicitly,

kμ2k
ν
2Mμν ¼ 0: ð32Þ

This ensures that all contributions that grow as powers of
1=MG in individual diagrams cancel out for any given
process.
While we have only explicitly calculated for the case of

ff̄ → Gγ the above results will also apply to other tree-
level amplitudes related by crossing symmetry such as
γf → Gf, Gf → γf, γf̄ → Gf̄, f → fGγ and so on.
The above results will also hold when a gluon replaces

the photon in the external leg. For example, we note that
this breaks down when considering two massive graviton
emissions, i.e., a process like ff̄ → GG, due to the
presence of an s-channel diagram with a massive graviton
in the internal propagator. In this case, there is no

mechanism by which this cancellation can take place for
a theory of massive gravity [35].
Therefore, we have demonstrated no enhancements in

the limit as MG → 0 in the matrix elements of massive
graviton-photon scattering with initial fermion states,
regardless of whether the fermion is massive or not,
contrary to claims in [1]. Hence, the dark matter scenario
for which the authors claim large enhancements in the
velocity-averaged cross section appears inconsistent with
our calculation. Finally, we note that our calculation goes
beyond correcting Ref. [1]. It illustrates the importance of
exploiting the deep theoretical field theoretic structures of
massive gravity and extra dimensions as a check on
calculations that are often very complex and difficult.
Our demonstration of an effective Ward identity at tree
level is one very important example. Our calculations have
significant phenomenological implications in the calcula-
tion of KK graviton production at the LHC, direct detection
of KK graviton dark matter, as well as relic density
calculation in spin-2 dark matter models.
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APPENDIX: SUPPLEMENTARY MATERIAL

1. Feynman rules

The Feynman rules for the various vertices are demon-
strated below and agree with [17]. In these diagrams
momentum flows left to right:

ðA1Þ

10In [26], the cross section for ff̄ → γGKKm
in the mf → 0

limit is provided, showing no enhancements proportional to
1=M2

KK . We agree with this result.
11For a derivation of Ward identity, see for example [34].
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ðA2Þ

ðA3Þ

ðA4Þ

2. Cancellations in the helicity-1 modes

A limit-taking process is performed in Mathematica on
each channel resulting from the different Feynman diagrams,
and we find a definite divergence in the limit asMG → 0 for
individual diagrams. The leading divergent terms for the
polarization mode ðu; v̄; γ; GÞ ¼ ð↑;↑;þ1;þ1Þ are pro-
vided in Table II.

We show that cancellations in the matrix element in the
helicity-1 mode are identical to that of the helicity-0 mode.
As before, the divergent pieces in the t and u channels are
exactly cancelled by the divergent pieces in the s-channel
and contact term, such that the limit as MG → 0 is regular.
As we scan through all polarization combinations, we find
that the same pattern follows for each polarization state for
the vector modes of the graviton.

3. Table of components for polarizations

A series of tables containing the leading divergence
piece of each polarization combination for the individual
diagrams are shown below. For a box in the tables below
containing the number j, we mean that the leading-order
term as MG → 0 for the matrix element of graviton
polarization λG and photon polarization γ is proportional
to ðMGÞj. The choice of fermion spins were inconsequen-
tial to the result, and so the number represents the leading
divergent piece for all choices of fermion spins.
In Table III, we highlight that each polarization combi-

nation grows as expected by power counting. In Tables IV
and V, we find that some polarization combinations vanish
identically. We expect the t- and u-channel divergences to
cancel directly in these instances. Interestingly, the contact
term is regular in the longitudinal mode but not the vector
mode. The divergent contribution here is proportional to
ε0ðk2Þ · ελγ ðk1Þ ¼ 0, which evaluates to zero as they are
orthogonal in the center-of-momentum frame.

TABLE II. The cancellations for a helicity-1 external graviton
are presented. Note that Mt;u;s;c represent the matrix element
contributions for the diagrams depicted in Fig. 1.

Vector polarization: ðu; v̄; γ; GÞ ¼ ð↑;↑;þ1;þ1Þ
Coefficients of ðκgfe=2Þ

ffiffiffiffiffiffiffi
s=2

p ðmf=MGÞ
Mt sin2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

þ ð1 − cos θÞ=2
Mu −sin2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

f=s
q

− ð1þ cos θÞ=2
Ms 2 cos θ
Mc − cos θP

M 0

TABLE III. t-Channel and u-channel divergence breakdown.

Mt;u ∼OðMGÞ
λG

−2 −1 0 þ1 þ2
γ þ1 0 −1 −2 −1 0

−1 0 −1 −2 −1 0

TABLE IV. s-channel divergence breakdown.

Ms ∼OðMGÞ
λG

−2 −1 0 þ1 þ2
γ þ1 0 0 −2 −1 0

−1 0 −1 −2 0 0

TABLE V. Contact term divergence breakdown.

Mc ∼OðMGÞ
λG

−2 −1 0 þ1 þ2
γ þ1 0 0 0 −1 0

−1 0 −1 0 0 0
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