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We prove several universal properties of charge transport in generic conformal field theories holographic
to nonminimal extensions of four-dimensional Einstein-Maxwell theory with exact electromagnetic duality
invariance. First, we explicitly verify that the conductivity of these theories at zero momentum is a universal
frequency-independent constant. Then, we derive the analytical expressions for the conductivities at
nonzero momentum in any holographic duality-invariant theory for large frequencies and in the limit of
small frequencies and momenta. Next, in the absence of terms that couple covariant derivatives of the
curvature to gauge field strengths, two universal features are proven. On the one hand, it is shown that for a
general-relativity neutral black-hole background the conductivities at any frequency and momentum are
independent of the choice of duality-invariant theory, thus coinciding with those in the Einstein-Maxwell
case. On the other hand, if higher-curvature terms affect the gravitational background, the conductivities get
modified, but the contributions from nonminimal couplings of the gauge field to gravity are subleading.
We illustrate this feature with an example.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3] has become a
powerful and fruitful tool for the study of strongly coupled
systems in the vicinity of quantum critical points, leading to
the development of the so-called AdS/condensed matter
(AdS=CMT) duality [4–9]. Among other aspects, it has
been possible to identify a variety of holographic models
which exhibit properties characteristic of condensed-matter
systems, such as superfluidity, superconductivity or (quan-
tum) Hall conductivity [10–15]. Further scrutiny of such
interesting features have turned AdS=CMT into a highly
active topic of research—see e.g. [16–22].
On the other hand, the potential of higher-order theories

of gravity to unveil generic aspects of conformal field
theories (CFTs) has become evident in recent years. Apart
from being able to capture finite N and finite coupling
effects within the canonical holographic correspondence
between type IIB string theory and N ¼ 4 super-Yang-
Mills theory [23–25], higher-order gravities make it

possible to explore holographic CFTs whose correlators
take the most generic form allowed by conformal sym-
metry [26–30] or to identify new universal relations that
hold for arbitrary CFTs [31–39]. These features have
motivated the study of (charge) transport properties of
holographic duals of higher-order gravities, observing
novel and intriguing phenomena in the shear viscosity to
entropy density ratio [40–42], holographic superconduc-
tivity [43–45] and (electrical) conductivities [46–50].
In this work we explore various aspects of charge trans-

port in CFTs holographic to duality-invariant theories of
electrodynamics with nonminimal couplings to gravity.
Duality invariance is a symmetry of the equations of motion
of Einstein-Maxwell theory in vacuum, so it is justified to
consider higher-order modifications that respect this sym-
metry. Explicit examples of duality-invariant theories are
known to exist bothwithminimal couplings (see e.g. [51] for
a review) andwith nonminimal couplings to gravity [52,53].
In particular, we study CFTs holographic to duality-

invariant theories whose equilibrium state is characterized
by vanishing expectation values of all global charges (i.e.
systems without chemical potentials). We begin by explic-
itly checking that the conductivity at zero momentum is a
frequency-independent universal constant. Then we are
able to derive the explicit expressions for the conductivities
in any holographic duality-invariant theory in the regimes
of large frequencies and for sufficiently small frequencies
and momenta. The latter depend on both the gravitational

*angel.murcia@pd.infn.it
†dmitri.sorokin@pd.infn.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, L041901 (2023)
Letter

2470-0010=2023=108(4)=L041901(7) L041901-1 Published by the American Physical Society

https://orcid.org/0000-0001-9562-8973
https://orcid.org/0000-0002-8375-630X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L041901&domain=pdf&date_stamp=2023-08-10
https://doi.org/10.1103/PhysRevD.108.L041901
https://doi.org/10.1103/PhysRevD.108.L041901
https://doi.org/10.1103/PhysRevD.108.L041901
https://doi.org/10.1103/PhysRevD.108.L041901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


background selected and the duality-invariant theory under
study, so that conductivities at nonzero momentum will
generically differ with respect to their Einstein-Maxwell
values.
Nonetheless, when dealing with CFTs holographic to

duality-invariant theories which do not couple covariant
derivatives of the curvature to gauge field strengths, it turns
out that conductivities do possess two remarkable universal
features. First, whenever a general-relativity black hole
background is considered, the conductivities for any fre-
quency andmomentum are the same for all such holographic
theories. Second, if the black hole background ismodified by
higher-curvature terms, the conductivities get corrected, but
the contributions coming from nonminimal couplings
between the curvature and the gauge field are subleading.
We corroborate this feature with an explicit example.

II. DUALITY-INVARIANT BULK SETUP

Let us consider generic nonminimal extensions of
Einstein-Maxwell theory in four dimensions described
by the following action:

I ¼ κN

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 6

L2
− χμνρσFμνFρσ þ Lhigh

grav

�
; ð1Þ

where χμνρσ depends solely on the metric and the curvature,
κN ¼ ð16πGÞ−1 and

Lhigh
grav ¼ L2

X
i

αð2Þi Rð2Þ
i þ L4

X
i

αð3Þi Rð3Þ
i þ � � � ; ð2Þ

whereRðnÞ
i stands for curvature invariants of nth order—the

index i denoting every such inequivalent term—L is the

cosmological-constant length scale and αðnÞi are dimension-
less couplings characterizing the theory. Equation (1) may
also be interpreted as a generic effective action [54] obtained
by adding to Einstein-Maxwell theory all possible terms
quadratic in Fμν which are compatible with diffeomorphism
and gauge invariance. The reason why it suffices for our
purposes towork atOðF2Þwill become apparent afterwards.
Let T μν be a traceless and symmetric tensor constructed

from contractions of the curvature tensor and its covariant
derivatives, and let bn be the coefficients appearing in the
Taylor series

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
¼ 1þP∞

n¼1 bnx
2n. If we take the

tensor χμνρσ in (1) to be [55]

χμν
ρσ ¼ δ½μ½ρδν�σ� þ Θμν

ρσ þ
X∞
n¼1

bnΘ2n
μν

ρσ;

Θ2n
μν

ρσ ¼ Θμν
α1α2Θα1α2

α3α4 � � �Θα4n−3α4n−2
ρσ;

Θμν
ρσ ¼ T ½μ½ρδν�σ�; ð3Þ

then the action (1) describes themost general exactly duality-
invariant theory of electrodynamics with nonminimal cou-
plings to gravity and having at most quadratic terms in the

Maxwell field strength [53]. More concretely, this means
that the set of equations formed by the equations of motion
of (1) and by the Bianchi identity for Fμν is invariant under
rigid U(1) rotations of the complex tensor F0

μν þ iH0
μν ¼

eiαðFμν þ iHμνÞ, where

⋆Hμν ¼
1

2

δI
δFμν ¼ −χμνρσFρσ: ð4Þ

In the case ofMaxwell theoryminimally coupled to a higher-
curvature gravity, χμνρσ ¼ δ½μ½ρδν�σ� andHμν is just theHodge
dual of Fμν.
With the goal of studying thermal CFTs in flat

Minkowski space, we consider gravitational backgrounds
of (1) (i.e. we take Fμν ¼ 0) which correspond to AdS
black holes with a planar horizon—usually called (AdS)
black branes in the literature:

ds2 ¼ r20
L̃2u2

ð−N2ðuÞfðuÞdt2 þ dx2 þ dy2Þ

þ L̃2

u2fðuÞ du
2; ð5Þ

where r0 is a constant of dimension of length, L̃ denotes the
AdS length scale, generically differing from the cosmo-
logical-constant scale L because of the higher-order cor-
rections [27,56,57], and

N ¼ 1þ Ñ; f ¼ 1 − u3 þ f̃; ð6Þ
where Ñ and f̃ are u-dependent functions encoding the
higher-order corrections with respect to the General-
Relativity (GR) solution (Ñ ¼ f̃ ¼ 0) such that limu→0f̃ ¼
limu→0Ñ ¼ 0. In this coordinate system the AdS boundary
is located at u ¼ 0, while the horizon (which we assume to
exist) is at u ¼ uh. The black hole temperature is

T ¼ −
r0f0ðuhÞ
4πL̃2

: ð7Þ

III. RETARDED CORRELATORS FROM THE
AdS=CFT CORRESPONDENCE

We are interested in computing the retarded two-point
current correlator Cab of CFTs at finite temperature which
are holographically dual to exactly duality-invariant theo-
ries quadratic in Fμν.
In a generic three-dimensional QFT with a current Ja

(a ¼ t, x, y), the retarded current-current correlator in
momentum space pa ¼ ðω;kÞ is given by

CabðpÞ ¼ −i
Z

d3xe−ipaxaΘHðtÞh½JaðxÞ; Jbð0Þ�i; ð8Þ

where xa ¼ ðt; x; yÞ are boundary coordinates and ΘHðtÞ is
the Heaviside step function.
Specifically, we will assume that the expectation values

of all global conserved charges vanish in the equilibrium
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state, which is equivalent to exploring systems with no
chemical potential [46,58]. In such a case, the correlator
Cab can be derived holographically via studying linear
perturbations Aμ which solve the classical equations of
motion around a neutral black brane background (5). To
this aim, we impose the gauge Au ¼ 0 and decompose the
remaining nonvanishing components in momentum space:

Aaðt; u;xÞ ¼
Z

d3p
ð2πÞ3 e

−iωtþik·xAaðu;ω;kÞ: ð9Þ

Working in momentum space and taking the spatial
momentum vector to be k ¼ ðk; 0Þ, the equations of motion
for Aa in a duality-invariant theory given by Eqs. (1) and (3)
can be expressed in the following compact form [59]:

SA00 − S0A0 þ L̃4

r20
S2

�
ω2S −

k2

B

�
A ¼ 0; ð10Þ

ωSBA0
t þ kA0

x ¼ 0; ð11Þ
where prime denotes derivative with respect to u, A ¼
ðBA0

t; AyÞ and where B and S are identified after evaluation
of T μν on the black brane background (5) as follows:

T μ
νjN;f ¼ 2ðθ þ φÞδμtδtν þ 2ðθ − φÞδμuδuν − θδμ

ν; ð12Þ

θ ¼ N2B2 − 1

2NB
; φ ¼ f2N2S2 − 1

2fNS
; ð13Þ

wherewe used that (12) represents the most general form for
a symmetric and traceless tensor built from the curvature of
(5) and its covariant derivatives (see the Supplemental
Material [60]). The reason for the equations of motion of
Aμ to take such a compact form is due to duality
invariance [58].
Now, applying the holographic prescriptions originally

presented in [61,62], it is explained in the Supplemental
Material [60] that Cab can be obtained as follows:

Cab ¼ −
4r0κN
L̃2

M0
ab

���
u¼0

; ð14Þ

where Mab is defined by [63] the relation Aa ¼ Ma
bAbð0Þ,

with Abð0Þ ¼ Abju¼0. We impose infalling boundary con-
ditions at the horizon for all components of Aa. This
implies, on account of Eqs. (10) and (11), that both BA0

t and
A0
x=S are proportional to Ay. Then, transforming these

equations into an explicit second-order differential system
for Aa (see Ref. [59]) and adapting the computations
presented in [58], one may identify M0

abju¼0 and obtain
the nonvanishing components of Cab from (14):

Ctt

k2
¼ Cxx

ω2
¼ −

Ctx

kω
¼ −

Cxt

kω
¼ 4L̃2κN

r0

Ayð0Þ
A0
yð0Þ

; ð15Þ

Cyy ¼ −
4r0κN
L̃2

A0
yð0Þ

Ayð0Þ
: ð16Þ

Having at our disposal the correlatorCab, one may compute
the so-called longitudinal and transverse self-energies
KLðω;kÞ and KTðω;kÞ, defined as [58]

Cxx ¼ −
ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ω2
p KL; Cyy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ω2

p
KT: ð17Þ

Comparing (15) with (16), we find that the product of KL

and KT is the following universal constant for all frequen-
cies and momenta:

KLðω;kÞKTðω;kÞ ¼ 16κ2N: ð18Þ
The above relation holds for all CFTs holographic to
duality-invariant theories, since its derivation just requires
to know their form up to quadratic order in the vector field,
captured by the theories defined by Eqs. (1) and (3). It
matches [64] with the result obtained in [46] in the
particular case of a background (5) with N ¼ 1 after
requiring duality invariance.

IV. CONDUCTIVITY OF HOLOGRAPHIC
DUALITY-INVARIANT THEORIES

Following the usual holographic prescriptions, a gauge
vector field on the bulk couples to a current on the
boundary CFT. We are interested in studying the sub-
sequent longitudinal and transverse conductivities σx and
σy for the holographic theories defined by Eqs. (1) and (3).
According to the Kubo formula [65], they are given by

σjðω; kÞ ¼ −Im
�
Cjj

ω

�
; j ¼ x; y: ð19Þ

Particularly simple is the computation of the conductivities
at zero momentum k ¼ 0. In this case, spatial rotational
invariance ensures that KLðω;0Þ¼KTðω;0Þ and σxðω; 0Þ ¼
σyðω; 0Þ. Using (18) and the expression for Cyy given in
(16), one obtains [66]

σxðω; 0Þ ¼ σyðω; 0Þ ¼ 4κN: ð20Þ
Therefore, the conductivity at zero momentum in any CFT
holographic to a duality-invariant theory is a universal
constant, independent of the frequency. Evidently, this is a
consequence of the universal relation (18), as remarked
in [46,58]. If duality symmetry is absent, Eq. (20) may not
necessarily hold—see Ref. [46].
For nonzero momentum k, the longitudinal and trans-

verse conductivities σx and σy are no longer the same and
possess an explicit frequency dependence, as already
observed in Einstein-Maxwell theory [58]. Although an
exact analytical expression for the conductivities at any
frequency and momentum in an arbitrary duality-invariant
theory seems currently out of reach (it remains elusive even
in the Einstein-Maxwell case), it is in fact possible to obtain
explicit results in certain limits. For large frequencies,
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straightforward application of the WKB approximation
shows that

σxðω; kÞ ¼ 4κN
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − k2
p ; ω2 ≫ k2; ð21Þ

σyðω; kÞ ¼ 4κN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p

ω
; ω2 ≫ k2: ð22Þ

Therefore, the behavior of conductivities for large frequen-
cies is theory independent. Besides, we note that they tend
to the universal value (20) as ω → ∞. On the other hand, in
the limit of sufficiently small frequencies and momenta
ω; k ≪ r0=L̃2, one may generalize the results in [62] for the
retarded correlators to obtain

σxðω; kÞ ¼
4κNω

2

ω2 þD2k4
; ω; k ≪

r0
L̃2

ð23Þ

σyðω; kÞ ¼
4κN

1þ ck2
; ω; k ≪

r0
L̃2

; ð24Þ

where we have implicitly defined

D¼ L̃2

r0

Z
uh

0

dz
BðzÞ ; c¼2L̃4

r20

Z
uh

0

dzSðzÞ
Z

uh

z

dw
BðwÞ : ð25Þ

These expressions show that the conductivities for nonzero
momenta will generically depend on both the gravitational
background and the particular choice of duality-invariant
theory (since this is the case for small frequencies and
momenta). Also, a closer look at Eqs. (21) and (23) reveals
that the longitudinal conductivity undergoes a hydrody-
namic-to-collisionless crossover [67] as we go from small
to large frequencies. This is signaled by the fact that
Eq. (23) possesses a pole at ω ¼ −iDk2 (which is precisely
the dispersion relation of diffusion modes in the heat
equation), while (21) presents a pole at ω ¼ k (which is
the dispersion relation for free particles). Moreover, as a
consistency check of our results, we have verified that the
expression for the diffusion constant that can be derived
from the membrane paradigm [41,68,69] coincides with
our formula (25) for D.
Away from the small/large frequency regimes, it appears

to be challenging to obtain specific formulas for the
conductivities. Despite that, a universal statement regarding
their form in generic duality-invariant theories can be made
by noticing that every traceless and symmetric tensor T μν

built from algebraic combinations (i.e. with no covariant
derivatives) of the curvature of (5) vanishes identically
when evaluated on the GR AdS black brane solution:

T μνjN¼1;f¼1−u3 ¼ 0: ð26Þ
The explicit proof of this result is given in the Supplemental
Material [60]. Therefore, the retarded correlators Cab and
the conductivities σxðω; kÞ and σyðω; kÞ will coincide with

those of Einstein-Maxwell theory for any duality-invariant
theory with no covariant derivatives of the curvature in T μν

as long as the GR AdS black brane background is
considered. It is important to note that taking the back-
ground to be that of GR does not imply that Lhigh

grav ¼ 0 in
(1). Indeed, there exist myriads of higher-order gravities
which do not correct the GR AdS black brane solution [e.g.
the well-known fðRÞ gravities [70,71] ]. Therefore, one
may interpret duality invariance as a very powerful tool to
constrain observables to have a simple and fixed expres-
sion: that of Einstein-Maxwell theory.
If higher-curvature terms correct the GR solution, the

retarded correlator, and hence the associated conductivities,
will generically differ from [72] those of Einstein-Maxwell
theory. In such a case, the subsequent charge transport will
no longer be independent of the choice of duality-invariant
theory. However, in spite of this lack of universality, if T μν

contains no covariant derivatives of the curvature it turns
out that duality invariance forces corrections with respect to
the case T μν ¼ 0 to be highly suppressed, since Eq. (26)
implies that T μνjN;f is subleading with respect to the
leading-order corrections in the gravitational background.
Therefore, corrections associated to the specific choice of
T μν (without covariant derivatives of the curvature) are
subleading with respect to those arising from the choice of
the gravitational background (or equivalently, of Lhigh

grav). In
particular, this means that the corrections to the conduc-
tivities with respect to Maxwell theory on top of a
gravitational background modified by higher-curvature
terms are extremely small.

V. HOLOGRAPHIC CONDUCTIVITIES
IN AN EXPLICIT EXAMPLE

Now we illustrate the previous aspects with the simplest
nontrivial choices for T μν and Lhigh

grav. Regarding T μν, this
corresponds to

T μν ¼ λL2R̂μν; ð27Þ
where R̂μν denotes the traceless part of the Ricci tensor and
λ is a dimensionless coupling. Demanding T μν to respect
the weak gravity conjecture [73] and causality [46], we find
that the acceptable range for λ is 0 ≥ λ≳ −0.50105 (see the
Supplemental Material [60]) for the specific choice of Lhigh

grav

we are about to make.
To pick a suitable Lhigh

grav one needs to consider gravita-
tional theories which contain at least terms of cubic order in
the curvature, since quadratic terms do not correct the (four-
dimensional) GR AdS black brane solution. Among this
class of theories, there is a unique subset admitting black
brane solutions (5) with NðuÞ ¼ 1 and second-order
equation for f. All such theories are equivalent on
Ansätze of the form (5), so it is enough to select a
convenient representative. We will choose it to be
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Einsteinian cubic gravity (ECG) [56,74], whose higher
order terms have the following form:

−8Lhigh
grav ¼ μL4½12Rμ

ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ 8RμνRνρRρ

μ

þRμν
ρσRρσ

γδRγδ
μν − 12RμνρσRμρRνσ�; ð28Þ

where μ is a dimensionless coupling. The equation of
motion for fðuÞ, though second order, is too complicated to
be solved analytically for generic μ, so we will resort to
numeric methods (details are given in the Supplemental
Material [60]). We will pick μ to be within the range
0 < μ < 4=27, since this ensures the existence of both a
unique stable vacuum and black hole solutions [29].
In Fig. 1 we present the longitudinal and transverse

conductivities we get for Einstein-Maxwell theory and for
the choices (27) and (28). We have set μ¼1=10, L2k=r0¼1
and λ ¼ 0;−1=2;−1=4, since the qualitative behavior of
the conductivities turns out to replicate for any 0 < μ <
4=27 (approaching of course the Einstein-Maxwell case as
μ → 0) and k [approaching the constant universal value

(20) as k → 0]. By direct inspection of the graphs we check
that corrections associated to the specific choice of λ—i.e.
of T μν—are clearly subleading with respect to those arising
from the choice of the gravitational background (charac-
terized, in this case, by the parameter μ).

VI. FINAL COMMENTS

We have examined various universal aspects of the
holographic quantum critical transport associated to dual-
ity-invariant theories. In the first place, we have explicitly
checked that the conductivity at zero momentum is a
universal constant for all these theories. Next we have
obtained the expressions for the conductivities in the limit
of large frequencies and for small frequencies and momenta
in every CFT holographic to a duality-invariant theory.
From their form in this latter regime, we have concluded
that conductivities at nonzero momentum generically
depend on both the gravitational background and the theory
under study.
Despite that, we have proven that the conductivities in

CFTs associated to duality-invariant theories which do
not couple covariant derivatives of the curvature to gauge
field strengths display two universal features. First, we
have shown that, as long as a GR background is chosen,
conductivities are universal and equal to those of Einstein-
Maxwell theory for any frequency and momentum. Second,
when the gravitational background is corrected by higher-
curvature terms, we have proven that conductivities get
modified in such a way that contributions from nonminimal
couplings of the gauge field to gravity are subleading.
In another vein, there are several directions that would be

interesting to address. First, one could study other corre-
lators of CFTs holographic to duality-invariant theories.
For instance, consider the Euclidean correlators hJaJbiE
and hTabJcJdiE at zero temperature, where Tab is the
stress-energy tensor. Conformal symmetry fixes the form of
such correlators as follows [75,76]:

hJaðx1ÞJbðx2ÞiE ¼ CJ

jx12j4
Iab; ð29Þ

hTabðx1ÞJcðx2ÞJdðx3ÞiE ¼ fabcdðCJ; a2Þ
jx12j3jx13j3jx23j

; ð30Þ

where Iab and fabcdðCJ; a2Þ are fixed tensorial structures,
xmn ¼ xm − xn, CJ is the current central charge and a2 is a
parameter that controls, together with CJ, the energy flux
measured at infinity after the insertion of a current
operator [77]. The holographic expressions for CJ and
a2 for the most general effective four-derivative theory were
presented in [30,77]. Applying their results to the choice
(27) and Lhigh

grav ¼ 0, one finds a2 ¼ 0 and that CJ takes its
Einstein-Maxwell value, so the Euclidean correlators at zero
temperature are not modified to the fourth-derivative order.

FIG. 1. Longitudinal (above) and transverse (below) conduc-
tivities in units of L2=r0 ¼ 1 for Einstein-Maxwell (E-M) theory
and for an Einsteinian cubic gravity (ECG) background. We have
picked μ ¼ 1=10, k ¼ 1 and several values of λ.
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This is another manifestation of the strength of duality
invariance to constrain the form of correlators to be those
of Einstein-Maxwell.
Second, it would be intriguing to extend our results to

systems with chemical potentials (i.e. with nonvanishing
expectation values of global conserved charges in the
equilibrium state). This is carried out by considering linear
fluctuations of the vector field on top of a fixed charged
gravitational background with a nonzero background
electromagnetic field, as in [78–84].
Finally, one could also examine higher-point correlators.

Indeed, it is natural to wonder what constraints duality
invariance could impose on generic (current) n-point

correlators. This would require the construction of
(all) duality-invariant nonminimal extensions of Einstein-
Maxwell theory of arbitrary order in Fμν, which remains as
an outstanding open problem.
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