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We derive an algorithm for computing the total differentials of multiloop integrals expressed as onefold
integrals of multiple polylogarithms, which can involve square roots of polynomials up to degree 4 and may
evaluate to (elliptic) multiple polylogarithms [(e)MPLs]. This gives simple algebraic rules for computing the
(W — 1, 1) coproduct of the resulting weight-W functions up to period terms, and iterating it gives the symbol
without actually performing any integration. In particular, our algorithm generalizes existing MPL integration
rules and sidesteps the complicated rationalization procedure in the presence of square roots. We apply our
algorithm to conformal double-D-gon integrals in D dimensions with generic kinematics and possibly
massive circumferential propagators. We directly compute, for the first time, the total differential and symbol
(up to period terms) of the D = 3 double triangle and the D = 4 double box, which in the special case with
massless propagators represent the first appearance of eMPL functions in (two-loop) scattering amplitudes of
Aharony-Bergman-Jafferis-Maldacena theory and N = 4 super-Yang-Mills theory, respectively.
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I. INTRODUCTION

The key for precise predictions in perturbative quantum
field theory (QFT) lies in the analytic computation of
Feynman integrals, which often reveals rich and unex-
pected structures of QFT itself. At least for simple
kinematics, a systematic method to compute (dimension-
ally regularized) Feynman integrals is via differential
equations [1-5]. For complicated kinematics, other than
direct integration [6—15], it is often possible to bootstrap a
Feynman integral [16-20] once we have control over its
analytic structure.

The simplest class of functions that Feynman integrals
evaluate to are multiple polylogarithms (MPLs) [21-26].
Their analytic structure is well understood due to powerful
mathematical tools such as the “symbol” and the more
general “coproduct” [27-31], which manifest singularity
structures and trivialize function identities. More
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complicated Feynman integrals evaluate to more compli-
cated functions (see Ref. [32] and references therein), the
simplest case involving elliptic multiple polylogarithms
(eMPLs) [33-59], for which one can define the symbol as
well [48]. For MPLs and eMPLs alike, the symbol maps a
complicated function to a tensor of simpler objects, the
“symbol letters.” It is defined recursively by total differ-
entials [or, equivalently, (W — 1, 1) coproducts],

A7 = T,dw, = S(I) = > S(Z,) @ we. (1)

where 7 and 7, have “transcendental weight” W and
(W —1). The eMPL letters w, are onefold integrals of
rational functions on genus-one curves, while MPL letters
are their genus-zero degenerations, namely, logarithms.
In this Letter, we propose an algorithm for the direct
computation of the symbol of MPLs and eMPLs expressed
as onefold integrals Z = [ F(t)dt of MPLs F(r), which
applies to a large class of Feynman integrals [60].
Algorithms exist [61] that compute dZ and iteratively
S(Z) in terms of S(F(t)), as long as singularities of F(r)
involve linear factors of ¢ only. However, it was previously
unknown how to perform such “symbol integrations”
when singularities of F(z) involve square roots of poly-
nomials of . We take an important step in solving this

Published by the American Physical Society
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long-standing problem by deriving algebraic rules for dZ
and iteratively S(Z), given dF(r). Our method sidesteps
rationalization and gives the MPL symbol in the presence
of square roots of quadratic polynomials. In the presence
of square roots of cubics/quartics, it computes the eMPL
symbol up to “period terms” where w, = 7, the modular
parameter of the elliptic curve. The restriction to nonperiod
terms, which is also the goal of elliptic symbol bootstrap
[59], is often convenient in the study of eMPL symbols,
since the period terms can be formally reconstructed via
the “symbol prime” [57].

We apply our new method to the symbol integration of an
important class of conformal integrals, double-D-gon inte-
grals in D dimensions [62,63] (see also Refs. [64-66]),
which are weight D and can be expressed as onefold
integrals of deformed 2(D — 1)-gons [29,67-70]. We com-
pute their total differentials, or (D — 1, 1) coproducts, even
in the presence of massive circumferential propagators. For
the most general D = 3 double triangle and D = 4 double
box, up to period terms, we obtain all last entries w,, as well
as the (symbol of) accompanying weight-(D — 1) integrals
which evaluate to MPLs. In the special case with massless
propagators, they reduce to the first eMPL contributions
to scattering amplitudes in Aharony-Bergman-Jafferis-
Maldacena (ABJM) and N = 4 super-Yang-Mills theory,
respectively. For higher D, these weight-(D — 1) integrals
involve elliptic or even higher-genus curves, and we leave
their explicit computation to future work.

I1. DERIVING RULES FOR (ELLIPTIC) SYMBOL
INTEGRATIONS

A. 2-forms and MPL symbol integrations
without rationalization

Before studying elliptic integrals, let us first derive the
symbol integration for MPL functions. We use 6 := dud,, for
the differential with respect to variables {u} parametrizing
the kinematic space K, to distinguish it from the differential
d :=dro, with respect to the integration variable 7. It is
helpful to consider the big space M parametrized by {u, 1}
with total differential operator D = § + d. Differential
forms Q7 (M) = @F_,Q""~"(M) on M are graded into
a bicomplex by ¢ and d,

d
QrJrl,p—r(M)(_Qr,p—r(M)_(s)Qr,p—H»l (M)’
with Q"P~"(M) = @ for r > 2 since there is only one ¢
variable. Importantly, each kinematic point {u} locates a
Riemann ¢-sphere in M, and a (1,1)-form can be viewed as

an Q!(K)-valued 1-form on the sphere. The line integral
operator f:((;'; : Q1(8?) - C can be extended to a linear

map Q' (5?) ® Q!(K) — Q!(K), which defines an integra-
tion of (1, 1)-forms.

To warm up, consider the total differential 57 (u) of

b(u)

T(u) = / F(t;u)d log(r + c(u)), (2)
a(u)

where DF(t) = H(t)D log(t+d) is known [71].

Integrating by parts, 87 has boundary contributions that

are trivial to compute, as well as integral terms,

6T = F(b)é log(b+ ¢) — F(a)d log(a + ¢)

/H (11) (3)

Here, ") is the (1, 1) component of the 2-form
= D log(t+ ¢) A D log(t + d). To obtain the symbol
integration rule, we need only separate the ¢ dependence of
o). This is done purely algebraically by matching
residues, because w1 € Q'(5?) ® Q'(K) is a meromor-
phic 1-form on the #-sphere, which is determined by
residues. Matching the residues at t = —¢ and ¢ = —d,

t
o) =d log p _—:: ; A 8 log(c —d). (4)

This way, we obtain the integral term contribution to 67,

/H (L1) (/H dlog d)&log(c—d). (5)

By definition, the above rule computes the (W —1, 1)
coproduct of the weight-W function 7, and iterating it
yields the well-known symbol integration rule for linear
symbol entries [61,72].

Now we move to MPL symbol integrations involving
square roots of quadratic polynomials, which usually
requires rationalization and gets complicated when there
are multiple square roots [73]. We show that no explicit
rationalization is needed from the 2-form perspective, and
the method can be readily extended to elliptic cases. Our
prototype is the integral

T

where r(t)

t)dlogr(t), DF(t)=H(t)Dlogra(t), (6)

= A0V and (1) = SOVEIVAD
A()=/R(1) . B(—/R(0\/A(0) \/_
A(1), B(1), and even R(t) can be arbltrary polynomials
of 7, but, crucially, A(¢) is quadratic. Again, boundary
terms are trivial to compute, and the key is to separate
the ¢ dependence of w('!), where w:= D log r(f) A
D log ra(t). Note that it is parity-even under /R(t) -
—+/R(t). Hence, it is single valued near R(7) =0 despite
R(1), and the only branch

\/—6011

the apparent dependence on
points appear at A(f) = 0. Therefore, @'
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is single-valued and meromorphic on the t-sphere. By
matching residues of @("""), we obtain

A(tg)dt

ol — _ VAl
toe{poles of @} (t - to) A(t)

We immediately obtain the integration rule in the same way
as the linear-entry case,

b A(ty)dt
( / H<r><7°>) Res 0
toe{poles of @} \ ¢ (t - to) A(t) 1=1p=0

+ F(b)6 log r(b) — F(a)é log r(a), (8)

0T =

where the integration kernel can be nicely written as ad log
form since A(r) is quadratic, facilitating further iterations.
A similar reasoning shows that the kernel becomes
d log(t — 1)) when there is no “net” square root \/A(z)
in the 2-form w.

Since the square root /A(t) is carried along in our rules
of symbol integration, no explicit rationalization (or any
related subtleties [72]) is involved. Moreover, our method
generalizes existing ones and applies whenever the net

square root \/A(z) of @ has quadratic A(z). The organi-
zation of results is nicely suited for analyzing symbol
structures of Feynman integrals. The “parity” of every
square root is manifest, and a basis of independent last
entries is obtained after only one iteration.

We have applied (8) to various two-loop MPL integrals
with square roots of quadratic polynomials, previously
computed only through canonical differential equations,
such as the five-mass double box [Fig. 1(a), /{7 in [20] ] and
the four-point double box with equal circumferential
masses [Fig. 1(b), g in [74] ]. Starting from the deformed
hexagon representation (see the Appendix), we reproduce
their symbols with very little work.

B. Elliptic symbol integrations

Next we consider the simplest elliptic integrals, where
the prototype involves an elliptic curve £ = {(t,y)|y* =
P(t)} C CP? and P(¢) is an irreducible cubic or quartic
polynomial,

(a) (b)

FIG. 1. Examples of MPL double-boxes, which depend on (a) 5
and (b) 2 kinematic variables.

T = A” F(t)%, DF(1) = H(t)D log ¥y (1),  (9)

B(1)+y(1)\/A()
B(1)=y(1)\/ A7)
polynomial and A(¢) is quadratic. The key difference from
MPL cases is that the integration kernel is no longer a d log

form, but we can still write it as a total differentia y‘z—;) =

where 7, (1) = , where B(t) is an arbitrary

dW(t) with W(z) := [! % for any reference point *. As in
the MPL case, we obtain

6T = F(b)6W(b) — F(a)éW(a) + /b H()o.  (10)

There is an ambiguity in the definition of W(¢) even after
fixing an initial point *. Because the natural domain of the
integrand dr’/y(¢') is topologically a torus, we can freely
add any multiple of two independent cycles y;, to the
contour, leading to definitions of W(r) that differ by
multiples of @, , = fm dt/y(t). Practically, after perform-

ing a birational change of variables (¢, y) +> (7,Y) to put £
into Weierstrass form Y2 =473 — ¢g,T — g;, we choose
W(t) = 9~ (T; g5, g3) for some branch of p~!. We also
renormalize Z and W(r) with @, to obtain a pure function:
T := - I, w(1) == - W(1), and 6T is of the same form (10)
as 67, except W(t) —» w(t).

We wish to algebraically separate the ¢t dependence of the
(1,1) component of the 2-form @ := Dw(t) A D log 7\ (1).
Since w is parity-even under y(¢) — —y(t), the net square
root is \/A(7), and defining &@""") := \/A(r)w"") elimi-
nates the branch points at A(z) = 0. However, unlike MPL
cases where @'!) is rational, the presence of w(r) =
© '(T)/w, introduces extra branch cuts. Discontinuities
of 6w(t) across the branch cuts are proportional to 5z, where
7 := w,/w,. Ultimately, the reason is that genus-one curves
have nontrivial moduli that depend on the kinematics.

It is not clear how to proceed directly, so we follow the
proposal in [59] and get around this problem by restricting
to the subspace /C of C defined by 6z = 0. In other words,
we focus on the elliptic symbol/coproduct up to period
terms containing 7. Notationally, we use 9 to indicate the
differential operator on /C, and D = d 4 §. The restricted
(1, 1) component

@[ = /AW [Dw(r) A D log (1)) (11)

is indeed an Q!'(K)-valued meromorphic 1-form on the
t-sphere. Incidentally, the restriction frees us from explic-
itly specifying the branch of ! when defining w(z).
We can now determine w("'))|,- by matching residues of
c?)(“)| «» and the residue computzltion is surprisingly easy:
since dw(t) is holomorphic, the first term does not con-
tribute at all, and all contributions come from singularities of
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log 7, (t). Denoting such singularities as 7., which satisfy

B(ry) F y(t+)y/A(t+) = 0, we have
o A(ty)de
oD = %: i—(t SR Adw(ty), (12)

which gives the final result,

ty)dt
67 = z + (/ H(t m)éw(ti)

F(b)ow(b) — F(a)dw(a). (13)

III. APPLICATION TO DOUBLE-D-GON
INTEGRALS IN D DIMENSIONS

A. Double-triangle integrals in D =3

Consider the D =3 double triangle, which can be
represented as the integral of a deformed box (A7),

/\F__w (14)

where we have performed a change of variable t = s to get

rid of the /7 in the denominator. The notation {Q(s*))
denotes the pure function (A8) defined by the quadric

O(s?), and Q(s?) := det O(s?).

We first consider the special case with massless propa—

gators, which depends on conformal cross ratios u = X")f
13724

2

— 14 2"5
and v = 33 with x = (x; — x;)%,

13724

X9 T3 ) T3

13

I
|
S~
8
o
VA

(15)

The dashed box indicates deformation (A6), and after some
rescalings using projectivity, the quadric reads

0 1 1 1
o)~ | " o |ee
) =
1 v 0 (1+s5%)
11 (1+s*u 0
As usual, introduce z,Z = 5 (1 4+ (1 + s*)u — v £ /A(s))

and A(s) = (1= (14 s?)u—v)> —4(1 + s?)uv such that
(14 s?)u=zzand v = (1 —z)(1 —z). Then, {Q(s?))) is
precisely the (deformed) four-mass box function [75],

(0(s)) = loglog

1 —2L12(1_ >+2L12(1__ZZ).
(17)

The integral Z; is elliptic, involving the curve
y?> = —Q(s?). Define 75 := Z3/w;. It can be shown [76]
that w(0), w(co) = 0 mod (1, 7)/2, where (1,7)/2 :=17 +
%ZT is the lattice generated by 1, 7 together with half lattice
points. Therefore, 673 has no contribution from the
boundary terms. Note that the last entries of S({Q(s%)))
and the kernel —% — =;i—9_ are both odd under

=S A(s)
V/A(s) = —/A(s), so there are no net square roots.
Applying the rules from the previous section,

5T = <A°° log vd log(s — i))éw(i) + (i —i). (18)

However, the elliptic curve y?> = —Q(s?) is even under
s — —s, which implies w(i) +w(—i) =0 mod (1,7).
Hence, there is only one independent last entry of §7 5,

(s

In the last step, we have chosen to perform the integral on
the function level, instead of using our symbol integration
rules. Of course, the symbol integration rules still apply in
this case, yielding a vanishing result because the symbol of
ir log v as a weight-two function is zero. The fact that 57 5
turns out to be proportional to z is not unfamiliar for (MPL)
integrals in three dimensions [77-80].

The computation of the double triangle with massive
circumferential propagators [Fig. 2(a)] is entirely similar.
Here, we merely record the result,

S:) sw(i) = (ir log v)aw(i).

(19)

(14 upy) (1 + up3)
(14 u3)(1 + M24>éW(l)

§Tgnassive —ir 10g

4 .
X R; R
—le '+f\/_’§ VR , (20)
i—1 Xl —1 Ri U12 -1
T3 Ty
T2 YI Yr | 5
Xq Te

(a)

FIG. 2. (a) Double triangle and (b) double box with massive
circumferential propagators, which depend on (a) 6 and (b) 15
Cross ratios.
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2 2 2
where u;; %, and
imj
U3y, i1 € {1,2}
U. g { . N X == 1 + I/l‘k,
l up, i €{3,4} l ’Zi: :
Jj<
Ry = Qi(0) = 1= u% + 2] Jug. (22)

ki Jkti

Jj<k J<k
Here, Qi(0) is the minor of Q(0) with the ith row and
column deleted. As a consistency check, 67 g“a“ive has
branch points at u;; = —1 or x%]- = —(m; + m;)?, exactly as
predicted by Cutkosky’s rules.

B. Double-box integrals in D =4

For the D = 4 double box [Fig. 2(b)], the starting point is
the deformed hexagon (see the Appendix),

/‘sz«mr (23)

where Q(t) is given by deforming the 6 x 6 Gram matrix G

2+2+2

with one on the diagonal and u;; = -5 —— off the

diagonal. Read off the symbol (AS8),

2mim;

S((0(1) Z S(Box;(1)

1<i<j<6

) ® log sz( ), (24)

where Box;;(t) = ((Qij(t))) is obtained by deleting the ith
and jth row and column of Q, and the last entries R;;(¢) =
ij are given by (A9). Define the renormalized pure integral
and last entries,

1 1 [+ dr [
— —_— = 7). (25
r 7o (0 @)

Again, it can be shown that w(oo) = 0 mod (1, 7), so there
is no boundary term at = oo. The boundary term at t = 0 is
—S(40(0))))éw(0), representing the undeformed hexagon.
For the integral terms, we need only consider singularities of
log R;;(7) located at [Qﬂ2 = —QZQ =N QﬁQi =0, ie.,
zeros of QI here, QF :=det Q)(z) is the minor of Q(r)
with the rows (columns) labeled by 7 (J) deleted.

Very nicely, the zeros of 5x 5 minors Q! are easy to
obtain: for i € {1,2,3}, the minor is quadratic in ¢ and has
) } fori € {4,5,6}, it is cubic with three
roots {—1, rl . l *)} [81]. Therefore, we have 13 different
singularities coming from all possible R;;(#), which implies
that the integral terms contributing to 7 have 13 possible

@
where 1, € {1} u {\" AP0 .

P l

two roots {r ()

last entries Sw(ty),
In total,

= =S((Q(0)N)aw(0) + Y S(V,,)aw(ty),  (26)

which is what we expect: the kinematical space K is 15
dimensional, and one of the degrees of freedom is captured
by the unknown &7 term, leaving 14 functionally indepen-
dent last entries.

We can immediately write down an integral representa-
tion of the (3,1) coproduct, as long as we keep track of the
various signs,

Vo= 3 [TBon 0 VUL (1)

ie{1.23} (l + 1) Al](t)
je{45.6}
Ay(r")ar
oS [ VT
CF b (1= ) V/By 0
where A;;(#) is the box square root,
if QYf(=1)#0

%m={g”% (29)

(r+1)72Q)(n). if Qj(-1) =

Nothing stops us from iterating our rules to obtain S(V, )
explicitly, though the calculation is a bit tedious. We
content ourselves with computing the symbol in the special

case where all propagators are massless: the 12 last entries
(12

w(r; )) satisfy linear relations and combine into six
independent ones (modulo (1,7)). We have computed
the six accompanying weight-three symbols and found

perfect agreement with [59].

C. Double-D-gon integrals in D > 5

The D <4 and D > 5 cases are different. The embedding
space vectors live in (D + 2) dimensions, which implies that
all (D + 3) x (D + 3) minors of G vanish for D > 5 (no
such minors exist for D < 4). Therefore, up to the (D — 5)th
derivatives vanish: Q(0) = Q'(0) = --- = Q(P=5(0) =0,
which implies Q(t) = —t?~*P(t), where P(0) # 0.
Remarkably, for D >5, the integration kernel of 7
remains elliptic,

<<Q deg P(t)=3, V D>5.

(30)
Our method yields all the last entries of §7 ;, together with

the accompanying integrals for 7 p = Zp/w.
The 2-form o = —2L
VP

VPPN = \/A(1) x rational, and after taking com-
plete squares out of the square root, the net square root

L041702-5
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A(?) is not necessarily quadratic. Hence, the kernel of the
accompanying integral

/«%%

is not necessarily d log. Specifically, if A(#) is cubic or
quartic, the accompanying integral itself is elliptic; and if
deg A(t) > 5, which first appears at D =7, the accom-
panying integral involves higher-genus curves and their
symbology has not been studied in the literature. Our
method provides partial results about these integrals, but
conceivably we would miss even more terms because
higher-genus curves have more moduli.

~ VA()dt

(— 1) /A0) G1)

IV. CONCLUSION AND OUTLOOK

We have proposed algebraic rules of (e)MPL symbol
integration that efficiently computes the total differentials
or (W — 1, 1) coproducts of onefold integrals of MPLs up to
period terms, which can be iterated to produce the symbol.
By exploiting the 2-form, we are able to sidestep ration-
alization completely, thus greatly improving on the existing
method. We have checked our algorithm by reproducing
(within minutes on a laptop using a very rough code) the
results of some (e)MPL Feynman integrals, previously
obtained through indirect methods.

Our algorithm applies nicely to the family of conformal
double-D-gon integrals in D dimensions, possibly with
massive circumferential propagators. In particular, we have
computed the (2,1) coproduct of the D =3 case on the
function level and have obtained an integral representation
of the (D — 1, 1) coproduct for D > 4, up to period terms.
Moreover, we have argued that, unlike D = 3, 4 cases, the
weight-(D — 1) integrals accompanying the last entries can
involve elliptic and even higher-genus curves for large D. It
would be extremely interesting to understand the symbol
and the geometric interpretation of double polygons, much
like the well-known (one-loop) polygons [29,67-70].

Our method brings (elliptic) symbol integrations within
reach for numerous other integrals. For example, it can be
applied to integrals beyond double triangles for higher-point
two-loop amplitudes in ABJM theory [78], and the recently
studied family of elliptic ladder integrals [82,83] can serve
as an all-loop application of our method. Along this line, it
would be highly desirable to systematize elliptic symbol
integration to include different integration kernels [45] and
period terms. Another important question is how to extend
our symbol integration rules to the function level, first for
MPLs, but eventually for eMPLs, now that we can avoid
rationalization.

We expect that this computational method will reveal
more structures of symbols and coproducts. The fact that
symbol letters produced by our algorithm are closely
related to singularities of the integrand may provide

insight into the success of the recently proposed
Schubert analysis [20,59,84,85] in predicting (e)MPL
symbol letters and may further extend it to general
spacetime dimensions. It would also be interesting to
explore interpretations of the accompanying weight-
(W —1) integrals, along the lines of [74] or [69], which
is related to the diagrammatic coaction [67,86—89].
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APPENDIX: THE DEFORMED POLYGON
REPRESENTATION OF DOUBLE POLYGONS

In this appendix, we discuss the representation of double-
D-gon integrals in D dimensions as an integral of a deformed
2n-gon [82] with D = n+ 1 > 3, where some of the 2n
dual points may be identified. Schematically, we show that

T Ln+1

U dt

The dashed box indicates ¢ deformation; see (A6).
Consider the most general double polygon, with generi-
cally massive circumferential propagators,

Ip= /dDyLdDyRDL.R HDL,iDR.nJri’ (A2)
i=1

where D}y = (y, — yx)? and D7} = (v, — x;)* + m3 for
¢ = L, R. Using the embedding formalism and performing
a loop-by-loop Feynman parametrization,

B 0 < d2n—l >
%_A(RR)mﬁﬁ

Ry=o X;+- +ay,Xp,, (A4)

(A3)

where
Ry=a X1+ +a,X,,

and the embedding space vectors XY = (x” x? +m2 1)
have inner products (X;X;) = (x; — x;)* + m; + mj.
Introducing a further Feynman parameter to combine the
denominators,

L041702-6
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where the quadric a- Q(7) - @ = t(R|R;) + (RyR;) repre-
sents a deformed 2n-gon,

(1+1) 1
Q) = o, (A0
1 1

Here, the symbol © indicates elementwise multiplication,
and the (i, j) entry of the 21 x 2n Gram matrix G is (X;X ;).
We will often omit the ¢ dependence and denote Q = Q(¢)
and G = Q(0). Because of the projective nature of the
quadric integral, we can freely rescale the ith row and the ith
column by the same constant.

The result of the quadric integral is well known [68]. It
evaluates to an MPL function {Q)/+/—Q with nontrivial
leading singularity, where Q = det Q and {Q) is a pure

function. In other words, we obtain the precise form
of (Al),

o F7dt
7, = /0 T

The symbol of {Q(¢)) can be read off from the quadric,

(A7)

S((ON) = 10g pruprt ® - ® log pypi,  (A8)
p

where p runs over all ordered partitions of 2n labels into n
symmetric pairs, and the symbol entries

02k-2)P2k~1 O12k-2] P2k
Q;J[zkfz]ﬂu + _Q;’PH] Q/’[Zk]

[2k=2]P2k~1 [2k=2] [24] ’
Qz[zk—z]ﬂn VT = QZ[ZH

P2uP2k—1 =

Here, ppy denotes the label set p; - - - py and Q) = det Q]
is the minor of Q with the rows (columns) labeled by 1 (J)
deleted.

[1] A. V. Kotikov, Phys. Lett. B 254, 158 (1991).

[2] A. V. Kotikov, Phys. Lett. B 267, 123 (1991); 295, 409(E)
(1992).

[3] E. Remiddi, Nuovo Cimento A 110, 1435 (1997).

[4] T. Gehrmann and E. Remiddi, Nucl. Phys. B580, 485
(2000).

[5] J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013).

[6] J.L. Bourjaily, A.J. McLeod, M. von Hippel, and M.
Wilhelm, J. High Energy Phys. 08 (2018) 184.

[7]1 J. L. Bourjaily, F. Dulat, and E. Panzer, Nucl. Phys. B942,
251 (2019).

[8] J. L. Bourjaily, M. Volk, and M. Von Hippel, J. High Energy
Phys. 02 (2020) 095.

[9] J.L. Bourjaily, Y.-H. He, A.J. McLeod, M. Spradlin, C.
Vergu, M. Volk, M. von Hippel, and M. Wilhelm, in
AntidifferEntiation and the Calculation of Feynman Ampli-
tudes (Springer, Cham, 2021).

[10] E. Panzer, Comput. Phys. Commun. 188, 148 (2015).

[11] C. Duhr and F. Dulat, J. High Energy Phys. 08 (2019) 135.

[12] Z. Li, Multiple-polylogarithm, https://github.com/munuxi/
Multiple-Polylogarithm (2021).

[13] S. Caron-Huot, J. High Energy Phys. 12 (2011) 066.

[14] S. He, Z. Li, Y. Tang, and Q. Yang, J. High Energy Phys. 05
(2021) 052.

[15] S. He, Z. Li, Q. Yang, and C. Zhang, Phys. Rev. Lett. 126,
231601 (2021).

[16] D. Chicherin, J. Henn, and V. Mitev, J. High Energy Phys.
05 (2018) 164.

[17] J. Henn, E. Herrmann, and J. Parra-Martinez, J. High
Energy Phys. 10 (2018) 059.

[18] S. He, Z. Li, and Q. Yang, J. High Energy Phys. 06 (2021)
119.

[19] S. He, Z. Li, and Q. Yang, arXiv:2112.11842.

[20] S. He, Z. Li, R. Ma, Z. Wu, Q. Yang, and Y. Zhang, J. High
Energy Phys. 10 (2022) 165.

[21] K.-T. Chen, Bull. Am. Math. Soc. 83, 831 (1977).

[22] A.B. Goncharov, Adv. Math. 114, 197 (1995).

[23] A.B. Goncharov, Math. Res. Lett. 5, 497 (1998).

[24] E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A
15, 725 (2000).

[25] J.M. Borwein, D. M. Bradley, D.J. Broadhurst, and P.
Lisonek, Trans. Am. Math. Soc. 353, 907 (2001).

[26] S. Moch, P. Uwer, and S. Weinzierl, J. Math. Phys. (N.Y.)
43, 3363 (2002).

[27] A.B. Goncharov, Duke Math. J. 128, 209 (2005).

[28] A.B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich,
Phys. Rev. Lett. 105, 151605 (2010).

[29] M. Spradlin and A. Volovich, J. High Energy Phys. 11
(2011) 084.

[30] C. Duhr, H. Gangl, and J. R. Rhodes, J. High Energy Phys.
10 (2012) 075.

[31] C. Duhr, J. High Energy Phys. 08 (2012) 043.

[32] J. L. Bourjaily et al., arXiv:2203.07088.

[33] S. Laporta and E. Remiddi, Nucl. Phys. B704, 349
(2005).

[34] E. Brown and A. Levin, arXiv:1110.6917.

L041702-7


https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(92)91582-T
https://doi.org/10.1016/0370-2693(92)91582-T
https://doi.org/10.1007/BF03185566
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1007/JHEP08(2018)184
https://doi.org/10.1016/j.nuclphysb.2019.03.022
https://doi.org/10.1016/j.nuclphysb.2019.03.022
https://doi.org/10.1007/JHEP02(2020)095
https://doi.org/10.1007/JHEP02(2020)095
https://doi.org/10.1016/j.cpc.2014.10.019
https://doi.org/10.1007/JHEP08(2019)135
https://github.com/munuxi/Multiple-Polylogarithm
https://github.com/munuxi/Multiple-Polylogarithm
https://github.com/munuxi/Multiple-Polylogarithm
https://doi.org/10.1007/JHEP12(2011)066
https://doi.org/10.1007/JHEP05(2021)052
https://doi.org/10.1007/JHEP05(2021)052
https://doi.org/10.1103/PhysRevLett.126.231601
https://doi.org/10.1103/PhysRevLett.126.231601
https://doi.org/10.1007/JHEP05(2018)164
https://doi.org/10.1007/JHEP05(2018)164
https://doi.org/10.1007/JHEP10(2018)059
https://doi.org/10.1007/JHEP10(2018)059
https://doi.org/10.1007/JHEP06(2021)119
https://doi.org/10.1007/JHEP06(2021)119
https://arXiv.org/abs/2112.11842
https://doi.org/10.1007/JHEP10(2022)165
https://doi.org/10.1007/JHEP10(2022)165
https://doi.org/10.1090/S0002-9904-1977-14320-6
https://doi.org/10.1006/aima.1995.1045
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1090/S0002-9947-00-02616-7
https://doi.org/10.1063/1.1471366
https://doi.org/10.1063/1.1471366
https://doi.org/10.1215/S0012-7094-04-12822-2
https://doi.org/10.1103/PhysRevLett.105.151605
https://doi.org/10.1007/JHEP11(2011)085
https://doi.org/10.1007/JHEP11(2011)085
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/JHEP10(2012)075
https://doi.org/10.1007/JHEP08(2012)043
https://arXiv.org/abs/2203.07088
https://doi.org/10.1016/j.nuclphysb.2004.10.044
https://doi.org/10.1016/j.nuclphysb.2004.10.044
https://arXiv.org/abs/1110.6917

SONG HE and YICHAO TANG

PHYS. REV. D 108, L041702 (2023)

[35] S. Muller-Stach, S. Weinzierl, and R. Zayadeh, Proc. Sci.
LL2012 (2012) 005

[36] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys.
(N.Y.) 54, 052303 (2013).

[37] S. Bloch and P. Vanhove, J. Number Theory 148, 328 (2015).

[38] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys.
(N.Y.) 55, 102301 (2014).

[39] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys.
(N.Y.) 56, 072303 (2015).

[40] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys.
(N.Y.) 57, 032304 (2016).

[41] L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl,
J. Math. Phys. (N.Y.) 57, 122302 (2016).

[42] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett.
118, 141602 (2017).

[43] L. Adams and S. Weinzierl, Commun. Num. Theor. Phys.
12, 193 (2018).

[44] C. Bogner, A. Schweitzer, and S. Weinzierl, Nucl. Phys.
B922, 528 (2017).

[45] J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, J. High
Energy Phys. 05 (2018) 093.

[46] J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, Phys. Rev. D
97, 116009 (2018).

[47] L. Adams and S. Weinzierl, Phys. Lett. B 781, 270 (2018).

[48] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi,
J. High Energy Phys. 08 (2018) 014.

[49] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi,
J. High Energy Phys. 01 (2019) 023.

[50] I. Honemann, K. Tempest, and S. Weinzierl, Phys. Rev. D
98, 113008 (2018).

[51] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi,
J. High Energy Phys. 05 (2019) 120.

[52] C. Bogner, S. Miiller-Stach, and S. Weinzierl, Nucl. Phys.
B954, 114991 (2020).

[53] C. Duhr and L. Tancredi, J. High Energy Phys. 02 (2020)
105.

[54] M. Walden and S. Weinzierl, Comput. Phys. Commun. 265,
108020 (2021).

[55] S. Weinzierl, Nucl. Phys. B964, 115309 (2021).

[56] A. Kristensson, M. Wilhelm, and C. Zhang, Phys. Rev. Lett.
127, 251603 (2021).

[57] M. Wilhelm and C. Zhang, J. High Energy Phys. 01 (2023)
089.

[58] M. Giroux and A. Pokraka, J. High Energy Phys. 03 (2023)
155.

[59] R. Morales, A. Spiering, M. Wilhelm, Q. Yang, and
C. Zhang, arXiv:2212.09762.

[60] We mainly consider finite integrals in integer dimensions,
but the method applies to each order in € to dimensionally
regularized integrals and to integrals with mass regulators. It
can also be used for the direct integration of amplitudes,
Wilson loops [61], etc.

[61] S. Caron-Huot and S. He, J. High Energy Phys. 07 (2012)
174.

[62] M. F. Paulos, M. Spradlin, and A. Volovich, J. High Energy
Phys. 08 (2012) 072.

[63] D. Nandan, M. F. Paulos, M. Spradlin, and A. Volovich,
J. High Energy Phys. 05 (2013) 105.

[64] F. Loebbert, D. Miiller, and H. Miinkler, Phys. Rev. D 101,
066006 (2020).

[65] F. Loebbert, J. Miczajka, D. Miiller, and H. Miinkler, Phys.
Rev. Lett. 125, 091602 (2020).

[66] F. Loebbert, J. Miczajka, D. Miiller, and H. Miinkler,
SciPost Phys. 11, 010 (2021).

[67] S. Abreu, R. Britto, C. Duhr, and E. Gardi, J. High Energy
Phys. 06 (2017) 114.

[68] N. Arkani-Hamed and E. Y. Yuan, arXiv:1712.09991.

[69] E. Herrmann and J. Parra-Martinez, J. High Energy Phys. 02
(2020) 099.

[70] J. L. Bourjaily, E. Gardi, A.J. McLeod, and C. Vergu, J.
High Energy Phys. 08 (2020) 029.

[71] From now on, we will omit the dependence on kinematics.

[72] Z. Li and C. Zhang, J. High Energy Phys. 12 (2021)
113.

[73] M. Besier, D. Van Straten, and S. Weinzierl, Commun.
Num. Theor. Phys. 13, 253 (2019).

[74] S. Caron-Huot and J. M. Henn, J. High Energy Phys. 06
(2014) 114.

[75] J. M. Drummond, J. M. Henn, and J. Trnka, J. High Energy
Phys. 04 (2011) 083.

[76] The birational transformation (s,y) > (S,Y) such that
Y? =48% — ¢,8 — g3 maps (0,/-Q(0)) to Y=0 and
(c0,00) to ¥ = 0. Since (S,Y) = (p,¢') is an isomor-
phism between the elliptic curve and the torus C/(1, 7), we
see that w(0) = ¢'~1(0) =0 mod (1,7)/2 and w(co) =
© 1 (c0) =0 mod (1,7).

[77] S. Caron-Huot and Y.-t. Huang, J. High Energy Phys. 03
(2013) 075.

[78] S. He, Y.-t. Huang, C.-K. Kuo, and Z. Li, J. High Energy
Phys. 02 (2023) 065.

[79] S. He, C.-K. Kuo, Z. Li, and Y.-Q. Zhang, arXiv:
2303.03035.

[80] J. M. Henn, M. Lagares, and S.-Q. Zhang, J. High Energy
Phys. 05 (2023) 112.

[81] To show that t+=—1 is a root, simply notice that
when t = —1, the first three rows/columns are linearly
dependent.

[82] Q. Cao, S. He, and Y. Tang, J. High Energy Phys. 04 (2023)
072.

[83] A. McLeod, R. Morales, M. von Hippel, M. Wilhelm, and
C. Zhang, J. High Energy Phys. 05 (2023) 236.

[84] Q. Yang, J. High Energy Phys. 08 (2022) 168.

[85] S. He, J. Liu, Y. Tang, and Q. Yang, arXiv:2207.13482.

[86] S. Abreu, R. Britto, C. Duhr, and E. Gardi, Phys. Rev. Lett.
119, 051601 (2017).

[87] S. Abreu, R. Britto, C. Duhr, and E. Gardi, J. High Energy
Phys. 12 (2017) 090.

[88] S. Abreu, R. Britto, C. Duhr, E. Gardi, and J. Matthew, Proc.
Sci. RADCOR2019 (2020) 065.

[89] S. Abreu, R. Britto, C. Duhr, E. Gardi, and J. Matthew,
J. High Energy Phys. 10 (2021) 131.

Correction: The last sentence of the Acknowledgments
section contained errors and has been fixed (the grant
numbers have been reordered, two were deleted, and a new
one was added). In addition, a new funding statement has
been added.

L041702-8


https://doi.org/10.22323/1.151.0005
https://doi.org/10.22323/1.151.0005
https://doi.org/10.1063/1.4804996
https://doi.org/10.1063/1.4804996
https://doi.org/10.1016/j.jnt.2014.09.032
https://doi.org/10.1063/1.4896563
https://doi.org/10.1063/1.4896563
https://doi.org/10.1063/1.4926985
https://doi.org/10.1063/1.4926985
https://doi.org/10.1063/1.4944722
https://doi.org/10.1063/1.4944722
https://doi.org/10.1063/1.4969060
https://doi.org/10.1103/PhysRevLett.118.141602
https://doi.org/10.1103/PhysRevLett.118.141602
https://doi.org/10.4310/CNTP.2018.v12.n2.a1
https://doi.org/10.4310/CNTP.2018.v12.n2.a1
https://doi.org/10.1016/j.nuclphysb.2017.07.008
https://doi.org/10.1016/j.nuclphysb.2017.07.008
https://doi.org/10.1007/JHEP05(2018)093
https://doi.org/10.1007/JHEP05(2018)093
https://doi.org/10.1103/PhysRevD.97.116009
https://doi.org/10.1103/PhysRevD.97.116009
https://doi.org/10.1016/j.physletb.2018.04.002
https://doi.org/10.1007/JHEP08(2018)014
https://doi.org/10.1007/JHEP01(2019)023
https://doi.org/10.1103/PhysRevD.98.113008
https://doi.org/10.1103/PhysRevD.98.113008
https://doi.org/10.1007/JHEP05(2019)120
https://doi.org/10.1016/j.nuclphysb.2020.114991
https://doi.org/10.1016/j.nuclphysb.2020.114991
https://doi.org/10.1007/JHEP02(2020)105
https://doi.org/10.1007/JHEP02(2020)105
https://doi.org/10.1016/j.cpc.2021.108020
https://doi.org/10.1016/j.cpc.2021.108020
https://doi.org/10.1016/j.nuclphysb.2021.115309
https://doi.org/10.1103/PhysRevLett.127.251603
https://doi.org/10.1103/PhysRevLett.127.251603
https://doi.org/10.1007/JHEP01(2023)089
https://doi.org/10.1007/JHEP01(2023)089
https://doi.org/10.1007/JHEP03(2023)155
https://doi.org/10.1007/JHEP03(2023)155
https://arXiv.org/abs/2212.09762
https://doi.org/10.1007/JHEP07(2012)174
https://doi.org/10.1007/JHEP07(2012)174
https://doi.org/10.1007/JHEP08(2012)072
https://doi.org/10.1007/JHEP08(2012)072
https://doi.org/10.1007/JHEP05(2013)105
https://doi.org/10.1103/PhysRevD.101.066006
https://doi.org/10.1103/PhysRevD.101.066006
https://doi.org/10.1103/PhysRevLett.125.091602
https://doi.org/10.1103/PhysRevLett.125.091602
https://doi.org/10.21468/SciPostPhys.11.1.010
https://doi.org/10.1007/JHEP06(2017)114
https://doi.org/10.1007/JHEP06(2017)114
https://arXiv.org/abs/1712.09991
https://doi.org/10.1007/JHEP02(2020)099
https://doi.org/10.1007/JHEP02(2020)099
https://doi.org/10.1007/JHEP08(2020)029
https://doi.org/10.1007/JHEP08(2020)029
https://doi.org/10.1007/JHEP12(2021)113
https://doi.org/10.1007/JHEP12(2021)113
https://doi.org/10.4310/CNTP.2019.v13.n2.a1
https://doi.org/10.4310/CNTP.2019.v13.n2.a1
https://doi.org/10.1007/JHEP06(2014)114
https://doi.org/10.1007/JHEP06(2014)114
https://doi.org/10.1007/JHEP04(2011)083
https://doi.org/10.1007/JHEP04(2011)083
https://doi.org/10.1007/JHEP03(2013)075
https://doi.org/10.1007/JHEP03(2013)075
https://doi.org/10.1007/JHEP02(2023)065
https://doi.org/10.1007/JHEP02(2023)065
https://arXiv.org/abs/2303.03035
https://arXiv.org/abs/2303.03035
https://doi.org/10.1007/JHEP05(2023)112
https://doi.org/10.1007/JHEP05(2023)112
https://doi.org/10.1007/JHEP04(2023)072
https://doi.org/10.1007/JHEP04(2023)072
https://doi.org/10.1007/JHEP05(2023)236
https://doi.org/10.1007/JHEP08(2022)168
https://arXiv.org/abs/2207.13482
https://doi.org/10.1103/PhysRevLett.119.051601
https://doi.org/10.1103/PhysRevLett.119.051601
https://doi.org/10.1007/JHEP12(2017)090
https://doi.org/10.1007/JHEP12(2017)090
https://doi.org/10.22323/1.375.0065
https://doi.org/10.22323/1.375.0065
https://doi.org/10.1007/JHEP10(2021)131

