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Several hairy black hole solutions are known to violate the original version of the celebrated no-hair
conjecture. This prompted the development of a new theorem that establishes a universal lower bound on
the extension of hairs outside any four-dimensional black hole solutions of general relativity. Our work
presents a novel generalization of this “no-short hair” theorem, which notably does not use gravitational
field equations and is valid for arbitrary spacetime dimensions (D ≥ 4). Consequently, irrespective of the
underlying theory of gravity, the “hairosphere” must extend to the innermost light ring of the black hole
spacetime. Various possible observational implications of this intriguing theorem are discussed, and other
useful consequences are explored.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is the
cornerstone of our current understanding of classical
gravitational physics. One of the most striking predictions
of GR is the existence of black holes (BHs), which exhibit
remarkable simplicity in stark contrast to other relativistic
configurations. For example, in four dimensions, the sta-
tionary and asymptotically flat spacetime outside a vacuum
BH solution of GR is represented by a Kerr metric
characterized by only two parameters, namely the mass
M and spin a. As a consequence, all higher multipoles of
Kerr BHs are uniquely determined by M and a [1–4].
Even in the presence of matter, this important result finds

its extension in the form of a well-motivated belief, known
as the no-hair hypothesis [5,6] (see also [7]): Irrespective of
the nature of the matter content, the end product of a
gravitational collapse within the framework of GR can be
completely specified by conserved charges such as mass,
angular momentum, and electric charge measured at
asymptotic infinity without any additional parameters
(referred to as “hairs”). The motivation behind this con-
jecture stemmed from previous uniqueness theorems con-
cerning BH solutions within the framework of GR [8,9].
Additionally, a heuristic physical interpretation was sug-
gested in Ref. [10] that any matter fields existing outside a
newly formed BH would either be emitted away to spatial
infinity over time or absorbed by the BH itself unless those
fields were associated with conserved charges at asymp-
totic infinity. The initial support for the no-hair conjecture

came from the work of Bekenstein [11,12], which states
that a stationary BH cannot be endowed with any exterior
scalar, vector, or spin-2 meson fields. These results led to a
belief that the no-hair conjecture is true irrespective of the
nature of the matter content.
The first counterexample to this conjecture was provided

by the discovery of the “colored” BH solution in Einstein-
Yang-Mills theory, which contains an additional integer
parameter that is not associated with any conserved charges
like mass and spin [13]. It was soon established that this
original version of the no-hair conjecture is invalid, and
there are several hairy BH solutions, which include BHs
with skyrmion [14], dilaton hairs [15], and axion [16].
Moreover, beyond the framework of GR, the presence of

any putative modifications might lead to the violation of the
no-hair property, resulting in BHs with extra hairs. Over the
years, such hairy modifications of Kerr BHs have been
extensively studied, and their observational signatures have
been searched for [17–24]. However, these distinctive non-
Kerr features arising from the presence of extra hairs can be
suitably captured in observations probing only the far-away
regions of spacetime, if the hairs extend sufficiently outside
the horizon. Thus, the essential question of observational
relevance is as follows: Can BHs have short hair confined
only in the near-horizon region? An affirmative answer to
this question would essentially imply that BHs with short
hairs mimic Kerr-like signatures when probed in the far-
field regions, though the near-horizon structure could be
very different from that of a Kerr BH. Given this crucial
observational relevance, we want to investigate this ques-
tion in detail.
Given the violation of the no-hair conjecture, it is only

natural to search for the crucial physical attribute which
led to the existence of these solutions. In this regard, an
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important observation made in Ref. [10] is that the non-
linear character of the matter fields plays a fundamental role
in the construction of the hairy black-hole solutions. Using
the Einstein field equations, the weak energy condition
(WEC), and the nonpositive trace condition on matter, it
was shown that BHs cannot have short hairs and the region
(referred to as “hairosphere”) having the nonlinear behavior
must extend at least up to three-halves of the horizon
radius [10], which curiously corresponds to the location of
the light ring (LR) in D ¼ 4 dimensions [25].
This “no-short hair” theorem in GR provides a lower

bound to the extent of the hairosphere outside the BH
horizon. Thus, to detect the presence of hair around BHs, it
is sufficient to probe till the near-LR region alone, which is
greatly exemplified by the BH shadow observations. In
other words, since the hairy configuration is extended at
least up to the LR, it is possible to probe the presence of the
hair in the image of the BHs [24,26,27].
Interestingly, with the advent of unprecedented techno-

logical progress, the question stated above becomes very
relevant for observational purposes as we are gradually
probing the near-field regime of BHs with ever-increasing
precision. The detection of gravitational waves by the
LIGO-Virgo collaborations [28] and the imaging of BH
shadows by the Event Horizon Telescope (EHT) [29] have
opened up a new era in BH physics. These observations
may allow us to test the no(-short) hair conjecture and find
the observational signature of hairy BHs.
Motivated by both the theoretical and observational

importance of the aforesaid results in GR [10,25], we
would like to ask the following question: Do the field
equations or dimensionality of the spacetime play any
fundamental role in determining the length of the hair
being short (confined solely to near-horizon regime) or
long (extends “sufficiently” beyond the horizon)? In
particular, we want to know whether a similar result to
no-short hair theorem can be obtained independent of the
gravitational field equations in any dimensions (D ≥ 4). If
true, this will provide a novel generalization of the
theorem to any theory of gravity which admits hairy
BH solutions.
Intriguingly, the answer to the above question is neg-

ative. We show that for any static, spherically symmetric,
and asymptotically flat hairy BH in D-dimensions, regard-
less of the theory of gravity under consideration, the
hairosphere must extend at least up to the innermost LR.
Such an extension is important on two fronts. First, it helps
us understand the features of BH solutions of modified
gravity in a unified theory-agnostic way. Second, such a
generalization shows that the no-short hair result cannot be
conceived as a null test of GR.
Other possible consequences of our analysis, such as

existence of short hairs on horizonless compact objects is
outlined generalizing the work of Ref. [30] in a theory-
agnostic way, and various generalizations of the works

of Refs. [31,32] about size of LRs in several higher-
dimensional/modified theories of gravity are explored.

II. HAIRY BLACK HOLES

A general static, spherically symmetric BH spacetime in
D dimensions is described by the metric

ds2 ¼ −fðrÞdt2 þ 1

kðrÞ dr
2 þ hðrÞdΩ2

D−2; ð1Þ

where r is a Schwarzschild-like radial coordinate such that
the outermost horizon is located at r ¼ rH with kðrHÞ ¼ 0,
and hðrÞ is a strictly increasing function in the region
r ≥ rH. Then, staticity implies that the norm of the timelike
Killing vector must vanish at r ¼ rH, which implies
fðrHÞ ¼ 0 [33]. This event horizon is considered to be
nonextremal (f0ðrHÞ ≠ 0), and regular so that all physical
quantities such as curvature scalars are nondivergent there.
We also assume that the spacetime is asymptotically flat,
which requires that fðrÞ → 1 − C=rD−3 þOðr−ðD−2ÞÞ,
kðrÞ → 1 − C=rD−3 þOðr−ðD−2ÞÞ, hðrÞ ∼ r2 as r → ∞.
Though C is related to the ADM mass of the spacetime,
we will not assume any particular sign of C. Moreover,
since r ¼ rH denotes the outermost nonextremal
horizon, asymptotic flatness implies that f0ðrHÞ > 0, and
k0ðrHÞ > 0.
The metric described by Eq. (1) is a solution of a theory

sourced by an arbitrary energy-momentum tensor Tμν.
Due to the spherical symmetry, Tμ

ν should remain invariant
under any rotation in the (D − 2)-dimensional compact
space with coordinates fθig; i ¼ 1; 2; ðD − 2Þ. Therefore,
Tt
θi
¼ Tr

θi
¼ 0, as they transform like vectors under

such rotations. Also, spherical symmetry further implies
Tθ1
θ1
¼ Tθ2

θ2
¼ � � � ¼ TθD−2

θD−2
, and all of the off-diagonal

transverse components vanish. Thus, we have only four
nonzero independent components of the Tμ

ν , namely
fTt

t ≔ −ρ;Tt
r;Tr

r ≔ p;Tθ1
θ1
≔ pTg, where ρ, p, and pT

are identified as the energy density, radial, and tangential
pressure, respectively. All of these components are func-
tions of r only and should be nondivergent at the event
horizon, which is assumed to be regular so that physical
invariants such as Tμ

νTν
μ are finite there. Now, the radial

component of the energy-momentum conservation equa-
tion ∇μT

μ
ν ¼ 0, leads to

P̂0ðrÞ ¼ hD=2−1

2f
ðpþ ρÞΔþ hD=2−1

2
h0T; ð2Þ

where 0 represents radial derivative, P̂ ¼ hD=2p, Δ ¼
ðfh0 − hf0Þ, and T stands for the trace of the energy-
momentum tensor. This equation generalizes the similar
result of Ref. [25] in the context of four-dimensional GR to
an arbitrary dimension (D ≥ 4) in a theory-independent
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way. That is, we have not used any gravitational field
equations to derive Eq. (2).
We will assume that the matter content present in this BH

spacetime satisfies the following conditions [10,25]:
(i) The WEC implying the energy density to be positive

semidefinite, ρ ≥ 0. It also bounds the radial pres-
sure via the inequality pþ ρ ≥ 0.

(ii) The trace of the energy-momentum tensor is non-
positive, T ≤ 0 implying pþ ðD − 2ÞpT ≤ ρ. This
assumption plays a crucial role in the existence
of hair.

(iii) The energy density ρ and the radial pressure p
approaches zero faster than r−D as r → ∞. This
condition naturally rules out the existence of any
extra conserved charges [10,25]. Therefore, using
the relation P̂ ¼ hD=2p, we have the boundary
condition P̂ðrÞ ∼ rDpðrÞ → 0 as r → ∞. This also
implies that we are working with a hairy BH
solution. As was the case in Ref. [10], the hair
under consideration is not “secondary” (see the
terminology of Ref. [34]).

Let us now study the behavior of P̂ðrÞ in the vicinity of the
BH horizon. We define a local coordinate system near the
horizon as dx ¼ k−1=2dr, known as proper radial distance.
The equivalence principle ensures that the proper radial
distance is a well-defined coordinate. In terms of this new
coordinate, Eq. (2) becomes

dP̂
dx

¼ hD=2−1

2f
ðpþ ρÞ

�
f
dh
dx

− h
df
dx

�

þ hD=2−1

2
T

�
dh
dx

�
: ð3Þ

Then, the regularity of the horizon implies that the left-hand
side of Eq. (3) is also finite in the limit r → rH. Assuming a
nonextremal BH with f0ðrHÞ > 0, WEC and the finiteness
of the right-hand side of Eq. (3) at the horizon imply that

pðrHÞ ¼ −ρðrHÞ ≤ 0: ð4Þ
Note that our assumption of nonextremal BH is very crucial
for the validity of the above equation. It is because for an
extremal BH, the term ð1=fÞðdf=dxÞ (which diverges at a
nonextremal horizon) in Eq. (3) is an indeterminate 0=0
form that might lead to a finite limit and then, it is not
required to set ρþ p ¼ 0 at r ¼ rH. The above equation
along with the fact that kðrÞ > 0 outside the event horizon,
gives the following results:

P̂ðrÞ ≤ 0; and P̂0ðrÞ < 0; ð5Þ
in the vicinity (r → rH) of the BH horizon. Using the
conditions derived above, we now proceed to prove the key
theorem of our paper.
Theorem.—If the matter content satisfies all three con-

ditions stated above and there exists a nonempty interval

rH ≤ r ≤ rp where the function ΔðrÞ ¼ ðfh0 − hf0Þ ≤ 0,
we must have P̂0ðrH ≤ r ≤ rpÞ ≤ 0.
The proof of this statement can be derived using Eqs. (2)

and (5). The WEC and the nonpositivity of ΔðrÞ in the
region rH ≤ r ≤ rp imply the first term in the right-hand
side of Eq. (2) is nonpositive. The same is true for the
second term as well due to the trace condition T ≤ 0 and
h0ðrÞ > 0. Then, it immediately follows that P̂0ðrÞ ≤ 0 in
the region rH ≤ r ≤ rp.
Though it remains to be shown that such a radial interval

exists where ΔðrÞ ≤ 0, which we shall consider in sub-
sequent paragraphs, let us first discuss its consequence. The
above theorem along with Eq. (5) suggests that P̂ðrÞ is
nonpositive at the horizon and then it decreases at least up
to r ¼ rp. Now following Refs. [10,25], let us define the
extent of the “hairosphere” rhair to be the radius at which
jP̂ðrÞj has a local maximum, then we must have rhair ≥ rp.
Thus, the hair on an asymptotically flat, static, and

spherically symmetric BH solution of any theory of gravity
cannot be shorter than rp. Thus, it is essential to know
whether rp has any physical characteristic of the BH
spacetime. Though it is not apparent, we shall now show
that rp corresponds to the location of the innermost LR.
To show this, we follow a similar analysis provided in

Ref. [25] and study the timelike and null geodesics
in the BH spacetime described by Eq. (1). The motion
of such a particle with energy E and angular momentum
L moving in the equatorial plane is described by
_r2 ¼ kðrÞ½ E2

fðrÞ −
L2

hðrÞ − ϵ�, where a dot denotes a derivative

with respect to some affine parameter. Also, ϵ ¼ 0
represents null geodesics and ϵ ¼ 1 represents timelike
geodesics. Circular geodesics are characterized by _r2 ¼
0 ¼ ð_r2Þ0. Solving these two equations, we get

ΔðrÞE2 ¼ ϵf2ðrÞh0ðrÞ; ΔðrÞL2 ¼ ϵh2ðrÞf0ðrÞ: ð6Þ
Since for timelike/null orbits, E2 and L2 should be non-
negative, we must have the quantity ΔðrÞ > 0 for timelike
circular geodesic, and ΔðrÞ ¼ 0 for null circular geodesics.
Note that the zeros of the function ΔðrÞ denote the
locations of the light rings of the spacetime. In order to
analyze the behavior of ΔðrÞ in the region ½rH;∞Þ, we
consider two auxiliary functions: LðrÞ ¼ fðrÞh0ðrÞ and
RðrÞ ¼ hðrÞf0ðrÞ such that Δ ¼ L − R. The behaviors of
these functions are as follows:

(i) At the horizon r ¼ rH, LðrHÞ ¼ 0, and RðrHÞ > 0.
This follows from the conditions that fðrHÞ ¼ 0,
f0ðrHÞ > 0, and h0ðrHÞ > 0.

(ii) For r → ∞, LðrÞ ∼ r, and RðrÞ ∼ r−ðD−4Þ. Here, we
have used the asymptotic flatness, which implies
fðrÞ → 1 with f0ðrÞ ∼ sgnðCÞr−ðD−2Þ and hðrÞ ∼ r2

with h0ðrÞ ∼ r as r → ∞.
The above conditions for D ≥ 4 suggest that ΔðrÞ has an
odd number of zeroes [irrespective of the sign ofC, denoted
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by sgnðCÞ], which correspond to the LRs outside the
outermost horizon. These LRs divide the interval
½rH;∞Þ into an even number of regions. Since in the
outermost region the quantity ΔðrÞ ≥ 0, we must have
ΔðrÞ ≤ 0 in the innermost region rH ≤ r ≤ r1γ , where r1γ
denotes the location of the innermost LR. This concludes
our proof that there exists a radial interval rH ≤ r ≤ rp with
ΔðrÞ ≤ 0, provided that we identify rp with r1γ . Therefore,
the hairosphere of a BH must extend at least up to the
innermost LR, rhair ≥ r1γ . In other words, we have shown
that BHs cannot have short hairs confined only in the near-
horizon region.
Some comments are as follows. Though our analysis

runs parallel to the work of Ref. [25], the novelty of our
work lies in its generality. Namely, we have not used any
field equations to obtain the result and it is valid for any
spacetime dimensions D ≥ 4. Now, we shall discuss few
interesting consequences of Eq. (2) in the following
subsections.

A. Size of static shells

Consider a static shell of finite thickness located entirely
between the outer horizon rH and the innermost LR r1γ ,
i.e., rH < r1 < r2 < r1γ , where r1 and r2 are the inner and
the outer radius of the shell. Now, if the matter field
obeys WEC and T ≤ 0 as discussed for the BH case,
Eq. (2) implies that P̂0ðr1 ≤ r ≤ r2Þ ≤ 0. Consequently,
this implies that the pressure at the outer surface is lower
than (or the same as) the pressure at the inner surface.
However, this contradicts the requirement that the pressure
must be zero at both surfaces, considering there is no matter
present outside the shell. Therefore, without using any field
equations, we conclude that a static shell of finite thickness
can not exist entirely between the outer horizon and the
innermost LR.

B. Bound on light rings in
Einstein-Gauss-Bonnet gravity

One can utilize our theorem in the context of any
particular theories of gravity (thereby, using the correspond-
ing field equations) to get an upper bound on the size of the
innermost LR by performing a similar calculation presented
in Refs. [31,32]. For the purpose of illustration, let us
consider the Einstein-Gauss-Bonnet (EGB) theory, which is
studied extensively in literature. It is the unique quadratic
curvature modification of GR so that the field equations
remain second order in time and the theory is free from
perturbative ghosts in any dimensionsD ≥ 5 [35]. Owing to
these nice features, EGB theory provides us with a well-
motivated model to study the properties of its BH solutions.
The Lagrangian of this theory is given by L ¼

Rþ α̂ðR2 − 4RαβRαβ þ RαβγδRαβγδÞ, which leads to the
field equation:

Gð1Þ
αβ þ α̂Gð2Þ

αβ ¼ 8πTαβ: ð7Þ

The explicit forms of the Gð1Þ
αβ and Gð2Þ

αβ can be found in
Ref. [36]. As a solution of Eq. (7), we consider a spherically
symmetric, static, and asymptotically flat BH metric in the
form of

ds2 ¼ −e−2δðrÞμðrÞdt2 þ 1

μðrÞ dr
2 þ r2dΩ2

D−2: ð8Þ

We assume that there exists a regular nonextremal event
horizon at r ¼ rH, so that μðrHÞ ¼ 0, μ0ðrHÞ > 0, and δðrÞ
and its radial derivative is finite there [31]. Due to the
asymptotic flatness, we must have μðrÞ → 1 and δðrÞ → 0
at infinity. Now, using the above field equations of EGB
theory, we get

δ0 ¼ −
8πr3ðpþ ρÞ

ðD − 2Þμ½r2 þ 4αð1 − μÞ� ;

μ0 ¼ 2r3ðD − 3Þ
r2 þ 4αð1 − μÞ

�
1 − μ

2r2
þ αðD − 5Þð1 − μÞ2

ðD − 3Þr4

−
8πρ

ðD − 2ÞðD − 3Þ
�
; ð9Þ

where Tt
t ¼ −ρ, Tr

r ¼ p, and α ¼ ðD − 3ÞðD − 4Þα̂=2. One
can easily find the location of the innermost LR r1γ , which is
given by the smallest positive root of the following equation:

2e−2δγμγ − r1γðe−2δμÞ0r1γ ¼ 0: ð10Þ

Here, μγ and δγ are shorthand for μðr1γÞ and δðr1γÞ, respec-
tively. Then, using Eqs. (9) and (10), we get an identity,

Nðr1γÞ ≔ ðD − 1Þμγ − ðD − 3Þ þ 8αμγð1 − μγÞ
ðr1γÞ2

−
2αðD − 5Þð1 − μγÞ2

ðr1γÞ2
¼ 16πr2γpðrγÞ

D − 2
: ð11Þ

Then, our theorem implies pðr1γÞ ≤ 0, which leads to the
following condition:

Nðr1γÞ ≤ 0: ð12Þ
Now, to get an upper bound on the size of the innermost LR,
we require an explicit form for μðrÞ. It is useful to define a
mass function

mðrÞ ¼ rH
2
þ ΩD−2

Z
r

rH

ρðxÞxD−2dx; ð13Þ

where ΩD−2 ¼ 2πðD−1Þ=2=Γ½ðD − 1Þ=2� is the surface
element of the unit (D − 2) sphere and we have chosen
the boundary condition, mðrHÞ ¼ rH=2 > 0. With these
conditions, the μ0 equation given by Eq. (9) admits the
following solution:
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μðrÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16αMðrÞ

rD−1

r �
; ð14Þ

where MðrÞ ¼ 8πmðrÞ=ðD − 2ÞΩD−2. Replacing Eq. (14)
in Eq. (12), we get the following polynomial inequality:

ðr1γÞ2D−6 þ 16αMγðr1γÞD−5 − ðD − 1Þ2M2
γ ≤ 0; ð15Þ

whereMγ ¼ Mðr1γÞ. The above equation has some important
consequences.An immediate onewouldbe the innermost LR
of anyD-dimensional BHs in GR (α ¼ 0) is bounded above
by the radius (rSTγ ) of the LR of Schwarzschild-Tangherlini
(ST) BH [37] with mass MST ≔ Mðr → ∞Þ. It follows
directly from the α → 0 limit of the above inequality that
r1γ;ðGRÞ ≤ ½ðD − 1ÞMγ�1=ðD−3Þ ¼ rSTγ , as MST ≥ Mγ. This
generalizes the result of Ref. [31] for higher dimensionalGR.
Now, for EGB gravity with α ≠ 0, we must choose α in

such a way that there exists a horizon (nonextremal) to
avoid naked singularity. In this context, it is possible to
generalize the above result of GR and demonstrate that
Boulware-Deser (BD) BH [38] has the largest LR. For
this purpose, let us consider the following polynomials in
r ∈ ½0;∞Þ as

F1ðrÞ ¼ r2D−6 þ 16αMγrD−5 − ðD − 1Þ2M2
γ ;

F2ðrÞ ¼ r2D−6 þ 16αMBDrD−5 − ðD − 1Þ2M2
BD;

where MBD ≔ Mðr → ∞Þ ≥ Mγ . For either signs of α,
Descartes’s rule of signs ensures that both F1 and F2 have
single positive root rm and rBDγ , respectively. Note that rBDγ
denotes the location of the LR of the BD BH with mass
MBD. Whereas Eq. (15) suggests that the innermost LR of
any BH solution of EGB gravity is bounded above by rm,
i.e., r1γ ≤ rm.
Since MBD ≥ Mγ, the function F2ðr ¼ 0Þ has a value

less than F1ðr ¼ 0Þ. Then, it is suggestive to evaluate F2ðrÞ
at the location of the root (rm) of F1ðrÞ. Some simple
algebraic manipulation gives us

F2ðrmÞ ¼
�
r2D−6
m

Mγ
þ ðD − 1ÞMBD

�
ðMγ −MBDÞ: ð16Þ

SinceMBD ≥ Mγ , we haveF2ðrmÞ ≤ 0. This, in turn, implies
the following inequality must hold: rBDγ ≥ rm ≥ r1γ , which
completes the proof that the size of the innermost LR of BH
solutions of EGB gravity is bounded above by that of
Boulware-Desser LR.

C. Comments on horizonless compact objects

The scope of our discussion has been limited to BHs thus
far. In this section, we will try to extend our analysis to the
horizonless compact objects (i.e. objects with LRs outside,
as we shall discuss later), described by the metric in Eq. (1).
This time, in the absence of a horizon, we set the inner
boundary conditions Rð0Þ ¼ 0 and Lð0Þ > 0 at the center

of the object r ¼ 0 which is deduced from Ref. [39] with
the assumption that hð0Þ ¼ 0. However, the behaviors of
the auxiliary functions LðrÞ and RðrÞ defined earlier remain
unchanged at spatial infinity due to asymptotic flatness.
Following Ref. [39], regularity of the matter configura-

tions requires various components of Tμ
ν such as ρ and

p to be finite and well behaved at r ¼ 0. Thus, we have
P̂ðrÞ ¼ 0 at the center of the compact object. Now, for the
purpose of extending the no-short hair result for horizonless
objects, we need to assume that the trace T of the energy-
momentum tensor Tμ

ν is non-negative (T ≥ 0) [30], which
is exactly opposite to the BH scenario. While the other
two assumptions on the matter, namely the WEC and
asymptotic falloff of P̂ðrÞ, remain unchanged as in the
case of BHs.
Just like the BH scenario, under these conditions the

quantity ΔðrÞ ≥ 0 in the region 0 ≤ r ≤ r1γ , where r1γ is the
location of the innermost LR. Then, we must have P̂0ðrÞ≥0
in the same region. This statement, along with Eq. (2)
implies that P̂ðrÞ starts with a zero value at the center of the
compact object and then, it increases with r at least up to
r ¼ r1γ . If we define r ¼ rhair to be the radius at which
jP̂ðrÞj has a local maximum, then we must have rhair ≥ r1γ .
Thus, for horizonless compact objects also, the hair is
extended at least up to the innermost LR. This generalizes
the results of Ref. [30] in a theory-agnostic fashion.
A few comments on this result are as follows. First, note

that the condition T > 0 is not satisfied by “usual” matter
content, since for those ρ ≫ ðp; pTÞ. Therefore, for ordi-
nary celestial objects, the no-short hair theorem is not
applicable. However, for objects made of “exotic” matter,
T > 0 condition may hold true and then, the no-short hair
result can give us useful information about their structures.
Another point to note is that, the asymptotic falloff
condition of P̂ðrÞ makes sure of the existence of LRs
(an even number of them); otherwise in the absence of LRs,
P̂ðrÞ would increase monotonically with r.
An extension of the above result could be to consider

hairy wormhole spacetimes by setting the inner boundary
condition at the throat (r ¼ b > 0) as long as LðbÞ > RðbÞ,
and assuming other necessary conditions such as asymp-
totic flatness and WEC with T > 0 hold true.

III. CONCLUSION AND DISCUSSIONS

In this work, we have generalized the no-short hair
theorem of GR discussed in Refs. [10,25] in a theory-
agnostic way, which is valid for arbitrary spacetime
dimensions (D ≥ 4). Such a result has both theoretical
and observational significance. On the theory side, it helps
us understand some key features of BH solutions of
modified gravity in a unified way. Additionally, this
theorem has relevance for both EHT (shadow) and GW
(ringdown quasinormal modes) observations that could
probe the near-field region of a BH. Since the hairosphere
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cannot be confined solely in the near-horizon regime,
exploring the near-LR region alone might give us important
information about the signatures of BH hairs. Moreover,
the presence of hairs near the LRmay give rise to intriguing
new phenomena, including gravitational lensing effects and
potential modifications to the BH shadow.
Apart from these interesting results, we have discussed

several useful consequences of our analysis. For example,
we have shown that it is possible to set an upper bound on
the size of the innermost LR of various theories of gravity
including EGB theory in D ≥ 5 dimensions. This bound
may be translated to constrain both the shadow size [32]
and the real part of the eikonal quasinormal modes of EGB
BHs under perturbation [31]. Also, a few comments on the
possible generalization of the no-short hair theorem for
horizonless compact objects are outlined.
The implications of our findings are significant and

warrant further consideration. For instance, it will be
interesting to extend our work when various assumptions,

such as spherical symmetry, asymptotic flatness, or WEC
on matter are relaxed. Especially, it will be of great
observational relevance if the short-hair behavior of rotat-
ing BHs could be investigated [40]. We leave such possible
extensions for future study.
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