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We present the one-loop radiative corrections to the muon decay in Uð1Þz extensions of the standard
model. We compute the mass of theW boson using those corrections and compare it to an approximation of
the complete one-loop prediction implemented in automated computational tools. We point out that the
truncation of the complete formulas become unreliable if the mass of the Z0 boson, corresponding to the
new Uð1Þz gauge group, is larger than about 1 TeV.
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The measurements for extracting the mass of the W
boson at hadron colliders [1–4] are steadily improving, and
its precision is approaching the per myriad level [5,6]. The
caveat is that the last two results differ quite significantly,
and there is vigorous research activity to find the origin of
this disagreement. The current combined world average of
the Particle Data Group [7] MW ¼ ð80377� 12Þ MeV
does not include the CDF 2022 result.
On the theoretical side, the SM prediction has also

reached a similar precision for MW by including the
one-, two-, and leading three-loop quantum corrections
in perturbation theory [8,9]. These experimental and
theoretical advances have elevatedMW to a prime precision
parameter of the standard model (SM), which any exten-
sion of the SM must respect. Currently, there is a 2σ
discrepancy between the theoretical prediction of the SM
and the world average forMW, which does not warrant any
new physics effect, but one at least expects that any physics
beyond the standard model (BSM) should not worsen the
agreement between the measured value and the theoretical
prediction. Thus we assume that the potential new physics
contributions to MW must lie within the difference of the
experimental value and the SM prediction and the correc-
tions stemming from new physics must be determined with
similar precision as the SM value.
The mass of the W boson can best inferred from the

muon decay width. In this Letter, we compute the complete
one-loop radiative corrections to the muon decay process,
hence to MW , for the first time in a specific class of

extensions of the SM. We consider models where the SM
gauge group supplemented by an additional Uð1Þz gauge
symmetry and the particle spectrum includes a complex
scalar field χ that is neutral under the standard model gauge
interactions, but contributes to the mass of the neutral
gauge bosons through spontaneous symmetry breaking
(SSB). U(1) extensions of the SM are popular, in spite
of being relatively simple, for they can explain a multitude
of BSM phenomena [10–17].
The specific example we have in mind is the superweak

extension of the standard model (SWSM) [18], although
different charge assignments are also possible, and our
formulas do not depend on the choice explicitly. The
SWSM contains also three generations of SM sterile
right-handed neutrinos that are clearly necessary for the
cancellation of gauge and gravity anomalies and to explain
the origin of neutrino masses. We do not include their effect
here to simplify the parameter dependence in the numerical
analysis, but it can be seamlessly integrated into our
complete one-loop prediction.
The Lagrangian of the scalar fields contains a potential

energy with quadratic and quartic terms such that the
nonvanishing vacuum expectation value (VEV) v of the
Brout-Englert-Higgs (BEH) field breaks the usual SUð2ÞL ⊗
Uð1ÞY symmetry, while the VEVwof the χ breaks the Uð1Þz
symmetry via SSB.
In addition to the appearance of the massive scalar

bosons, the SSB generates mass terms also for the gauge
bosons. The Lagrangian containing the vector boson (VB)
mass terms is

LVB
M ¼ v2

2

�
g2L
2
Wþ

μ W−μ þ g2z
2
tan2βB0

μB0μ

þ 1

4

�
gyBμ þ ðgz − gyzÞB0

μ − gLW3
μ

�
2
�
; ð1Þ

*zoltan.peli@ttk.elte.hu
†zoltan.trocsanyi@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, L031704 (2023)
Letter

2470-0010=2023=108(3)=L031704(6) L031704-1 Published by the American Physical Society

https://orcid.org/0000-0001-6528-4380
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L031704&domain=pdf&date_stamp=2023-08-28
https://doi.org/10.1103/PhysRevD.108.L031704
https://doi.org/10.1103/PhysRevD.108.L031704
https://doi.org/10.1103/PhysRevD.108.L031704
https://doi.org/10.1103/PhysRevD.108.L031704
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where tan β ¼ w=v, gL, gy, and gz are the SUð2ÞL, Uð1ÞY ,
and Uð1Þz couplings, while the mixing coupling gyz para-
metrizes the kinetic mixing between the Bμ and B0

μ fields

[19]. The fields W�
μ ¼ ðW1

μ � iW2
μÞ=

ffiffiffi
2

p
are the charged,

while the neutral gauge eigenstates are Bμ, B0
μ [belonging to

the Uð1ÞY and Uð1Þz symmetries], andW3
μ. The latter fields

are related to the neutral mass eigenstates Aμ, Zμ, and Z0
μ

via two rotations,

0
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ð2Þ

where we introduced the abbreviations cX ¼ cos θX and
sX ¼ sin θX for mixing angles. The Weinberg angle θW is
defined as

sW ¼ gy
gZ0

; with the abbreviation g2Z0 ¼ g2y þ g2L; ð3Þ

so e ¼ gLsW , where gL is the SU(2) gauge coupling and e is
the elementary charge. The Z − Z0 mixing angle θZ ∈
ð−π=4; π=4Þ is defined implicitly in terms of effective
couplings

κ ¼ 2zϕgz − gyz
gZ0

and τ ¼ 2gz
gZ0

tan β ð4Þ

as

tanð2θZÞ ¼ −
2κ

1 − κ2 − τ2
; ð5Þ

with zϕ being the z charge of the BEH scalar. Then the
masses of the gauge bosons are

MW ¼ 1

2
gLv; MZ ¼ MW

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðcZ; sZÞ

p
;

MZ0 ¼
MW

cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðsZ;−cZÞ

p
; ð6Þ

with Rðx; yÞ ¼ ðx − κyÞ2 þ ðτyÞ2. The free parameters
from the extended gauge sector are either the
Lagrangian couplings ðgz; gyzÞ or the effective couplings
ðκ; τÞ. The latter can be expressed as functions of exper-
imentally more accessible parameters MZ0 and θZ as

κ ¼ −cZsZ
M2

Z −M2
Z0

c2ZM
2
Z þ s2ZM

2
Z0
; τ ¼ MZMZ0

c2ZM
2
Z þ s2ZM

2
Z0
: ð7Þ

The well-known SM relationship between the W and Z
boson masses is modified at tree level to

M2
W

c2W
¼ cZ2M2

Z þ s2ZM
2
Z0 : ð8Þ

This formula coincides with the one obtained later in
Ref. [20] using sum rules for tree-level unitarity in U(1)
extensions.
The mass of the W boson with small theoretical

uncertainty can be extracted from the muon decay width.
The order OðαÞ corrections to the muon decay process in
the SM can be summarized by properly modifying the
tree-level relation among the Fermi coupling GF, the fine
structure constant α, and the mass of the W boson, which
was first derived in Ref. [21],

GFffiffiffi
2

p ¼ πα

2M2
Wð1 − c2WÞ

½1 − Δr�−1; ð9Þ

where the parameter Δr collects the radiative corrections
that enter electroweak precision observables, as well as
being used to express MW −MZ interdependence. In a
Uð1Þz extension, the relation among the masses of the
gauge bosons including the radiative corrections follows
from Eqs. (8) and (9) as

M2
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2
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2
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2
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1
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s !
: ð10Þ

We can classify the quantum corrections to the tree-level
amplitude for the muon decay process into three categories:
(i) the renormalization of the SU(2) gauge coupling gL
collected into the counterterm δgL, (ii) loop corrections to
theW boson propagator, and (iii) contribution of the vertex
and box loop diagrams δBV to the muon decay. In our
notation, we split a generic bare coupling gð0Þ (the super-
script referring to the order of the perturbative expansion)
into the renormalized coupling g and a counterterm δg:
gð0Þ ¼ gþ δg. We decompose the VEVs and masses simi-
larly, for example, vð0Þ ¼ vþ δv and Mð0Þ ¼ MW þ δMW .
The Lagrangian (1) containing the renormalized gauge

boson masses can be recast as

LVB
M ¼ ðM2

W þ δM2
WÞWþð0Þ

μ W−ð0Þ;μ

þ 1

2
ðM2

Z þ δM2
ZÞZð0Þ

μ Zð0Þ;μ

þ 1

2
ðM2

Z0 þ δM2
Z0 ÞZ0ð0Þ

μ Z0ð0Þ;μ

þ ðδM2
ZAZ

ð0Þ
μ þ δM2

Z0AZ
0ð0Þ

μÞA0;μ

þ δM2
ZZ0Zð0Þ

μZ0ð0Þμ; ð11Þ
where MW , MZ, and MZ0 are given in Eq. (6), and the
counterterms can be written symbolically as
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δM2
x ¼

X
i¼y;L;z;yz

cx;iδgi þ cx;vδvþ cx;wδw; ð12Þ

where x ¼ W, Z, Z0, ZA, Z0A, ZZ0. The coefficients cx;i are
functions of the renormalized couplings gy, gL, gz, and gyz
and VEVs are v, w. In a similar way as done in the SM, we
can eliminate δv in favor of the category (i) corrections,

δgL ¼ δe
sW

−
ec2W

2M2
Ws

3
W

�
c2W

�
c2ZδM

2
Z þ s2ZδM

2
Z0

− 2ðM2
Z −m2

Z0 ÞðsZδsZÞ
�
− δM2

W

�
; ð13Þ

where

2δe
e

¼ −
∂ΠAAðk2Þ

∂k2

����
k2¼0

− 2
sW
cW

�
cZ
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Z
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ΠZ0Að0Þ
M2

Z0

�
;

ð14Þ

and

δsZ
cZ

¼ c2ZΠZZ0 ðM2
ZÞ þ s2ZΠZZ0 ðM2

Z0 Þ
M2

Z −M2
Z0

−
1

2
sZcZ

�
∂ΠZZðk2Þ

∂k2

����
k2¼M2

Z

−
∂ΠZ0Z0 ðk2Þ

∂k2

����
k2¼M2

Z0

�
:

ð15Þ

In Eq. (15), Π is ð−iÞ times the transverse part of
self-energy graphs. The one-loop charge renormalization
counterterm δe is exactly equal to the one-loop charge
renormalization expression in the SM because the formula
in the parentheses is independent of θZ. In the counterterm
δsZ, the Z − Z0 mixing self-energy ΠZZ0 ðM2

Z0 Þ and the
derivatives ∂k2ΠZZðk2Þ, ∂k2ΠZ0Z0 ðk2Þ appear as completely
new contributions of the extended gauge sector through the
renormalization of the Z − Z0 mixing angle θZ. We shall
present the detailed derivation of our formulas for δgL, δe,
and δsZ elsewhere [22].
Our main result is the complete one-loop prediction in

Uð1Þz extensions of the SM to the parameter Δr defined in
Eq. (9). In the on shell renormalization scheme,

ΔrBSM ¼ ReΠWWðM2
WÞ − ΠWWð0Þ
M2

W
þ δBV þ 2δe

e

þ c2W
s2WM

2
W

�
c2WReΠZZðM2

ZÞ − ReΠWWðM2
WÞ
�

− s2Z
c2W
s2W

c2W
M2

W

�
ReΠZZðM2

ZÞ − ReΠZ0Z0 ðM2
Z0 Þ

þ 2ðM2
Z −M2

Z0 Þ δsZ
sZ

�
; ð16Þ

where the first two lines are only formally the same as in the
SM as they also include the BSM contributions. The one-
loop self energies ΠWWðk2Þ, ΠZZðk2Þ [category (ii) correc-
tions], and the box and vertex contribution δBV (third
category) have to be evaluated analogously to the SM, but
with the inclusion of the BSM couplings and fields. We
used the projection method of Ref. [23] to compute δBV.
The same applies to the last two terms where the new
feature is that c2W and s2W ¼ 1 − c2W has to be evaluated
according to Eq. (8).
The expression (16) must be finite and gauge indepen-

dent as it collects the complete one-loop radiative correc-
tions to the muon decay process. We checked explicitly that
the ϵ poles cancel in Δr, and it is independent of the gauge
parameters ξi (i ¼ A, W, Z, Z0).
To make numerical predictions, we adapted our findings

to the MS renormalization scheme, employed frequently.
We used the computational algorithm of Ref. [24] where
the prediction for the pole mass of the W is expressed as
M2

W ¼ M2
W;SMð1þ ΔWÞ. In this equation, we use the fit

formula in Eq. (45) of Ref. [9] for the standard model value
M2

W;SM, while the correction term is written in terms of MS
renormalized parameters, denoted here by a hat,

ΔW ¼ ŝ2W
ĉ2W − ŝ2W

�
ĉ2W
ŝ2W

Δρ̂þ Δr̂ð1ÞW

�
; ð17Þ

where ĉ2W and ŝ2W are the SM values computed as in
Ref. [9]. As mentioned, the renormalization constant for the
electric charge at one loop in the Uð1Þz extensions is
exactly the same as in the SM, hence our formula for ΔW
does not contain the last term of Eq. (5) in Ref. [24].
The term Δρ̂ is the difference of the full BSM and the

SM predictions for ρ̂, with formal expansion in perturbation
theory at one-loop accuracy as Δρ̂ ¼ Δρ̂ð0Þ þ Δρ̂ð1Þ, where
at tree level

Δρ̂ð0Þ ¼
�
M2

Z0

M2
Z
− 1

�
s2Z: ð18Þ

Denoting the one-loop contributions in the full BSM by

Δρ̂ð1ÞBSM, we have

Δρð1ÞBSM ¼ 1

M2
W

�
ReΠWWðM2

WÞ

− ĉ2W

�
c2Z

�
ReΠZZðM2

ZÞ − 2sZcZΠZZ0 ðM2
ZÞ
�

þ sZ2
�
ReΠZ0Z0 ðM2

Z0 Þ − 2sZcZΠZZ0 ðM2
Z0 Þ
�

þ s2Zc
2
ZðM2

Z −M2
Z0 Þ

×

�
∂ΠZZðk2Þ

∂k2
−
∂ΠZ0Z0 ðk2Þ

∂k2

�����
k2¼M2

Z0

�	
; ð19Þ
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so the difference to the SM is

Δρ̂ð1Þ ¼ Δρ̂ð1ÞBSM − Δρ̂ð1ÞSM: ð20Þ

The term Δr̂ð1ÞW collects the one-loop diagrammatic correc-
tions to the muon decay process,

Δr̂ð1ÞW;BSM ¼ ReΠWWðM2
WÞ − ΠWWð0Þ
M2

W
þ δBV; ð21Þ

so the difference to the SM is

Δr̂ð1ÞW ¼ Δr̂ð1ÞW;BSM − Δr̂ð1ÞW;SM; ð22Þ

where the subtracted term is formally the same as for-
mula (21), but computed with SM degrees of freedom.
The mass MW can also be computed with automated

programs once the model and the input parameters are
defined, see for instance, SARAH/SPheno [25–28] and
FlexibleSusy [24,29]. However, the predictions for MW in
U(1) extensions provided by these programs employ

approximate one-loop BSM corrections for Δρ̂ð1ÞBSM in
Uð1Þz type extensions. Our goal here is to check and explore
by a numerical analysis the validity of these approximations
depending on the values of the input parameters and to point
out that such automated computations can lead to signifi-
cantly different prediction than ours.
We investigate the predictions for MW at fixed renorm-

alization scale μ ¼ MZ in the MS scheme in two approx-
imations: (i) one includes the complete set of one-loop
radiative corrections and two-loop SMcorrections computed
by us and (ii) a truncation when the one-loop radiative
corrections to ρ̂ are formally the same as in the SM,

Δρð1ÞBSM ¼ 1

M2
W

�
ReΠWWðM2

WÞ − ĉ2WReΠZZðM2
ZÞ
�
; ð23Þ

butwith self-energies evaluated in theBSMextension,which
is the Uð1Þz extension in our work. Case (ii) is implemented
in automated high energy physics tools such as SARAH/SPheno
[25–28] and FlexibleSusy [24,29].
We use the set of input parameters

GF ¼ 1.1663787 × 10−5 GeV−2; MZ ¼ 91.1876 GeV;

MH ¼ 125.25 GeV; mt ¼ 172.83 GeV; mb ¼ 4.18 GeV;

αsðMZÞ ¼ 0.1179; α ¼ ð137.036Þ−1; Δαð5Þhad ¼ 0.02760 ð24Þ

taken from [7]. In particular, the value of the top quark pole
mass mt is presented in the Quark Masses subsection of

Chap. 10 and the numerical value for Δαð5Þhad is the average
of the results presented in Table 10.1 of Ref. [7].
Once the parameters in (24) are set, the prediction

for MW at fixed μ depends on five free parameters
MZ0 ; sZ;MS; sS, and tan β whereMS is the mass of the scalar
particle appearing after SSB of the complex scalar field χ and
sS is the scalarmixing angle. The SM is recovered in the limit
of vanishing massive neutral gauge boson and scalar mix-
ings, sZ ¼ sS ¼ 0, which produces our reference SM pre-
dictions in agreement with the literature,

MW;SM ¼ 80.353 GeV; ŝ2W;SMðMZÞ ¼ 0.2313;

α̂−1SMðMZÞ ¼ 127.952;

once the decoupling of the top quark [30] is applied.
The extension of the SM gauge sector affects the vector

and axial vector (V-A) couplings of the Z boson and
introduces the Z0 boson, which also interacts with fermions
through its own V-A couplings. The exact form of these
couplings depend on the z-charge assignment of the new
Uð1Þz gauge group. In order to present numerical values for
our predictions, we select the SWSM where the z charges
are fixed as zQ ¼ 1=6, zU ¼ 7=6, and zϕ ¼ zU − zQ [18].

We compare the predictions of the two cases in order to
explore the validity of the approximations applied in (ii).
We present our findings as benchmark points expressed as
the differences ΔMW ¼ MW −MW;SM, sampled from dif-
ferent regions of the parameter space spanned by
MZ0 ; sZ;MS; sS, and tan β. In general, the mixing angle
θZ severely affects the predictions for electroweak observ-
ables. We present our benchmark points depending on the
ratios MZ0=MZ and MS=Mh being smaller or larger than 1
(see Supplemental Material [31]).
A light (heavy) Z0 boson with MZ0 < MZ (MZ0 > MZ)

contributes a negative (positive) shift to the mass of the W
boson. For light new physics (Table I), MZ0=MZ ≪ 1, both
cases provide a good approximation. For heavy new
physics (Table II), however, when MZ0=MZ ≫ 1, the
approximation of case (ii) may become unreliable and
the difference from the complete prediction (i) can surpass
the size of the typical experimental uncertainty of about
10 MeV. The advantage of the computational algorithm of
Ref. [24] is that it removes the nondecoupling logarithmic
contributions from the one-loop formula. Those logarithms
can become potentially large and are canceled in perturba-
tion theory only if the two-loop BSM contributions are also
computed. The cancellation of those large logarithms can
be seen in Fig. 1 where we present the dependence of our
prediction forMW on the renormalization scale μ. The solid
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line corresponds to case (i) and the dotted one to case (ii).
The input values are the same as in Table II with tan β ¼ 10
and MS ¼ 500 GeV.
We also compare the two predictions by showing

the 2σ allowed band jMexp
W −MW j < 2σ, where MW

is our theoretical prediction in the Uð1Þz extension,
Mexp

W is the experimentally measured value, and

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2exp þ σ2theo þ σ2param

q
, with σexp being the uncer-

tainty of Mexp
W , σtheo being the theoretical, and σparam

being the parametric uncertainty of our prediction MW .
The theoretical uncertainty is estimated in Ref. [9] to be
σtheo ¼ 4 MeV, while we estimate the parametric uncer-
tainty with the input values presented in Eq. (24) to be
σtheo ¼ 8 MeV. Figure 2 shows the 2σ allowed bands
obtained with the PDG world average [7] for Mexp

W . We
see that the approximation (ii) leads to different allowed
regions for a heavy Z0 whose extent depends on the

values of the free parameters. This warns us that one
has to be careful when using the automated computa-
tions for the radiative corrections to the mass of the
W boson.
In summary, we computed the one-loop corrections Δr

to the muon decay in a general Uð1Þz extension of the
standard model. We did not make any assumptions for the
parameters of the model or employing any truncations
beyond the systematic perturbation theory. We presented
the complete expression for Δr in the on-shell renormal-
ization scheme and also in the MS scheme. We found that,
not only additional loops appear in the transverse W and Z
boson self-energies ΠWWðp2Þ, ΠZZðp2Þ, and in the box and
vertex corrections δBV, but the Z0 boson self-energy
ΠZ0Z0 ðp2Þ and the wave function renormalizations ZZZ,

FIG. 1. The dependence of our prediction for MW on the
renormalization scale μ in case (i) (solid green curve) and
(ii) (dotted blue curve).

TABLE I. Predictions for ΔMW ¼ MW −MW;SM in MeV units
at parameter values MZ0 ¼ 50 MeV, sZ ¼ 0.005, and sS ¼ 0.1.

sZ 5 × 10−4

MS

0.5 TeV 5 TeV

tan β (i) (ii) (i) (ii)

0.1 −1 −1 −2 −2
1 −1 −1 −2 −2
10 −1 −1 −2 −2

TABLE II. Predictions for ΔMW ¼ MW −MW;SM in MeVunits
at parameter values MZ0 ¼ 5 TeV and sS ¼ 0.1.

sZ 5 × 10−4 7 × 10−4

MS

0.5 TeV 5 TeV 0.5 TeV 5 TeV

tan β (i) (ii) (i) (ii) (i) (ii) (i) (ii)

10 37 10 35 13 75 29 73 36
20 39 34 35 34 81 76 74 79
30 40 38 35 37 83 85 75 85

FIG. 2. Comparison of the predictions by plotting the regions
allowed by the requirement jMexp

W −MW j < 2σ for the fixed
values sS ¼ 0.1 and MS ¼ 500 GeV in the MZ0 − sZ plane for
large values of MZ0 .
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ZZ0Z0 , and ZZZ0 also contribute to Δr. The new terms appear
in the renormalization of θW in the on shell scheme or in
the ρ̂ parameter in the MS scheme.
The high energy physics tools that can automatically

compute the radiative corrections to MW in BSM models
neglect several terms from the complete expression in
Eq. (19) for Uð1Þz type BSM extensions. We pointed out
using a specific example model, the SWSM [18], that
the effect of the neglected terms can affect significantly the
prediction. In qualitatively different regions of the param-
eter space spanned by the free input parameters, we
selected benchmark points for small Z − Z0 mixing sZ.
We found that neglecting ZZZ, ZZ0Z0 , and ΠZ0Z0 ðp2Þ

produces small OðMeVÞ numerical differences for
tan β ≥ 1 in the region where the mass of the new neutral
gauge boson is much lighter then the Z boson, but for
MZ0 ≫ MZ the use of the complete expression employed in
case (i) is more appropriate.
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[22] Z. Péli and Z. Trócsányi (to be published).
[23] M. Awramik, M. Czakon, A. Onishchenko, and O. Veretin,

Phys. Rev. D 68, 053004 (2003).
[24] P. Athron, M. Bach, D. H. J. Jacob, W. Kotlarski, D.

Stöckinger, and A. Voigt, Phys. Rev. D 106, 095023 (2022).
[25] W. Porod, Comput. Phys. Commun. 153, 275 (2003).
[26] W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458

(2012).
[27] F. Staub, Comput. Phys. Commun. 181, 1077 (2010).
[28] F. Staub, Comput. Phys. Commun. 185, 1773 (2014).
[29] P. Athron, J.-h. Park, D. Stöckinger, and A. Voigt, Comput.

Phys. Commun. 190, 139 (2015).
[30] S. Fanchiotti, B. A. Kniehl, and A. Sirlin, Phys. Rev. D 48,

307 (1993).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevD.108.L031704 for the
Mathematica notebook MW_SWSM.nb, used for all com-
putations presented here.
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