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SU(2) gauge theory in 2+ 1 dimensions on a plaquette chain obeys
the eigenstate thermalization hypothesis
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We test the eigenstate thermalization hypothesis (ETH) for 2 4+ 1 dimensional SU(2) lattice gauge
theory. By considering the theory on a chain of plaquettes and truncating basis states for link variables at
j =1/2, we can map it onto a quantum spin chain with local interactions and numerically exactly
diagonalize the Hamiltonian for reasonably large lattice sizes. We find energy level repulsion in momentum
sectors with no remaining discrete symmetry. We study two local observables made up of Wilson loops and
calculate their matrix elements in the energy eigenbasis, which are shown consistent with the ETH.

DOI: 10.1103/PhysRevD.108.L031504

I. INTRODUCTION

How an isolated quantum system thermalizes is a long
standing question [ 1-3]. In particular, we want to know how
expectation values of local observables and their fluctua-
tions approach predictions from thermal statistics such as the
microcanonical (mc) ensemble after the system is perturbed
out of equilibrium. A significant progress in our under-
standing has been achieved over the last thirty years,
highlighted in the formulation of the eigenstate thermal-
ization hypothesis (ETH) [4-6]. Many systems that are
nonintegrable and/or classically chaotic have been shown to
obey the ETH (see recent reviews [ 1-3]). Known exceptions
of the ETH include integrable systems [7-9], many-body
localizations [10—13] and quantum scars [14-22].

Although the ETH has been widely scrutinized in many
quantum systems, very few studies tested the ETH for
gauge theories (here we focus on relativistic quantum field
theories invariant under local gauge transformations given
by Lie groups). Testing the ETH for gauge theories is not
just an academic question, but has many practical appli-
cations in understanding how systems of Standard Model
particles thermalize. One example is the reheating stage of
the early Universe right after the inflation [23], at the end of
which the Universe reaches a radiation-dominated thermal
equilibrium [24-29]. Another example is the initial stage of
relativistic heavy ion collisions, when highly occupied
gluon states isotropize and reach local equilibrium
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approximately [30,31] so that viscous hydrodynamics
can be applied to describe the following evolution, which
is critical in our understanding of the thermal behaviors in
various particles’ yields [32,33]. Many studies have been
devoted to understand the initial rapid thermalization in
heavy ion collisions, by using techniques such as pertur-
bative calculations [34,35], the color-glass condensate
framework [36-41] and the AdS/CFT correspondence
[42-48], highlighted by the recent discoveries of attractor
behaviors in certain quantities [49-59], which are deter-
mined by slow modes that govern the early time dynamics
before hydrodynamics becomes applicable.

Despite the many achievements in our understanding of
thermalization in the early Universe and heavy ion colli-
sions, an explanation fully based on the quantum wave
function is still desirable, since it can provide insights about
thermalization from a different perspective. The ETH is one
possible quantum explanation in which the quantum wave
function does not decohere during the thermalization
process. Previous studies have shown that non-Abelian
gauge theories in 3 4+ 1 dimensions are classically chaotic
[60-63], which implies that the ETH is very likely to hold
for them. However, there is no direct and explicit demon-
stration of the ETH for non-Abelian gauge theories. One
difficulty is the rapid growth of the Hilbert space as the
system size on a lattice increases and/or any truncation is
removed, which prohibits exact diagonalization of the
Hamiltonian.

Here in this paper, we provide the first test of the ETH for
non-Abelian gauge theories. Motivated by recent develop-
ments of quantum simulation for gauge theories [64—94],
we use the Kogut-Susskind Hamiltonian formulation for
non-Abelian gauge theories [95]. More specifically, we
consider 2 + 1 dimensional SU(2) gauge theory on a chain
of plaquettes. By truncating the physical Hilbert space,
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we are able to exactly diagonalize the Hamiltonian on
lattices of various sizes and investigate the asymptotic
scaling properties of local observables as the system size
increases, which is the essential ingredient of the ETH.

II. REVIEW OF ETH
We consider the time evolution of an isolated quantum
system with an initial state p(z = 0). At a later time 7, the
expectation value of a local observable O is given by

(0)(1) = ZOnm/)mn Eat (1)

Tr[Op(t)

where O,,, = (n|O|m), p,., = (m|p|n) and |n) denotes
eigenstates of H with eigenenergies E,. The question of
interest is how Eq. (1) approaches the thermal equilibrium
value, e.g., the microcanonical ensemble average (O),,.(E)
where the system’s energy is fixed by E = Tr(Hp).

The question can be answered by the ETH, which states
that matrix elements of the observable in the energy
eigenbasis are given by [1-3]

me (

Onm = <0>mC (E)énﬂl + e_S<E)/2f(E7 w)anv (2)

where E = (E, + E,)/2, » = E, — E,,, S(E) denotes the
thermodynamic entropy of the system at the energy E,
which scales as the system size, and R,,, is a random
variable with zero mean and unit variance. The function
f(E,®) is smooth and gradually vanishes as w — co.
Now we are going to use the assumption in Eq. (2) to
explain how the observable expectation value in Eq. (1)
approaches the thermal equilibrium value after some time.
To this end, we consider a generic initial state that has
significant overlaps with N, eigenstates. Typically we
expect p,,,(0) ~ 1/N if m, n are among these N eigen-
states and p,,,(0) ~ 0 otherwise [6]. At time ¢ = 0, the off-
diagonal contribution to Eq. (1) is given by

n#m

Z Onmpmn

N t 1
ypical typical
Ootf diag — NS Ooff—diag ’ <3)

s

typical
off-diag
matrix elements of the operator O in the basis of those N
eigenstates. On the other hand, at large time ¢, the off-

diagonal contribution becomes

where O is the typical value of the off-diagonal

n#m /N2
N .
E e i(E,—E,)t nm . (0) ~ s Otyplcal

_ ~typical
Ns off-diag — 0 i (4)

off-diag®

where the number of contributing off-diagonal terms is the
square root of that at # = 0 due to the dephasing at large
time ¢ [6]. Because of the exponential decay factor in the
off-diagonal part of Eq. (2) with respect to the diagonal
part, the off-diagonal contribution to (O)(¢) at large time ¢

is much smaller than the diagonal microcanonical contri-
bution, which means the observable approximately reaches
its thermal expectation value (O),,.. The timescale at which
the transition from Eq. (3) to Eq. (4) happens gives the
thermalization timescale.

In the following, we will test if Eq. (2) holds for 2 4 1
dimensional SU(2) lattice gauge theory.

III. 2 +1 DIMENSIONAL SU(Q2) LATTICE
GAUGE THEORY

The Kogut-Susskind Hamiltonian of the theory can be
written as [95] (see also Ref. [96])

~L3 Yz )

hnks a g plaquettes

where a in the denominator is the lattice spacing and that in
the superscript denotes SU(2) indexes that are implicitly
summed over, g is the gauge coupling with the mass
dimension [g] = 0.5 in 24 1 dimensions, i = x or y for
spatial directions (implicitly summed), n = (n,, n,) repre-
sents a lattice point, and Z(n) is the plaquette operator
defined as

Z(n) = Tr[U'(n,3
Un.3) = eidtor, (6)

where U(n, 2) is alink variable on the link fromn ton + 7 and
T¢ =06%/2 is the generator of the SU(2) group in the
fundamental representation. The electric field operators EY
in Eq. (5) can generate a gauge transformation either on the
left end of a link (denoted as EY ;) or on the right end (labeled
as E%;) and satisfy the following commutation relations [97]

[Egz( l/2) (n?})] _5ijTaU(n’}.)’
[Efi(n +1/2), U(n, J)] = 5,;U(n, )T,
[Ef;. ELi] = if " Ef,.
(i Eki] = if " Eg;. (7)

where the argument n + /2 of the electric fields means they
live on the link between n and n + 7 and f9¢ = £ is the
structure constant of the SU(2) group.

Since electric fields can generate gauge transformations
on both the left and right hand sides of a link variable, the
link variable can be represented by two irreducible repre-
sentations with the same highest weight (two angular
momentum states labeled by |jm) with the same j), i.e.,
|jm;mpg). They serve as basis states in the Hilbert space and
are normalized as (j'mymp|jmpmg) = 8; ;6 m, Omt my-
In this basis, the matrix element of a link vanable U,y
is (U is a SU(2) matrix in the fundamental representation
and U, , isoneentry with n,,ng € {1/2,-1/2})[97,98]
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<j/m/Lm/R|UnLnR |ijmR>
=V@2j+1)/2j +1)
x (j'my|jmp;1/2n,)(jmg;1/2ng|j'mg),  (8)

where (j'm’|jm; JM) denotes Clebsch-Gordan coefficients.
The matrix representation for U can be obtained by taking
Hermitian conjugate of Eq. (8). The matrix element for the
electric part of the Hamiltonian is diagonal

> (E¢R jmymg) = j(j + V)ljmpmg). — (9)
links

Only states satisfying the Gauss’s law are physical states.
The Gauss’s law at each lattice site » can be written as

> EL(n+1/2)+ Y Eg(n—1/2)=0.  (10)

i=x,y i=x,y

Physically, it means all the link variables joining the same
lattice site transform as a singlet together for physical states,
i.e., they are invariant under local gauge transformations.

IV. MAP ONTO SPIN CHAIN

We consider a Hilbert space with a truncation at j = 1/2,
which is valid in the strong coupling (infrared) limit. Going
beyond the j = 1/2 truncation is left for future studies. We
study physical states living on a chain of plaquettes with
periodic boundary conditions, shown in Fig. 1. We only
consider states that are generated by acting plaquette
operators on the bare vacuum, which do not have topo-
logically nontrivial gauge flux around the chain. A pla-
quette operator Z(n) acting on a state with four edges being
in the j = 0 state creates a state with four edges in the
J = 1/2 states that form linear combinations to transform

__:_pl_:_fz_:_f3_l__ — lll
| 20 [
— S ——
: __:___:__ — Hl
| 2 [(0.5)03
— | S ——
: : __:_.;.. PR TIl
FIG. 1. The bijective map between the 2+ 1 dimensional

SU(2) lattice gauge theory on a plaquette chain with the basis
truncated at j = 1/2 and a quantum spin chain. The three
plaquettes (p;, p», p3) on the left are mapped onto three spins
on the right. Black dashed lines on the left represent j = 0 link
states while blue solid lines mean j = 1/2 link states. The
plaquette operator Z(p;) corresponds to o}, up to a prefactor
determined by the two nearest neighbors.

as SU(2) singlets at each corner. Acting another Z(n)
operator on the same plaquette creates either a singlet state
with four edges in the j = O state or j = 1 states, the latter
of which are neglected due to the truncation. When two
adjacent plaquette operators Z(n)Z(n + %) act on a state
with all the relevant links being in j = 0, two physical
states are generated. In one state, the overlapped link (the
common edge shared by the two plaquettes) is in the j = 0
state while in the other, the overlapped link is in the j = 1
states. We only keep the former state in our current study
for a consistent truncation. If we represent a plaquette state
with four edges being in the j = 0 (j = 1/2) state as a spin-
down (spin-up) state, the plaquette operator Z(n) can be
represented as a Pauli matrix o}, up to a prefactor
determined by the two nearest neighbors, which will be
shown below. Furthermore, a plaquette state with four
edges in the j = 0 state contributes zero to the electric part
of the Hamiltonian, while an isolated (neighboring links are
in the j = O states) plaquette state with four edges in the

Jj = 1/2 states contributes "7%4 to the electric part of
the Hamiltonian. If two neighboring plaquettes are both in

the j = 1/2 states, we need to subtract % . % - 2 from their
contribution to the electric part, since the overlapped link is
in the j = O state and contributes vanishingly. Putting all
these together, we find the Hamiltonian of the SU(2)
gauge theory on a plaquette chain with a basis truncated
at j = 1/2 can be mapped onto a quantum spin chain,
shown in Fig. 1

3 i+l 3 =i+ 1oi,+1
H=37 > T1f >
i=0 i=0
2 vl =1 il
‘;@;E:@ﬂj) T (11)
i=0

Up to an irrelevant constant, this Hamiltonian can be
rewritten as (see Refs. [99,100] for a similar expression)

N-1 N-1
— 2 =2 2
aH—JE Gi6i+1—|—/’lZE o;
i=0 i=0

E1 =367, 1 =36

h il 12
+hy 1 i o (12)

i=0

where J = —3ag?/16, h, = 3ag*/8 and h, = —2/(ag?).
Under the periodic boundary condition, ¢ = o{. The
Hamiltonian is rescaled to be unitless and so are the
parameters J, h, and h,. This Hamiltonian is similar to
the quantum Ising chain with a transverse field that is
known to be nonintegrable and exhibit ETH behaviors
[101,102], but the o7 term here is different. The difference
is a result of the Gauss’s law and the Clebsch-Gordan
coefficients in the matrix elements of link variables shown
in Eq. (8) and can be obtained from e.g., Eq. (32) of
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Ref. [96]. We expect the spin model shown in Eq. (12) to be
nonintegrable.

For reasonably large values of N, we are able to
numerically exactly diagonalize the Hamiltonian in
Eq. (12) by using symmetries of the system to reduce
the Hilbert space size. One symmetry is translational
invariance [H,T] =0, where T denotes a translation
operator by one lattice site. Thus, we can simultaneously
diagonalize H and 7. The eigenstates of 7" are momentum
states |k;) (k; =2#i/N,i=0,1,...,N — 1), which can be
constructed easily [103] (see also Ref. [96]). We can then
construct the Hamiltonian in each momentum sector and
diagonalize therein. The Hamiltonian is block-diagonal
with vanishing off-diagonal elements between different
momentum sectors. Furthermore, the Hamiltonian is invari-
ant under reflection i - N —i (parity): The k =0 and
k = = sectors are invariant while the k; sector turns to the
ky_; sector. So we will only study the momentum sectors k;
up to i = [N/2].

V. RESULTS

We need to choose parameter values in numerical
studies. In principle, the coupling ¢ is a function of a
determined by the renormalization group equation that is
obtained by requiring physical observables are independent
of a in the limit @ — 0. Here we do not aim at extracting
physical quantities out of the calculation but just want to
test the ETH, so picking up one value for ag® suffices as
long as the Hamiltonian (12) is not integrable. We choose
ag® = 1.2 so that the ETH scaling can be manifest in finite
systems that are numerically accessible.

First, we study the statistics of energy level spacing. We
list all energy eigenvalues in each momentum sector in an
ascending order and calculate their nearest gaps
AE = E, | — E,. The distributions of AE in the first four
momentum sectors k;, i = 0, 1, 2, 3 for N = 19 are shown
in Fig. 2, where each momentum sector contains 27594
states (the kK = O sector has two more). In the sectors with
nonzero momenta, the distribution resembles the Wigner-
Dyson statistics, featured in the level repulsion (the dis-
tribution vanishes at AE = 0). The Wigner-Dyson statistics
is often found in systems that are nonintegrable and chao-
tic classically [104]. The red lines shown in the non-
zero momenta cases are fits from the Wigner surmise
Py(AE) = a(AE)? exp[—c(AE)?] with a, b, ¢ parameters.
The fit in the tail region can be much improved if only the
middle part of the eigenenergy spectrum is used, as shown
in Ref. [96]. The zero momentum sector is special here:
There is no level repulsion and the distribution is more
similar to the Poisson statistics rather than the Wigner-
Dyson one. The red curve is a fit from the Poisson statistics
of the form P,(AE) = aexp(—bAE) with a, b parameters
differing from those in the Wigner surmise. The absence of
level repulsion in the zero momentum sector is caused by

IC=]C0 k:kl
& 10001
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k= ky
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) 000
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FIG. 2. Distributions of energy level spacing AEink; (i =0, 1,
2, 3) sectors for N = 19. The distributions in the nonzero mo-
mentum sectors exhibit the Wigner-Dyson statistics with level
repulsion while the distribution in the k sector is closer to the
Poisson form due to the remaining parity symmetry.

the remaining parity symmetry mentioned earlier (level
statistics in each parity sector can be found in Ref. [96], as
well as fitted parameter values). It is known that discrete
symmetries can invalidate the Wigner-Dyson statistics of
level separations. However, the ETH, which is a statement
about the eigenstates, is still expected to hold, even in the
presence of discrete symmetries [105]. In the following
results, we will include all momentum k; sectors from i = 0
to |[N/2].

Next we test the diagonal part of the ETH. The most
crucial aspect to demonstrate is the exponential decrease of
the second term in Eq. (2) with the system size (the entropy
is proportional to the system size S « N). The two local
observables we study are 1-plaquette (O;) and 2-plaquette
(0O,) operators, which correspond to square and rectangular
Wilson loops. For an eigenstate |n) with an energy E,, we
consider its nearest 20 neighbors in energies (10 above
and 10 below). We use their average as a proxy for the
microcanonical ensemble average at the same energy. Then
we compute the difference between the expectation value of
an operator in the eigenstate |n) and its microcanonical
ensemble proxy

A(w = (o)~ 5= S mlogm). (13
m=n—10

If the ETH holds, we will expect the average value of

|A;(n)], i.e., |A;| to decrease exponentially with the system
size N. (All states are used in the calculation of the average
except for the 10 lowest and 10 highest eigenenergy states.)
Figure 3 clearly shows this exponential decrease and thus
demonstrating the diagonal part of the ETH for the majority
of states. In fact, Fig. 3 seems to suggest the decrease is
faster than an exponential in N. However, if we only use the
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FIG. 3. Averaged magnitude of the difference between the

operator expectation value and the microcanonical ensemble
proxy as a function of the system size.
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FIG. 4. Magnitudes of off-diagonal matrix elements |(n|O;|n)]|
decrease as a function of @ for the two operators in the
N =17 case.

middle two thirds of the eigenstates (ordered by their
eigenenergies) to calculate the average, the N = 16, 17, 18,
19 points exhibit a better agreement with an exponential
decrease in N [96].

Finally, we study the off-diagonal part of the ETH. The
most important thing to show is the function f(E,w)
vanishing at large . To this end, we study all pairs of
states |n) and |m) whose total energy (E, + E,,)/2 falls
between E — € and E + ¢. We calculate the absolute value
of the matrix element |(m|O;|n)| as a function of w =
E, — E,, (we choose E, > E,, without loss of generality).
We choose E = 1 and ¢ = 1073 and plot the result for the
N =17 case in Fig. 4, which explicitly displays of the
decrease of f(E,w) toward zero as @ increases. For
N =17, the lowest and highest eigenenergies are roughly

—24.76 and 16.69 respectively. So the number of terms
with @ 2 20 in the figure turns to zero.

VI. CONCLUSIONS

In this paper, we tested the ETH for 2 + 1 dimensional
SU(2) lattice gauge theory on a chain of plaquettes with a
truncation at j = 1/2 in the electric basis. In this simple
setup, we mapped the Hamiltonian of the SU(2) gauge
theory onto a quantum spin chain with local interactions.
By exact diagonalization, we studied the statistics of level
separations and showed level repulsion in momentum
sectors that have no reflection symmetry. Furthermore,
we calculated matrix elements of local observables (Wilson
loops) in the energy eigenbasis and demonstrated the
scaling properties with the system size for both the diagonal
and off-diagonal parts of the ETH. The simple Hamiltonian
considered here can be easily studied on quantum hard-
wares such as the quantum annealer [106,107], cold atoms
[108-112], trapped ions [113—117] and superconducting
qubits [118-120]. Studies of SU(2) and SU(3) gauge
theories on small lattices have been performed on IBM’s
quantum hardware [70,75,76,100].

Future studies should investigate cases with a plane or a
volume of plaquettes, where the simple map used here does
not work due to the Mandelstam constraint [121-123]. One
should also study cases with j truncated at higher values,
the SU(3) case and cases with fermions included. The
Hamiltonian in these cases may not be easy to exactly
diagonalize. But one may still be able to use quantum
computers to simulate the time evolution and study various
thermalization processes to test features of the ETH. Other
interesting questions are whether quantum scars exist in
these more general cases, entanglement Hamiltonian [124]
and non-Abelian ETH [125]. All these studies will deepen
our understanding of thermalization in systems consisting
of Standard Model particles, such as the early Universe and
high energy nuclear collisions.
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