
Structure-dependent QED effects in exclusive B decays at subleading power

Claudia Cornella ,1,* Matthias König,2,† and Matthias Neubert1,3,‡
1PRISMA+ Cluster of Excellence and MITP, Johannes Gutenberg University, 55099 Mainz, Germany

2Physik Department T31, Technische Universität München,
James-Franck-Strasse 1, 85748 Garching, Germany

3Department of Physics and LEPP, Cornell University, Ithaca, New York 14853, USA

(Received 23 February 2023; revised 30 May 2023; accepted 26 July 2023; published 9 August 2023)

We derive a factorization theorem for the structure-dependent QED effects in the weak exclusive process
B− → μ−ν̄μ, i.e., effects probing the internal structure of the B meson. The derivation requires a careful
treatment of end-point-divergent convolutions common to subleading-power factorization formulas. We
find that the decay amplitude is sensitive to two- and three-particle light-cone distribution amplitudes of
the B meson as well as to a new hadronic quantity Fðμ;ΛÞ, which generalizes the notion of the B-meson
decay constant in the presence of QED effects. This is one of the first derivations of a subleading-power
factorization theorem in which the soft functions are nonperturbative hadronic matrix elements.
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Exclusive B-meson decays are powerful probes of the
flavor sector and of physics beyond the Standard Model.
In order to match the increasing experimental accuracy
in several decay channels, a reliable assessment of QED
corrections is desirable. In recent years, these have received
considerable attention, especially in the context of leptonic
and semileptonic B decays. In most cases, QED corrections
were treated via the inclusion of soft-photon emissions,
under the hypothesis that the leading corrections can be
described by photons unable to probe the internal meson
structure [1,2]. This assumption is in direct contradiction
with the observation that structure-dependent QED correc-
tions constitute an important contribution to the decays
Bd;s → μþμ− [3,4].
In this work, we present the factorization formula for the

exclusive decay B− → l−ν̄l including virtual one-loop
QED corrections. This process can be used to determine
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
Vub and to test lepton-flavor universality, as Belle II
can perform accurate measurements of the l ¼ μ, τ
channels [5]. We focus here on the case l ¼ μ. Due to
the chirality-suppressed nature of the decay, this process is
of next-to-leading power (NLP) in the 1=mB expansion.
Factorization formulas at subleading power are plagued by

end-point-divergent convolution integrals [6–17], requiring
a careful subtraction and rearrangement between different
contributions. The refactorization-based subtraction (RBS)
scheme introduced in [12,14] for the derivation of the
factorization theorem for the Higgs-boson decay h → γγ
via b-quark loops provides a method to deal with end-point
divergences and establish factorization at NLP. The RBS
scheme has also been applied successfully to Higgs pro-
duction in gluon-gluon fusion [15,18] and to the “off-
diagonal gluon thrust” in eþe− collisions [16]. Along with
[19], the present work applies this approach for the first time
in the context of exclusive rare decays of B mesons, where
the necessary rearrangements involve objects that are
genuinely nonperturbative, giving rise to new types of
hadronic matrix elements (see [20] for an application to
inclusive B decays). The presence of such quantities is a
generic feature of exclusive B-meson decays at NLP.
Below the electroweak scale, the effective weak

Lagrangian describing the decay B− → l−ν̄l is given by

Leff ¼ −
4GFffiffiffi

2
p KEWðμÞVubðūγμPLbÞðlγμPLνlÞ: ð1Þ

When electroweak corrections are neglected KEWðμÞ ¼ 1,
and all hadronic effects are encoded in the B-meson matrix
element of the quark current,

h0jūγμγ5bjB−i ¼ imBfBvμ: ð2Þ

Here vμ denotes the 4-velocity of the B meson and fB its
decay constant. The situation becomes significantly more
complicated when QED effects are taken into account. In
this case KEWðμÞ ≠ 1 [21] and the operator in (1) has a
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nontrivial scale dependence, which compensates that of
KEW, given by [22]

dKEWðμÞ
d ln μ

¼ QlQu
3α

2π
KEWðμÞ: ð3Þ

More profoundly, the B-meson decay constant loses its
universal meaning and its definition must be generalized,
because the flavor-changing quark current is not gauge
invariant with respect to QED interactions [4,23]. The
simple factorization of the four-fermion operator into a
quark and a lepton current, with no interactions between
them, no longer holds. While in QCD physical states are
color neutral, both the B meson and the charged lepton
carry electric charges, and thus electromagnetic interactions
inevitably connect the two currents.
In the presence of QED effects, the B− → l−ν̄l matrix

element of the four-fermion operator in (1) is sensitive to six
different energy scales. The first four are the scalemb setting
the large mass of the decaying B meson, the intermediate
“hard-collinear” scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p
at which the internal

structure of the meson is probed by virtual photons, the
scale ΛQCD of nonperturbative soft QCD interactions in the
meson, and the leptonmassml. In order to obtain an infrared
(IR) safe observable, it is necessary to define the decay rate
for the process B− → l−ν̄lðγÞ, allowing for the emission of
real photons with energies below a resolution scale Es. The
threshold Es and a related scale ðml=mBÞEs complete the
list of relevant scales. We have analyzed the factorization
of these scales using a multistep procedure, in which the
effective weak Lagrangian (1) is matched onto two versions
of soft-collinear effective theory [24–27]:Leff →SCET-1→
SCET-2. In a final step, the SCET-2 operators are matched
onto a low-energy effective theory consisting of products of
Wilson lines, which are needed to account for real-photon
emissions. Technical details will be presented elsewhere.
In this Letter, we focus on the intricate factorization

properties of the decay amplitude above the scale Es, which
is sensitive to virtual photon exchange only. We have
established the factorization theorem

Avirtual
B→lν̄ ¼

X
j

HjSjKj þ
X
i

Hi ⊗ Ji ⊗ Si ⊗ Ki; ð4Þ

where the hard functions Hi account for matching correc-
tions at the scale mb, the jet functions Ji encode matching
corrections at the scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p
, and the soft functions Si

are hadronic matrix elements of the B meson defined in
heavy-quark effective theory (HQET) [28–31]. The collin-
ear functions Ki describe the leptonic matrix elements,
encoding the dependence on the scale ml. The first set of
terms arises from SCET-1 operators containing a soft
spectator quark, whereas the second set descends from
operators in which the spectator quark is described by a
hard-collinear field, carrying a significant fraction of the

charged-lepton momentum. The symbol ⊗ indicates that
the products of component functions must be understood as
convolutions, since some of the functions share common
momentum variables, over which one must integrate. In
SCET-2, interactions between soft and collinear particles
can be eliminated at the Lagrangian level using field
redefinitions [25,32–34]. The remnants of these inter-

actions appear in the form of soft Wilson lines YðfÞ
n for

fermion f, which depend on its color and electric charge.
The lightlike vector n is aligned with the direction of the
muon. Soft-collinear photons, whose momenta are collin-
ear with the muon but whose energy in the B-meson rest
frame is smaller than the soft scales ΛQCD and Es by a
factor ml=mB, also play an important role. Removing their
interactions with (massive) collinear and soft particles by
field redefinitions gives rise to soft-collinear Wilson lines

CðlÞ
vl for the muon and CðuÞ†

n̄ CðbÞ
n̄ ≡ CðBÞ

n̄ for the two valence
quarks inside the B meson. Here vl denotes the 4-velocity
of the lepton, and the lightlike vector n̄ is aligned with the
direction of the neutrino. These soft-collinear Wilson lines
are inherited by the effective theory below the scale ΛQCD.
For the purposes of our discussion here, they can simply be
ignored.
The appearance of a hard-collinear scale betweenmb and

ΛQCD is an important feature of the factorization formula.
Electromagnetic radiation with virtuality q2 ∼mbΛQCD

emitted from the muon can recoil against the meson and
probe its internal structure. This effect arises from the
interactions between soft and collinear particles [35–37],
which in SCET-1 are mediated by the exchange of a virtual
photon between the muon and the soft spectator quark in
the B meson, as illustrated in Fig. 1. After matching onto
SCET-2 this gives rise to nonlocal operators, whose
component fields have lightlike separation. Their matrix
elements define the B-meson light-cone distribution ampli-
tudes (LCDAs) [38–41]. From a systematic analysis of the
operators contributing to the decay at Oð1=mbÞ, we find
that the amplitude is sensitive to a hadronic parameter F
generalizing the concept of the B-meson decay constant, as
well as to two- and three-particle LCDAs of the B meson.
A natural definition of the parameter F would be in terms

of the B-meson matrix element of the operator

FIG. 1. SCET-1 loop diagrams generating structure-dependent
QED corrections. The up-quark and muon leaving the weak-
interaction operator carry fractions x and x̄ ¼ 1 − x of the large
component n̄ · pl of the muon momentum. The resulting con-
tributions involve convolutions with a two-particle (left) and
three-particle (right) LCDA of the B meson.
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OA ¼ n̄μūsγμPLhvY
ðlÞ†
n ; ð5Þ

where us denotes a soft quark field, and hv is the effective
b-quark field in HQET. The factor n̄μ appears in the
evaluation of the leptonic matrix element. The Wilson line
arises from the decoupling of soft photons from the muon.
It ensures that the operator is gauge invariant under both
QCD and QED. In the presence of QED corrections, the
anomalous dimension of OA exhibits a sensitivity to IR
regulators, which must be removed with a suitable sub-
traction [4,23]. Following these authors, one can thus
define F as the matching coefficient of the B-meson matrix
element of OA onto a Wilson-line operator in a low-energy
effective theory for very soft photons (with Eγ ≪ ΛQCD),
which see the B meson as a pointlike particle,

h0jOAjB−i ¼ −
i
2

ffiffiffiffiffiffiffi
mB

p
FðμÞh0jYðBÞ

v YðlÞ†
n j0i: ð6Þ

However, an unusual aspect of this definition is that the
renormalization of the “local” (with regard to the quark
fields) operator OA requires the nonlocal operator

OBðωÞ ¼
Z

dt
2π

eiωtūsðtnÞ½tn; 0�n̄PLhvð0ÞYðlÞ†
n ð0Þ ð7Þ

as a counterterm. Here the quark fields are separated by a
lightlike distance, and ½tn; 0� denotes a soft Wilson-line
segment connecting them.
There exists another problem with the factorization

formula (4), as some of the convolution integrals suffer
from end-point divergences. This is a common feature of
NLP factorization theorems. Neglecting corrections of
OðααsÞ, the divergent convolutions are those involving
the hard and jet functions. These divergences are trouble-
some, because they give rise to 1=ϵ poles that cannot be
removed by renormalizing the hard and jet functions
individually, and hence break the desired factorization of
scales. Interestingly, we find that removing the end-point
divergences using the RBS scheme [12,14] allows us to
redefine the soft operatorOA in such a way that it no longer
mixes with the nonlocal operator OBðωÞ.
The RBS scheme offers a systematic procedure for

dealing with end-point divergences. In a first step, they
are removed by performing plus-type subtractions of the
integrand, i.e.,

Hi ⊗ Ji ≡
Z

1

0

dxHiðmb; xÞJiðmbω; xÞ

→
Z

1

0

dx½Hiðmb; xÞJiðmbω; xÞ

− θðλ − xÞ⟦Hiðmb; xÞ⟧⟦Jiðmbω; xÞ⟧�; ð8Þ

where x is a shared longitudinal momentum fraction
defined in Fig. 1, and ω denotes the n · pu component
of the soft spectator momentum, which the jet and soft
functions share. (In some cases there can be more than
one such variable.) The singular limit is x → 0, corre-
sponding to the region in which the virtual spectator quark
becomes soft. The double brackets indicate that one needs
to retain only the leading singular terms in the expressions
for the hard and jet functions. More accurately, when x ¼
OðΛQCD=mbÞ the quark and photon propagators in the loop
become soft and should no longer be described using hard-
collinear fields. We introduce a parameter 0 < λ < 1 to
subtract these contributions (see also [16]). By construc-
tion, this subtraction removes the end-point divergence, but
the subtraction term must be added back in a consistent
way. This is done using exact, D-dimensional refactoriza-
tion conditions [12–14], which govern the structure of the
component functions in the singular limits. In our case,
these conditions read

⟦Hiðmb; xÞ⟧ ¼ H0
iðmbÞS0iðω0Þ;

⟦Jiðmbω; xÞ⟧ ¼ mbS00i ðω;ω0Þ; ð9Þ

where H0
i are new hard functions, while S0i, S

00
i are new soft

functions, which depend on the variable ω0 ≡ xmb. The
term that needs to be added back thus takes the form of a
hard matching coefficient times a soft function,

Z
dω

Z
λ

0

dx⟦Hiðmb; xÞ⟧⟦Jiðmbω; xÞ⟧SiðωÞ

¼ −H0
i

Z
dω

Z
∞

Λ
dω0Ŝiðω;ω0Þ; ð10Þ

where Λ ¼ λmb. In the last step we have defined Ŝi ¼
SiS0iS

00
i and added a scaleless integral, which vanishes in

dimensional regularization. After adding back this term, it
can be combined with other terms of similar form.
Let us illustrate this procedure for the soft operators

relevant for the subtraction of end-point divergences in our
problem. These are the local operator OA in (5) and the
associated nonlocal operator OBðωÞ in (7). There is also a
third operator giving rise to a three-particle LCDA, which
we omit here for simplicity, but we include its effect in our
final result (22) below. (The SCET-1 and SCET-2 operator
bases needed to establish the factorization theorem are of
course much larger. They can be found by building all
gauge- and boost-invariant operators of mass dimension 6
and the correct power counting [32,33]. The additional
operators do not give rise to end-point divergences, how-
ever.) The contribution of these two operators to the decay
amplitude can be written as
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AðA;BÞ
B→lν̄ ¼ −

4GFffiffiffi
2

p KEWVub
ml

mb
KAðmlÞūðplÞPLvðpνÞ ·

�
HAðmbÞSA þ

Z
dω

Z
1

0

dxHBðmb; xÞJBðmbω; xÞSBðωÞ
�
; ð11Þ

where SA ¼ − i
2

ffiffiffiffiffiffiffi
mB

p
F, SBðωÞ ¼ − i

2

ffiffiffiffiffiffiffi
mB

p
FϕB

−ðωÞ, and
HA;B ¼ 1þOðαs; αÞ. Here ϕB

−ðωÞ is one of the twist-3
LCDAs of the B meson [38], which is normalized to unity.
Starting at one-loop order HB contains logarithmic singu-
larities at x ¼ 0 (∼x−nϵ in dimensional regularization). The
collinear functions for the two contributions are equal and
normalized so that KA ¼ KB ¼ 1þOðαÞ. At one-loop
order, the (bare) jet function is given by

JBðmbω; xÞ ¼ −QlQu
α

2π

eϵγEΓðϵÞ
1 − ϵ

�
1

x
þ 1 − 2ϵ

�

·

�
μ2

mbωxð1 − xÞ
�

ϵ

: ð12Þ

The refactorization conditions for HB and JB read

⟦HBðmb; xÞ⟧ ¼ HAðmbÞS0Bðω0Þ;
⟦JBðmbω; xÞ⟧ ¼ mbS00Bðω;ω0Þ; ð13Þ

where ω0 ¼ xmb, S0B ¼ 1þOðαs; αÞ, and

S00Bðω;ω0Þ ¼ −QlQu
α

2π

eϵγEΓðϵÞ
1 − ϵ

1

ω0

�
μ2

ωω0

�
ϵ

: ð14Þ

We find that at one-loop order the subtraction term in (10) is
given by

HASAQlQu
α

2π

eϵγEΓðϵÞ
1 − ϵ

Z
∞

0

dωϕB
−ðωÞ

Z
∞

Λ

dω0

ω0

�
μ2

ωω0

�
ϵ

:

ð15Þ

We consistently neglect terms of Oðα2Þ and thus do not
include QED corrections to the LCDA. The presence of the
hard function HA in this result suggests that we should
combine it with the contribution of the operator OA. In all
previous applications of the RBS scheme, the soft functions

were perturbatively calculable, and the effect of the sub-
traction terms could be worked out order by order in
perturbation theory. In the present case, we apply the
refactorization conditions for the first time in a nonpertur-
bative context, where the soft functions are hadronic matrix
elements, which cannot be calculated using short-distance
methods. Adding the subtraction term (including the three-
particle contribution neglected above) has the effect of
replacing the operator OA by

OA → OðΛÞ
A ¼ ūsn̄PLhvθðin̄ ·Ds − ΛÞYðlÞ†

n ; ð16Þ

where the covariant derivative in the θ-function acts on the
leptonic Wilson line. Generalizing (6), we now define the
hadronic parameter F as

h0jOðΛÞ
A jB−i ¼ −

i
2

ffiffiffiffiffiffiffi
mB

p
Fðμ;ΛÞh0jYðBÞ

v YðlÞ†
n j0i: ð17Þ

We find that the presence of the θ-function in (16)
removes the mixing with the nonlocal operator OBðωÞ.
At one-loop order, the anomalous dimension defined via
dFðμ;ΛÞ=d ln μ ¼ −γFFðμ;ΛÞ is given by

γF ¼ −CF
3αs
4π

þ 3α

4π

�
Q2

l −Q2
b þ

2

3
QlQu ln

Λ2

μ2

�
: ð18Þ

It is also possible to control the dependence on the cutoff Λ
using perturbation theory. At one-loop order, we find

d lnF
d lnΛ

¼QlQu
α

2π

�Z
∞

0

dωϕB
−ðωÞ ln

ωΛ
μ2

−1þ…

�
; ð19Þ

where the dots stand for a contribution involving the three-
particle LCDA.
When the subtraction term is combined with the original

contribution of the operator OA, we obtain from (11)

AðA;BÞ
B→lν̄ ¼ −

4GFffiffiffi
2

p KEWVub
ml

mb
SðΛÞA KAðmlÞūðplÞPLvðpνÞ ·

�
HAðmbÞ þ

Z
∞

0

dωϕB
−ðωÞ

Z
1

0

dx½HBðmb; xÞJBðmbω; xÞ

− θðλ − xÞ⟦HBðmb; xÞ⟧⟦JBðmbω; xÞ⟧
�
: ð20Þ

The subtracted convolution and the soft function

SðΛÞA ¼ − i
2

ffiffiffiffiffiffiffi
mB

p
Fðμ;ΛÞ depend on the cutoff Λ, and

there is no choice for which both objects depend
only on their natural scales. Following [12], we choose
Λ ¼ mb and hence λ ¼ 1 to eliminate the second scale

from the subtracted convolution, at the expense of
introducing the scale mb in the definition of F in (17).
The translation of Fðμ; mbÞ to Fðμ;ΛÞ with a different
choice of Λ can be obtained by solving the evolution
equation (19).
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We are now ready to present our main result. We find that
the B− → μ−ν̄μ decay amplitude including virtual QED
corrections is given by

Avirtual
B→lν̄ ¼ i

ffiffiffi
2

p
GFKEWðμÞVub

ml

mb
ūðplÞPLvðpνÞ

·
ffiffiffiffiffiffiffi
mB

p
Fðμ; mbÞ½M2pðμÞ þM3pðμÞ�; ð21Þ

where the two terms in the second line probe the
two- and three-particle Fock states of the B meson.
After renormalizing the four-fermion operator in (1),
the muon mass, and the parameter F in the MS scheme,
and performing the integrations over x, we obtain at one-
loop order

M2pðμÞ ¼ 1þ CFαs
4π

�
3

2
ln
m2

b

μ2
− 2

�
þ α

4π

�
Q2

b

�
3

2
ln
m2

b

μ2
− 2

�
−QlQb

�
1

2
ln2

m2
b

μ2
þ 2 ln

m2
b

μ2
− 3 ln

m2
l

μ2
þ 1þ 5π2

12

�

þ 2QlQu

Z
∞

0

dωϕB
−ðωÞ ln

mbω

μ2
þQ2

l

�
1

ϵIR

�
ln
m2

B

m2
l
− 2

�
þ 1

2
ln2

m2
l

μ2
−
1

2
ln
m2

l

μ2
þ 2þ 5π2

12

��
;

M3pðμÞ ¼
α

π
QlQu

Z
∞

0

dω
Z

∞

0

dωg ϕ
B
3gðω;ωgÞ

�
1

ωg
ln

�
1þ ωg

ω

�
−

1

ωþ ωg

�
: ð22Þ

In the virtual amplitude there remain IR divergences,
which cancel against the IR divergences from real-photon
emission in the process B− → l−ν̄lðγÞ.
When corrections of OðααsÞ are included, the integrals

over the LCDA ϕB
−ðωÞ in (20) and (22) no longer converge

at infinity [38,39], indicating another occurrence of an
end-point divergence. One then needs to refactorize these
integrals in the region where ΛQCD ≪ ω ≪ mb, using
techniques developed in [42,43]. Since these corrections
are bound to be very small numerically, this issue will be
discussed in detail elsewhere.
The three-particle LCDAs of the B meson have been

studied in [40,41]. Our function ϕB
3gðω;ωgÞ is related to the

functions defined in these references by

ϕB
3gðω;ωgÞ ¼

1

ωg
½ψAðω;ωgÞ − ψVðω;ωgÞ�; ð23Þ

where the momentum variables ω and ωg refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic
behavior ϕB

3gðω;ωgÞ ∝ ωωg [41], showing that the con-
volution integral in the three-particle term is convergent.
The above expressions show the structure-dependent

nature of the QED corrections. The appearance of the two-
and three-particle LCDAs highlights the fact that hard-
collinear photons are energetic enough to probe the internal
structure of the B meson. Various phenomenological
models for the LCDAs have been proposed in the literature
[38,40,41] and could be used to obtain an estimate of these
effects. The terms sensitive to the quark electric charges in
(22) are missed in a theory in which the B meson is treated
as a pointlike particle. It is evident that the one-loop QCD
corrections contain large single and double logarithms,
which can be resummed using renormalization-group
equations in SCET.

In the absence of QED corrections, we have

ffiffiffiffiffiffiffi
mB

p
fQCDB ¼

�
1 − CF

αsðmbÞ
2π

�
Fðmb;mbÞjα→0 ð24Þ

up to power corrections of Oð1=mbÞ. The parameter fQCDB
can be computed with high precision using lattice
QCD [44]. While the QED correction included in the
definition of F is expected to be small, being governed by
α, its value is sensitive to nonperturbative dynamics and
difficult to estimate. Due to the presence of the lightlike
Wilson line in (17), it appears challenging to compute F on
a Euclidean lattice.
To summarize, we have derived the first QCDþ QED

factorization formula for a NLP observable using SCET
methods. Focusing on the virtual QED corrections to the
exclusive B− → μ−ν̄μ decay amplitude, our main goal was
to separate perturbative QED corrections from nonpertur-
bative ones, which are sensitive to hadronic dynamics. This
is of great importance for future precision determinations of
the CKM matrix element Vub, because the new hadronic
parameter Fðμ;ΛÞ and the B-meson LCDAs introduce
significant hadronic uncertainties in the analysis of QED
corrections. Our derivations have required a careful han-
dling of end-point-divergent convolutions, which we have
treated in the RBS scheme [12,14]. While this scheme has
previously been applied to other observables, our case is
special in that applying refactorization in a nonperturbative
context requires a modification of the relevant hadronic
matrix elements. This leads to the introduction of the
θ-function in (16) and thus to a novel class of soft operators.
The result (22) is valid for l ¼ μ only, and its generali-
zation to other lepton flavors will be discussed elsewhere.
The approach presented here provides a framework for
future studies of structure-dependent QED corrections to
other rare exclusive B decays at NLP.
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