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We give evidence for the web of 3d bosonization dualities in conformal field theories (CFTs) by
computing monopole operator scaling dimensions in (2þ 1)-dimensional quantum electrodynamics
(QED3) with Chern-Simons level k andN complex bosons in a large-N, k expansion. We first consider the
k ¼ 0 case, where we show that scaling dimensions previously computed to subleading order in 1=N can
be extrapolated to N ¼ 1 and matched to Oð2Þ Wilson-Fisher CFT scaling dimensions with around 5%
error, which is evidence for particle-vortex duality. We then generalize the subleading calculation to large
N, k and fixed k=N, extrapolate to N ¼ k ¼ 1, and consider monopole operators that are conjectured to be
dual to nondegenerate scalar operators in a theory of a single Dirac fermion. We find matches typically
with 1% error or less, which is strong evidence of this so-called “seed” duality that implies a web of 3d
bosonization dualities among CFTs.
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I. INTRODUCTION

IR duality is when two quantum field theories that are
completely different at short distances (the UV), nonetheless
flow to the same conformal field theory (CFT) at long
distances (the IR). While duality is common in two
spacetime dimensions, in 3d this phenomenon is much
more rare. For many years, the only experimentally relevant
example in 3d was particle/vortex duality [1,2], which
conjectures that the Oð2Þ Wilson-Fisher fixed point is dual
to 3d quantum electrodynamics (QED3) with N ¼ 1 com-
plex bosonic field and k ¼ 0 Chern-Simons level, the so-
called Abelian Higgs model. Recently, new dualities were
conjectured between QED3 with various Chern-Simons
levels and matter content [3–5], and these dualities were

shown to be part of a so-called web of dualities that
generically relates CFTs with fermionic matter to bosonic
matter [6,7], and is thus an example of 3d bosonization. This
duality web can be derived from a conjectured “seed”
duality, which relates QED3 with N ¼ 1 boson and
k ¼ 1 to the free theory of a single complex two-component
fermion. The central idea is that the Chern-Simons term
effectively attaches flux (a magnetic instanton or monopole)
to the boson, leading to an additional Berry phase and Fermi
statistics for the boson-flux composite.
QED3 at finite N and k is strongly coupled in the IR,

which makes it hard to verify these dualities. While the
conjectured dualities satisfy kinematic consistency checks
such as ’t Hooft anomalies [7], we would ideally like to
check local dynamical observables such as critical exponents
(i.e. scaling dimensions). When k ¼ 0, the theory can be
modeled on the lattice [8,9], which found evidence for
particle/vortex duality by comparing the lowest scaling
dimensions ΔO

q from Oð2Þ lattice studies [10,11] of oper-
ators with charge q under the Uð1Þ ≅ Oð2Þ global sym-
metry, to lattice estimates ΔQ

q of the dual operator scaling
dimensions in QED3 [12]:
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ΔO
0 ¼ 1.511; ΔO

1
2

¼ :5191; ΔO
1 ¼ 1.236;

ΔO
3
2

¼ 2.109; ΔQ
0 ¼ 1.508; ΔQ

1
2

¼ :48;

ΔQ
1 ¼ 1.23; ΔQ

3
2

¼ 2.15: ð1Þ

Lattice methods have more difficulty when k ≠ 0 due to
the sign problem, however, so it has been difficult to
numerically verify the seed duality for 3d bosonization.
Instead, the duality has been motivated by an uncontrolled
flow [13,14] from more well-established supersymmetric
dualities [15], as well as an extrapolation to NC ¼ 1 of 3d
bosonization for quantum chromodynamics (QCD3) at
large colors NC and k [16], which has been checked at
leading order in 1=NC starting with [17–19].
Here we give evidence for both particle/vortex duality,

and the seed bosonization duality by computing the scaling
dimension of monopole operators in scalar QED3, and
matching these to the dimensions of the operators in the dual
theories. We will do this by considering QED3 in the limit
of large-N scalars, and also large k and fixed κ≡ k=N for
the bosonization case, where monopole operator scaling
dimensions can be computed in a 1=N expansion [20,21].
For k ¼ 0, the scaling dimensions have already been
computed to subleading order in [22], so we will simply
extrapolate these results to N ¼ 1 and compare to scaling
dimensions of the criticalOð2Þmodel as computed from the
conformal bootstrap [23,24] and lattice [11]. For nonzero k,
we will extend the leading order calculation in [25] to
subleading order for general κ, extrapolate to N ¼ κ ¼ 1,
and compare to scaling dimensions of nondegenerate scalar
operators in the free fermion theory [26]. In all cases, we
find that our perturbative calculation matches the conjec-
tured dualities with a relative error of just a few percent, as
shown in Tables I and II.

The rest of this letter is organized as follows. We first
introduce monopole operators and discuss our new calcu-
lation of their scaling dimension at large N, k. We then
review how these operators are expected to map to the dual
theories, and compare our new results. We end with a
discussion of our results. Technical details are discussed in
the Supplemental Material [29].

II. MONOPOLES AT LARGE N, k

Monopole operators are defined in three-dimensional
Abelian gauge theories as local operators that are charged
under the topological global symmetry Uð1Þtop [21,30],
whose conserved current and charge are

jμtop ¼
1

8π
ϵμνρFνρ; q ¼ 1

4π

Z
Σ
F; ð2Þ

where Fνρ ≡ ∂νAρ − ∂ρAν is the gauge field strength with
spacetime index μ ¼ 1, 2, 3, Σ is a closed two-dimensional
surface, and jμtop is conserved due to the Bianchi identity.
In the normalization (2), the charge q is restricted by
Dirac quantization to take the values q ∈ Z=2. As in
[21,22,25,31–39], we will compute the scaling dimension
of the lowest dimension monopole operators using the
state-operator correspondence, which identifies the scaling
dimensions of monopole operators of charge q with the
energies of states in the Hilbert space on S2 ×R with 4πq
magnetic flux through the sphere [21]. The ground state
energy on S2 × R can then be computed in the large-N and
large-k limit using a saddle point expansion. When k ≠ 0,
the Chern-Simons term induces a gauge charge propor-
tional to q, so that the naive S2 ×R vacuum must be
dressed by charged-matter modes. Following [25], we can
enforce this dressing by computing the small temperature

TABLE II. Scaling dimensions Δq;1¼NΔð0Þ
q;1þΔð1Þ

q;1þOð1=NÞ
for charge q monopole operators in QED3 with N scalars and
k=N ¼ 1 in a large-N, k expansion extrapolated to N ¼ k ¼ 1,
compared to values of the dual operators in the free fermion CFT,
along with the relative errors from the comparison. We expect the
comparison to be most precise when the operator is a unique scalar
q ¼ 1; 3; 6;…, as italicized.

q Δð0Þ
q;1 Δð1Þ

q;1 N ¼ 1 Fermion Error (%)

1=2 1 −0.2789 0.7211 1 28
1 2.5833 −0.6312 1.952 2 2.4
3=2 4.5873 −1.052 3.535 4 15
2 6.9380 −1.534 5.404 6 9.9
5=2 9.5904 −2.070 7.521 8 6.0
3 12.514 −2.655 9.859 10 1.4
6 34.727 −7.032 27.70 28 1.1
10 74.141 −14.71 59.43 60 0.95
15 135.67 −26.64 109.03 110 0.88
21 224.23 −43.76 180.5 182 0.84

TABLE I. Scaling dimensions Δq;0 ¼ NΔð0Þ
q;0 þ Δð1Þ

q;0 þOð1=NÞ
for charge q scalar monopole operators in QED3 with N
scalars and k ¼ 0 in a large-N expansion [22,28] extrapolated
to N ¼ 1, compared to values of the dual operators in the critical
Oð2Þ model as computed from the numerical bootstrap (q ≤ 2)
and lattice (q > 2), along with the relative errors from the
comparison.

q Δð0Þ
q;0 Δð1Þ

q;0 N ¼ 1 Oð2Þ Error (%)

1=2 0.12459 0.38147 0.50609 0.519130434 2.5
1 0.31110 0.87452 1.1856 1.23648971 4.1
3=2 0.54407 1.4646 2.0087 2.1086(3) 4.7
2 0.81579 2.1388 2.9546 3.11535(73) 5.2
5=2 1.1214 2.8879 4.0093 4.265(6) 5.8
3 1.4575 3.7053 5.1628 5.509(7) 6.3
7=2 1.8217 4.5857 6.4074 6.841(8) 6.3
4 2.2118 5.5249 7.7367 8.278(9) 6.5
9=2 2.6263 6.5194 9.1458 9.796(9) 6.6
5 3.0638 7.5665 10.630 11.399(10) 6.7
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T ≡ β−1 limit of the thermal free energy on S2 × S1β, where
the saddle point value of the holonomy of the gauge field
on S1β acts like a chemical potential for the matter fields.
This dressing will make the monopole transform in a
nontrivial representation under the SUðNÞ flavor sym-
metry with a nonzero spin for the SOð3Þ rotation
symmetry.
We begin by writing the conformally invariant action

of QED3 with N complex scalars ϕi on S2 × S1β as [40]

S ¼
Z

d3x

� ffiffiffi
g

p �
jð∇μ − iAμÞϕij2 þ

�
1

4
þ iλ

�
jϕij2

�

−
ik
4π

ϵμνρAμ∂νAρ

�
; ð3Þ

where g is the determinant of the metric, λ is a Hubbard-
Stratonovich field, and i ¼ 1;…; N. We are interested in
computing the thermal free energy Fq;κ in the presence of a
magnetic flux

R
dA ¼ 4πq through S2. We can integrate

out the matter fields in the path integral on this background
to get

e−βFq;κ ¼
Z

DA exp

�
−Ntr log

�
1

4
þ iλ − ð∇μ − iAμÞ2

�

þ iN
Z

d3x

�
κ

4π
ϵμνρAμ∂νAρ

��
; ð4Þ

where κ ¼ k=N. We now expand Aμ and λ around a saddle
point by taking

Aμ ¼ Aμ þ aμ; iλ ¼ μþ iσ; ð5Þ

where aμ and σ are fluctuations around a background Aμ ¼
Aμ and iλ ¼ μ that satisfy

δFq;κ½Aμ; λ�
δAμ

����
σ¼aμ¼0

¼ δFq;κ½Aμ; λ�
δλ

����
σ¼aμ¼0

¼ 0: ð6Þ

On S2 × S1β with magnetic flux 4πq, the most general such
background is μ constant and Aq

μ given by

Aτ ¼ −iα; F θϕdθ ∧ dϕ ¼ q sin θdθ ∧ dϕ; ð7Þ

where α ¼ iβ−1
R
S1β
A is a real constant called the holonomy

of the gauge field.
Since the integrand in (4) is proportional to N, the

thermal free energy Fq;κ can then be expanded at large N as

Fq;κ ¼ NFð0Þ
q;κ þ Fð1Þ

q;κ þ 1

N
Fð2Þ
q;κ þ…; ð8Þ

where Fð0Þ
q;κ comes from evaluating Fq;κ at the saddle point

and Fð1Þ
q;κ comes from the functional determinant of the

quantum fluctuations around the saddle point. The scaling
dimension Δq;κ is then obtained from the zero temperature
limit as

Δq;κ ¼ NΔð0Þ
q;κ þΔð1Þ

q;κ þ…; ΔðnÞ
q;κ ≡ lim

β→∞
FðnÞ
q;κ : ð9Þ

At leading order there are many degenerate monopoles
when k ≠ 0, due to the different ways of dressing the bare
monopole, which can be detected from the Oðβ−1Þ terms in

Fð0Þ
q;κ. This leads to degeneracy breaking contributions to

Δð1Þ
q;κ that were shown [25] to depend on spin, but whose

explicit form was not worked out in general.
The leading-order Fð0Þ

q;κ was computed in [25] for general
k, q by fixing μ and α from the saddle point equations (6),
setting Aμ and λ in (4) to their saddle point values (7), and
then doing the resulting mode expansion. We review the
details of this calculation in the Supplemental Material [29],

and give some of the resulting Δð0Þ
q;κ in Tables I and II. The

subleading Fð1Þ
q;κ comes from expanding (4) to quadratic

order in the fluctuations aμ and σ around the saddle point
values to get the Gaussian integral

expð−βFð1Þ
q;κÞ ¼

Z
DaDσ exp

�
−
N
2

Z
d3xd3x0

×
ffiffiffi
g

p ffiffiffiffi
g0

p
ðaμðxÞKμν

q ðx; x0Þaνðx0Þ
þ σðxÞKσσ

q ðx; x0Þσðx0Þ

þ 2σðxÞKσν
q ðx; x0Þaνðx0ÞÞ

�
; ð10Þ

where the kernels are expressed by expectation values of the
matter fields for the saddle point values of Aμ and λ. These
kernels can be computed in terms of the thermal Green’s
function hϕiðxÞϕ�

jðx0Þi ¼ δijG
qðx; x0Þ, which was computed

for general q, κ in [25]. We give explicit expressions in the
Supplemental Material [29], where we explain how to use
these kernels to compute the small temperature expansion of

Fð1Þ
q;κ, which yields the subleading Δð1Þ

q;κ. For κ ¼ 0, this
calculation was performed in [22,28], and we list some of
their results in Table I. For κ ≠ 0, we have additional parity-
breaking contributions to the matter kernels, which makes
the calculation much more challenging. When κ ¼ 1 and
q ¼ 1=2, it was shown in [27] that the Green’s function
simplifies, so that matter kernels could be computed in
closed form and used to compute the scaling dimension. In
the Supplemental Material [29], we extend this calculation
to general q, κ using an algorithmic approach, which yields
the scaling dimensions in Table II.
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III. DUALITY COMPARISON

We will now extrapolate the large-N monopole scaling
dimensions to N ¼ 1 and compare to the conjectured dual
theories. For k ¼ 0, we expect the monopole operators of
charge q to be dual to the lowest dimension scalar operators
of charge q in the critical Oð2Þ Wilson-Fisher CFT, where
Uð1Þtop is identified with the Oð2Þ flavor symmetry. The
scaling dimensions of operators with q ¼ 1=2; 1; 3=2, 2
have been determined using the conformal bootstrap [23,24],
while higher values of q were determined with less
accuracy using lattice methods [10,11]. We compare these
values in Table I [42], and find that the monopole scaling
dimensions match their expected duals with just a few
percent relative error, which gradually grows with q. It is
remarkable that the contribution of the quantum correction

Δð1Þ
q;0 exceeds the leading saddle-point one by a factor of

more than 2. This extends the previous lattice evidence for
the singlet [8] and q ¼ 1=2; 1; 3=2 [9] monopole scaling
dimensions as reviewed in (1). Monopoles with q ¼ 1=2
and higher N were also successfully matched to lattice
calculations in antiferromagnets with SUðNÞ symmetry
that can be described by an effective CPN−1 gauge theory
as in Eq. (3) with k ¼ 0 [22], so the subleading compu-
tation seems accurate for general N. Note that all our large-
N estimates are strictly below the estimates from other
methods, which is also true for the boson-fermion duality
that we now discuss.
We next consider the extrapolation of the large-N, k

monopole scaling dimensions to N ¼ k ¼ 1, where the
theory is conjectured to be dual to a single free fermion ψα

with spinor index α ¼ 1, 2. Monopoles of charge q should
be dual to the lowest dimension operator formed by 2q
fermions, where we identify Uð1Þtop with the Uð1Þ flavor
symmetry of the complex fermion [43]. Due to the
antisymmetry of the fermions and the equations of motion,
the lowest operator must sometimes include derivatives,
and so there will be multiple such operator with different
spins for different contractions of the indices. For instance,
while the lowest q ¼ 1=2 operator is the spin half ψα, and
the lowest q ¼ 1 is the spin zero ψ ½αψβ�, already at q ¼ 2

the lowest dimension operators are ψα1ψα2=∂α3α4ψα5=∂α6α7ψα8 ,
where the two ways of contracting the indices give spin
zero or two. We can count the lowest dimension operators
of a given q by expanding the S2 × S partition function for
the free fermion in characters of primary operators follow-
ing [44], which we do in the Supplemental Material [29].
These operators are unique scalars when [45]

q ¼ nðnþ 1Þ=2; n ¼ 1; 2; 3;…; ð11Þ

in which case the scaling dimension is

Δferm
q ¼ 2

3
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qþ 1

p
; ð12Þ

which corresponds to the energy of n completely filled
energy shells on S2 ×R. We compare the monopole scaling
dimensions to the dual free fermion operators in Table II.
We find a match with relative error of typically 1% or less
for values of q in (11) when the operator is a unique scalar.
For other values we do not find such a precise match,
presumably because there are other contributions to the
monopole scaling dimension in this case, such as the spin-
dependent degeneracy breaking terms discuss above. As q
increases, the match improves for all q, especially for the
unique scalar q.

IV. DISCUSSION

In this work we considered the scaling dimensions of
monopoles in QED3 with N scalars and Chern-Simons
level k as computed to subleading order at largeN, k. When
k ¼ 0, this computation was performed in [22], which we
extended to the case of general q and κ ≡ k=N. When
k ¼ 0 and N ¼ 1 the theory is dual to the Oð2Þ Wilson-
Fisher theory, while when k ¼ N ¼ 1 the theory is dual to a
single free fermion. We found evidence of each conjectured
duality by extrapolating the large-N, k results, and found
matches with just a few percent relative error in each case.
For the k ¼ 0 case, all the monopoles are unique scalars
and we found good matches for all q, which extends the
evidence of particle/vortex duality beyond the lowest few q
considered in previous lattice studies [8,9]. For the k ¼ 1
case, the monopoles are only unique scalars for certain q,
which is where we found matches to good precision. This
match is the first quantitative evidence for 3d bosonization,
and the duality we consider in fact implies a large web of
other dualities as discussed in [6,7].
Looking ahead, we would like to understand better why

the large-N calculation is less accurate when the dual
operator is degenerate or has nonzero spin. It was observed
in [25] that monopoles in scalar QED3 are degenerate at
leading large N, which leads to spin-dependent degeneracy
breaking contributions at subleading order. Unfortunately,
we do not know how to compute this contribution for
general q, κ, and even for q ¼ 1=2 and κ ¼ 1 where this
contribution was computed in [27], it did not improve the
results. In fact, this contribution was found to be negative in
this case, which implies that some temperature dependent
terms in the free energy must be complex, which suggests
that the saddle we chose was unstable in this case. It is thus
possible that a different saddle point might be required
when the monopole has spin.
On the other hand, we have observed a curious coinci-

dence that if we take the scaling dimension Δferm
q in the free

fermion theory for q in (11) when the operator is a unique
scalar and analytically continue to all q ∈ Z=2, then this
matches to high precision to all our estimates for the
monopole scaling dimension, not just q in (11) as before.
For instance, for the lowest few q that are not unique scalars
we get the comparison with (12)

CHESTER, DUPUIS, and WITCZAK-KREMPA PHYS. REV. D 108, L021701 (2023)

L021701-4



Δferm
1=2 ¼ :7454; Δferm

3=2 ¼ 3.606; Δferm
2 ¼ 5.498;

Δmono
1=2 ¼ :7211; Δmono

3=2 ¼ 3.535; Δmono
2 ¼ 5.404; ð13Þ

where q ¼ 1=2 and q ¼ 3=2 in the free fermion picture
are unique operators of spin 1=2 and 3=2, respectively,
while for q ¼ 2 there are two degenerate lowest dimension
operators of spins zero and 2 as shown in the Supplemental
Material [29]. This analytic continuation of q could be
explained in the large-q expansion [46,47], where the
effective action that describes unique scalar operators must
be corrected to describe more general operators [45].
Perhaps a similar correction should be added to the
large-N monopole calculation for nonscalar or degenerate
monopoles.
We would also like to understand better why the large-N

calculation of monopole scaling dimensions works so well
when computed to just subleading order [48]. For other
operators in scalar QED3 that are constructed from matter
fields, such as the lowest dimension singlet computed for
k ¼ 0 in [50], the large-N expansion seems much less
accurate when compared against lattice estimates such as
[8]. Perhaps the large-charge expansion [46,47] could also
explain this, as this expansion was shown to work well for
the scaling dimension of monopole operators [28,39]. For
instance, it could be that the first couple of orders at large q
only receive contributions from the first couple of orders
in 1=N.

Finally, we would like to find evidence for other 3d
dualities using our method. For instance, if we extend the
subleading calculation to QED3 with N fermions and
nonzero k, then we could check other 3d bosonization
conjectures such as the duality between the critical Oð2Þ
model and QED3 with 1 fermion and k ¼ 1=2 [51]. We can
also consider some QED3 dualities with N > 1 as dis-
cussed in [52,53], or dualities with QCD3 for various gauge
groups as in [57]. It would also be nice to verify some of the
N ¼ 1 supersymmetric QED3 dualities such as [58].
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