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It has been recently pointed out that nonlinear effects are necessary to model the ringdown stage of the
gravitational waveform produced by the merger of two black holes giving rise to a remnant Kerr black hole.
We show that this nonlinear behavior is explained, both on the qualitative and quantitative level, by near-
horizon symmetries of the Kerr black hole within the Kerr/CFT correspondence.
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I. INTRODUCTION

Quasinormal modes (QNMs) provide a unique tool to
investigate the properties of black holes (BHs) whose
understanding is one of the major goals of gravitational
wave astronomy [1]. In the merger of two BHs, during the
final stage called ringdown, they dominate the BH response
to any kind of disturbance, and their frequencies are
uniquely determined by the BH mass, spin, and charge.
Gravitational waves (GWs) during ringdown are well

described by a superposition of exponentially damped
QNMs, labeled by two angular harmonic numbers
ðl; mÞ and an overtone number n. Their amplitude is
denoted Aðl;m;nÞ, while their oscillation frequency and
decay timescale are given by the real and imaginary parts
of ωðl;m;nÞ. The GW strain far from the BH source can be
decomposed as

hðu; θ;ϕÞ ¼
X
l≥2

X
jmj≤l

hðl;mÞðuÞ−2Yðl;mÞðθ;ϕÞ;

hðl;mÞðuÞ ¼
X
n≥0

Aðl;m;nÞe−iωðl;m;nÞðu−upkÞ; ð1Þ

where u ¼ ðt − rÞ is the retarded or Bondi time, upk is the
time at which the strain achieves its maximum value, and

−2Yðl;mÞ are the spin-weight s ¼ −2 spherical harmonics
(the s ¼ þ2 mode with outgoing boundary conditions is
subleading at infinity [2]). The GW strain produced is
generically modeled using first-order BH perturbation

theory. However, nonlinearities are an intrinsic property
of general relativity and indeed it has been recently pointed
out that second-order effects are relevant to describe
ringdowns from BH merger simulations [3,4] (see also
Refs. [5–7]).
In particular, the second-order mode amplitude

Að2;2;0Þ×ð2;2;0Þ
ð4;4Þ obtained from the square of the first-order

fundamental mode ðl; mÞ ¼ ð2; 2Þ is comparable to or even
larger than that of the fundamental linear mode (4,4). For
the numerical simulations of quasicircular mergers giving
rise to a Kerr BH with spin 0.7 (in units of the BH mass and
we set from now on GN ¼ 1) Ref. [3] found

jAð2;2;0Þ×ð2;2;0Þ
ð4;4Þ j
jAð2;2;0Þj2

¼ 0.1637� 0.0018; ð2Þ

where we have neglected the milder dependence on the BH
mass ratio of the two BH mergers. This result is consistent
with what is found in Ref. [4] which quotes values in the
interval (0.15–0.2).
Restricting ourselves to the fundamental modes and

noting that the second-order QNM (4,4) is sourced at
second order from the square of the (2,2) mode with
frequency 2ωð2;2;0Þ, Eq. (2) can be written in the suggestive
form

hhð2;2Þhð2;2Þhð4;4Þi
hh2ð2;2Þi2

≃ 0.1637� 0.0018: ð3Þ

Similarly, Ref. [3] found
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jAð2;2;0Þ×ð3;3;0Þ
ð5;5Þ j

jAð2;2;0ÞjjAð3;3;0Þj
¼ 0.4735� 0.0062; ð4Þ

again for a Kerr BH remnant of spin ∼0.7. In order to
correctly model the BH ringdown one needs therefore to
include nonlinear effects.
The goal of this paper is to explain the nonlinearities of

the Kerr BH remnant from symmetry arguments. Our
starting point is the realization that the QNMs are produced
in the proximity of the BH horizon [8]. In the region very
close to the horizon of an extreme Kerr BH one can set
consistent boundary conditions such that the asymptotic
symmetry generators identify one copy of the Virasoro
algebra [9]. This implies that the near-horizon quantum
states can be identified with those of (a chiral half of) a two-
dimensional conformal field theory (CFT) with finite
temperature T ¼ 1=2π. This goes under the name of the
Kerr/CFT correspondence [10]. Although the CFT details
are not exactly known, several nontrivial checks have been
studied in the past (see, for instance, Refs. [11–13]),
consolidating the idea that there is a relation between
universal properties of BHs and CFTs, and trying also to
extend the results to nonextremal cases [14–17].
If the correspondence is correct, then the correlators of

bulk fields can be computed through the correlators of the
corresponding boundary operators. In turn, the latter are
dictated by the CFT. In the case of the spin-2 strain, the
associated boundary operator is the two-dimensional
energy momentum tensor, whose correlator amplitudes
are fixed by the central charge. This simple reasoning will
allow us to calculate the three-point correlators to estimate
the level of nonlinearities in the ringdowns from symmetry
arguments.
Before launching ourselves in the technicalities, we

briefly summarize the basics of the Kerr/CFT correspon-
dence. The expert reader on the subject can skip this part.

II. KERR/CFT

The Kerr BH with mass M and angular momentum J is
described in Boyer-Lindquist coordinates by the metric

ds2 ¼ −
Δ
ρ2

ðdt̂ − asin2θÞ2 þ ρ2

Δ
dr̂2

þ sin2θ
ρ2

½ðr̂2 þ a2Þdϕ̂ − adt̂�2 þ ρ2dθ2; ð5Þ

where

Δ¼ r̂2−2Mr̂þa2; ρ2¼ r̂2þa2cos2θ; a¼ J
M

: ð6Þ

The two horizons are defined as the solutions to ΔðrÞ ¼ 0:

r̂� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð7Þ

and the Hawking temperature can be written as

TH ¼ r̂þ − r̂−
8πMr̂þ

: ð8Þ

We consider the extremal case a ¼ M and the change of
coordinates [18]

t ¼ λt̂
2M

; r ¼ r̂ −M
λM

; ϕ ¼ ϕ̂ −
t̂

2M
; ð9Þ

such that, in the limit λ → 0 and keeping fixed the
coordinates ðt; r;ϕ; θÞ, one can zoom into a small region
around the BH event horizon r̂ ¼ M. The resulting metric
is the near horizon extreme Kerr (NHEK),

ds2 ¼ 2JΓðθÞ
�
−r2dt2 þ dr2

r2
þ dθ2 þΛ2ðθÞðdϕþ rdtÞ2

�
;

ΓðθÞ ¼ 1þ cos2θ
2

; ΛðθÞ ¼ 2 sinθ
1þ cos2θ

; ð10Þ

with ϕ ∼ ϕþ 2π and 0 ≤ θ ≤ π. For a generic value of θ
one deals with the geometry of a warped AdS3 with a
SLð2;RÞ ⊗ Uð1Þ symmetry group. At the specific value θ0
such that Λðθ0Þ ¼ 1, the metric is that of AdS3 [19,20].
At extremality, rotational perturbations along the angular

azimuthal direction correspond to excitations of the left
sector of the dual CFT. The right modes are not excited
(unless one goes above extremality). On the other hand, the
left modes cannot be associated with the Hawking temper-
ature TH, which vanishes for extremal Kerr BHs. Indeed,
the Hartle-Hawking vacuum for quantum fields in the
region outside the Schwarzschild BH horizon (which gives
rise to a density matrix e−ω=TH ) cannot be used for the Kerr
spacetime. This is because in spacetimes lacking a globally
defined timelike Killing vector, such as the Kerr geometry,
the Hartle-Hawking vacuum does not exist. One can,
however, use the Frolov-Thorne vacuum [21], which is
appropriately defined in the vicinity of a spinning BH
horizon. Quantum fields can be expanded in asymptotic
energy and angular momentum eigenstates of the operators
∂t̂ and ∂ϕ̂ as

Φsðt̂; r̂; θ; ϕ̂Þ ¼
X
ω;l;m

Φωlme−iωt̂þimϕ̂Rlmðr̂; θÞ: ð11Þ

In the near horizon coordinates (t; r; θ;ϕ), the asymptotic
energy-angular momentum eigenstates are expressed as

e−iωt̂þimϕ̂ ¼ e−inRtþinLϕ; ð12Þ

where
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nL ¼ m; nR ¼ 1

λ
ð2ωM −mÞ: ð13Þ

Then the Frolov-Thorne vacuum gives rise to a density
matrix with a Boltzmann weighting factor,

e−
nL
TL
−nR
TR ; ð14Þ

where the left- and right-temperatures are [10]

TL ¼ rþ −M
2πðrþ − aÞ ; TR ¼ rþ −M

2πrþλ
: ð15Þ

In the extremal case (keeping λ small, but finite), we end
up with the left-moving sector in the Frolov-Thorne
temperature,

TL ¼ 1

2π
; ð16Þ

and a Boltzmann suppression factor e−2πnL, while the right
sector has TR ¼ 0. At the same time, the geometry (10) has
a boundary at r → ∞ (where boundary fields are a function
of t and ϕ) and an asymptotic symmetry group (with
specific boundary conditions for the perturbations of the
metric in AdS), which extends the symmetry to half of a
Virasoro algebra [10]. This result led to the Kerr/CFT
conjecture, where the NHEK BH can be described by a
dual chiral CFT. According to the correspondence, for
every bulk field Φ there is a corresponding boundary local
operator O coupled to the boundary field Φb such that

ZAdS;eff ½Φ� ¼ eiSeff ½Φ� ¼ hTe
R
∂AdS

ΦbOiCFT; ð17Þ
where T is the time-ordering operator. In particular, for the
helicity-2 gravitational strain the associated boundary local
operator is the stress energy-momentum tensor. The corre-
lators of the QNMs can be therefore inferred from the
correlators of the boundary energy-momentum tensor, as
we will show in the following.

III. NONLINEARITIES OF THE QNMs
FROM THE KERR/CFT

The energy-momentum tensor exists in any local CFT. In
two-dimensions, its components are denoted as T and T̄,
and they have weights ðh; h̄Þ ¼ ð2; 0Þ and (0,2), respec-
tively. The central charge c ¼ 12J completely fixes their
correlators [10]. By defining the energy-momentum tensor
as Tμν as the response of the Hamiltonian H to the
transformation xμ → xμ þ ξμ, as

δH ¼ −
Z

d2x∂μξνTμν; ð18Þ

the two- and three-point correlators on the complex plane
turn out to be [22]

hTðz1ÞTðz2Þi ¼
1

ð2πÞ2
c=2
z421

; ð19Þ

hTðz1ÞTðz2ÞTðz3Þi ¼
1

ð2πÞ3
c

z221z
2
32z

2
13

; ð20Þ

where zij ¼ ðzi − zjÞ and T ¼ Tzz. To take into account
that the CFT is at finite temperature TL for the left movers,
we map the complex plane to the cylinder with complex
coordinate w ¼ x1 þ iτ by [9]

z ¼ e2πTLw; z̄ ¼ e2πTLw̄; ð21Þ
and identify τ with τ þ 1=TL. Then, using the transforma-
tion property of the energy-momentum tensor under
conformal transformations z → wðzÞ,

TðzÞ → TðwÞ ¼ ð∂zwÞ2
�
TðzÞ − c

12
fw; zg

�
; ð22Þ

where fw; zg is the Schwarzian derivative, we find that the
two- and three-point functions at finite temperature TL,
after Wick rotating τ → ix0, are

hTðx−1 ÞTðx−2 Þi ¼
c=2
ð2πÞ2

�
πTL

sinhðπTLx−21Þ
�

4

; ð23Þ

hTðx−1 ÞTðx−2 ÞTðx−3 Þi ¼
c

ð2πÞ3
�

πTL

sinhðπTLx−12Þ
�

2

×

�
πTL

sinhðπTLx−23Þ
�

2

×

�
πTL

sinhðπTLx−31Þ
�

2

; ð24Þ

where x− ¼ ðx1 − x0Þ. The bulk isometries ∂ϕ and ∂t are
identified, up to a scale, with the left and right translations
in the CFT, implying x− ¼ ϕ and xþ ¼ t. Going to
momentum space and from Eqs. (12) and (13), one
identifies therefore the frequency of the left movers with
the azimuthal number m [11].
We can write the above connected correlators in momen-

tum space as

hTm1
Tm2

i ¼ 1

2

Z Y2
i¼1

dx−i e
imix−i hTðx−1 ÞTðx−2 Þi;

and

hTm1
Tm2

Tm3
i ¼

Z Y3
i¼1

dx−i
23=2

eimix−i hTðx−1 ÞTðx−2 ÞTðx−3 Þi;

where the Tm’s are the boundary duals to the modes of
the gravitational strain with angular momentum m. We
obtain [11,23,24]
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hTm1
Tm2

i0 ¼ c
24

ð2πTLÞ3
ð2πÞ2 em1=ð2TLÞ

����Γ
�
2þ i

m1

2πTL

�����
2

;

and

hTm1
Tm2

Tm3
i0 ¼ −

c

2
ffiffiffi
2

p ð2πTLÞ4
ð2πÞ3 e−ðm1þm2Þ=ð2TLÞ

×G3;3
3;3

� −i m1

2πTL
; 0; i m2

2πTL

1 − i m1

2πTL
; 1; 1þ i m2

2πTL

����eiπ
�
;

ð25Þ

where the primes indicate we have removed the Dirac delta
function ð2πÞδðPi miÞ, and G3;3

3;3 is a Meijer-G function.
The two- and three-point correlators of the graviton are then
inferred from the expressions [25]

hhmh−mi0 ¼ −
1

2RehTmT−mi0
;

hhm1
hm2

hm3
i0 ¼ 2RehTm1

Tm2
Tm3

i0Q
3
i¼1ð−2RehTmi

T−mi
i0Þ ; ð26Þ

from where it follows that (setting finally TL ¼ 1=2π)

hhm1
hm2

hm3
i0

hhm1
h−m1

i0hhm2
h−m2

i0

¼ −
RehTm1

Tm2
Tm3

i0
RehTm3

T−m3
i0

¼ 6
ffiffiffi
2

p

2π

G3;3
3;3

� −im1; 0; im2

1 − im1; 1; 1þ im2

����eiπ
�

jΓð2þ im3Þj2
; ð27Þ

which critically does not depend upon the central charge c.
The last passage is to integrate over the remaining part of
the spin-weighted spherical harmonics in the polar angle θ.1

We obtain the general expression

hhðl1;m1Þhðl2;m2Þhðl1þl2;m1þm2Þi
hh2ðl1;m1Þihh2ðl2;m2Þi

¼ 6
ffiffiffi
2

p

2π −2C
m1;m2;m1þm2

l1;l2;l1þl2

G3;3
3;3

� −im1; 0; im2

1− im1; 1; 1þ im2

����eiπ
�

jΓð2− iðm1þm2ÞÞj2
;

ð28Þ

where

−2C
m1;m2;m3

l1;l2;l3
¼ 2π

Z
π

0

dθ sin θ−2Yðl1;m1Þ−2Yðl2;m2Þ−2Ȳðl3;m3Þ

¼ Γð−2þP
3
i¼1

jmij
2
ÞΓð4þP

3
i¼1

jmij
2
Þ

2
ffiffiffi
π

p
Γð2þP

3
i¼1 jmijÞ

×

�Y3
i¼1

ð2jmij þ 1Þ!
ðjmij þ 2Þ!ðjmij − 2Þ!

�
1=2

; ð29Þ

with sȲðl;mÞ ¼ ð−1Þs−m−sYðl;−mÞ, valid for l1 ¼ m1,
l2 ¼ m2, and l3¼m3¼ðm1þm2Þ. Taking m1¼m2¼2,
we get2

hhð2;2Þhð2;2Þhð4;4Þi
hh2ð2;2Þi2

≃ 0.62 ·
5

24

ffiffiffi
7

π

r
≃ 0.19; ð30Þ

which is quite in good agreement with the numerical results
of Refs. [3,4]. To get closer to the spin value of 0.7
considered in those simulations, we can partially approxi-
mate departure from extremality using the corresponding
temperature TL from Eq. (15) in our expressions. We obtain
in Eq. (30) the numerical value of 0.17, which is even
astonishingly closer to the numerical result in Ref. [3]. For
the modes m1 ¼ 2 and m2 ¼ 3, we find (summing up the
two terms from the permutation of the modesm ¼ 2 and 3)

hhð2;2Þhð3;3Þhð5;5Þi
hh2ð2;2Þihh2ð3;3Þi

≃ 1.57 ·
2

3

ffiffiffiffiffiffiffiffi
7

11π

r
≃ 0.47; ð31Þ

matching again the value found in Ref. [3] and giving
confidence on the validity of Eq. (28) (we obtain 0.45
taking into account the corresponding temperature TL from
Eq. (15) for spins equal to 0.7). Notice that the CFT
calculation does not select the fundamental mode, but it
captures as well the overtones (which have roughly the
same real part of the corresponding frequency) close to the
horizon. The numerical agreement between our results and
those in Refs. [3,4] indicates that the nonlinearities are
indeed sourced mostly, and not surprisingly, by the (2,2)
fundamental mode. It would be nice to check the expres-
sion (28) against numerical quasicircular simulations giv-
ing rise to fast spinning remnants from which the various
multipole correlators may be extracted.

IV. CONCLUSIONS

In this paper we have offered an argument based on the
Kerr/CFT correspondence to evaluate the nonlinearities of
the Kerr BH ringdown. We have shown that the Kerr/CFT
correspondence provides a simple way to both explain at

1One spin-weighted spheroidal harmonics are adopted to
decouple QNM angular modes our final results change by at
most Oð10%Þ.

2The fits in Ref. [3] are obtained for positive azimuthal
numbers. We thank E. Berti and M. Cheung for exchanges about
this technical point. However, notice that our results are sym-
metric under the change of sign of the azimuthal numbers.
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the qualitative level, the quadratic scaling of the second-
order mode amplitude with the product of the amplitudes of
the fundamental modes, and also to quantitatively predict
the size of this effect in striking agreement with numerical
results found in recent literature.
Our findings hold only in the extremal case; our next

step will be to study departures from this condition.
Numerical results are indeed found close to, but not exactly
at, extremality, i.e., for remnant dimensionless spins
≃0.7 [3,4]. Some corrections might therefore intervene.
For small deviations from extremality, a different set of
boundary conditions lead to a second copy of the Virasoro
algebra [14] with indications of a hidden dual CFT even far
from extremality [26–28], where the new excitations
correspond to right movers. However, the fact that our
findings are so close to the numerical fits of Refs. [3,4]
might indicate that the value of the remnant spin is not so
relevant (as it also appears from numerical results) and that
the right-mover sector is decoupled from the dynamics. We
have, indeed, reasons to believe that the right sector is
associated to the s ¼ þ2 degree of freedom whose con-
tribution to the GW strain is subleading at infinity with
respect to the s ¼ −2 mode [29]. Large nonlinearities have
been observed also in the case of head-on collisions, giving

rise to nonspinning BHs [3]. This fact as well might be
explained using similar symmetry arguments, but in the
context of Schwarzschild BHs [27]. The CFT approach
may also provide new consistency relations among the
QNM amplitudes and useful predictions for the nonlinear-
ities involved in the QNM dynamics. Finally, it would also
be interesting to go beyond the three-point correlator to see
if sizeable effects persist at higher orders.
We will investigate these issues in order to provide

generic predictions in terms of the multipole numbers and
spins of the remnants in future work [29].
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