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We forecast the ability of bispectrum estimators to constrain primordial non-Gaussianity using
future photometric galaxy redshift surveys. A full-sky survey with photometric redshift resolution of

σz=ð1þ zÞ ¼ 0.05 in the redshift range 0.2 < z < 2 can provide constraints σðflocalNL Þ ¼ 3.4, σðfequilNL Þ ¼ 15,
and σðforthNL Þ ¼ 17 for the local, equilateral, and orthogonal shapes, respectively, delivering constraints on
primordial non-Gaussianities competitive to those from the cosmic microwave background. We generalize
these results by deriving a scaling relation for the constraints on the amplitude of primordial non-Gaussianity
as a function of redshift error, depth, sky coverage, and nonlinear scale cutoff. Finally, we investigate the
impact that photometric calibration errors on the largest scales will have on the constraining power of future
experiments.We show that peculiar velocities reconstructed via kinetic Sunyaev Zel’dovich tomography can
be used to mitigate the impact of calibration errors on primordial non-Gaussianity constraints.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) anisotropies [1,2] and large galaxy redshift
surveys [3,4] have firmly established the current six-
parameter cosmological standard model, ΛCDM. Within
ΛCDM, the primordial density fluctuations that underlie
the CMB anisotropies and that seeded the large-scale
structure (LSS) of the Universe are assumed to be nearly
Gaussian. The discovery of deviations from Gaussianity
would yield important information about the history of the
early Universe and the fundamental interactions at play,
with immediate consequences for both cosmology and
particle physics (see [5–9] for reviews on non-Gaussianity).
This tantalizing prospect has driven a tremendous effort in
observational cosmology to place constraints on the ampli-
tude of primordial non-Gaussianity (PNG), primarily

through the study of three-point correlation functions,
e.g. the bispectrum in momentum space.
The bispectrum dependence on its three momenta, subject

to momentum conservation, is described by its so-called
shape function. It is often convenient to employ an (incom-
plete) basis of three such shapes or templates (local, equi-
lateral, and orthogonal; see [10,11]) to capture the predictions
associated with various models of inflation. One may also
quantify the degree to which a given shape is well described
by a linear combination of the standard templates by defining
a scalar product among bispectrum shapes [12]. The tightest
existing constraints on the amplitude of PNG come from the
Planck mission [13], with statistical errors of σðflocalNL Þ ≃ 5,
σðfequilNL Þ ≃ 47, and σðforthoNL Þ ≃ 24. CMB-S4 is expected to
improve these constraints by roughly a factor of 2 [14]. A
natural target for future constraints on PNG is that of a
sensitivity σðfNLÞ≲ 1. This is because a non-Gaussianity of
order oneor largerwould bevery suggestive of amultifield (or
multiclock) realization of inflation [15–23]. It is worth
stressing that multi-field models, besides being eminently
testable, are also the most likely scenarios from the top-down
perspective [24].
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Given that Planck has exhausted nearly all of the
information from the primary CMB temperature aniso-
tropies, in the near future progress on non-Gaussianity will
have to rely mostly upon measurements of the LSS, which
fills the volume of the observable Universe between us
and the CMB sky and as such is, in principle, far more
constraining.
Current bounds on PNG from measurements of the

galaxy bispectrum in spectroscopic surveys [23,25–27],
as well as those stemming from the scale-dependent
bias [28,29] in the quasar power spectrum [30] and other
tracers [31], are order(s) of magnitude away from the
σðfNLÞ ∼ 1 goal. However, near-term spectroscopic
redshift surveys promise to match [32] CMB constraints
and perhaps achieve σðfNLÞ ∼ 1, at least for the local
shape [33]. Similar constraints for the other shapes may be
more difficult [34] even with futuristic spectroscopic
surveys such as MegaMapper [35].
Spectroscopic surveys have the advantage of retaining

truly three-dimensional information about the density field
but present the challenge of relatively low number densities
due to limited observation time. Photometric surveys can be
complementary, providing large number densities at the
cost of missing much of the information about the density
field along the line of sight. Forecasts indicate that photo-
metric redshift surveys such as the Large Synoptic Survey
Telescope (LSST) can produce statistical error bars on fNL
that improve on existing constraints and may be compa-
rable to what is obtained with spectroscopic surveys [36].
Using the measured galaxy bispectrum to constrain PNG

comes with several challenges. First, there are a number of
modeling considerations for comparing measurements to
theory, including relativistic light-cone and redshift-space
effects (e.g. [37–39]) and the modeling of nonlinear
physics (see e.g. [40,41]). Another challenge, which
will be the main focus of this paper, is large-angular-
scale systematic effects present in photometric surveys
or spectroscopic surveys (such as the Dark Energy
Spectroscopic Instrument) whose targets are determined
by imaging. These systematics include atmospheric blur-
ring, unaccounted-for Galactic dust, and imperfect star-
galaxy separation, among other effects [42–44]. The largest
scales are most affected because the larger the separation
angle, the more time passes during the measurement and
varying observational conditions lead to calibration errors.
Excessive power has been found in several surveys [45–50]
suggesting photometric calibration error, especially on
the largest scales. As a result, information on these scales
might not be accessible for the estimation of cosmological
parameters and one may have to consider a large-scale
cutoff.
In this paper, we forecast the impact of this large-scale

cutoff on PNG constraints from future redshift surveys. We
work in the light-cone basis and within a simplified model,
considering only linear scales and ignoring redshift space

distortions and relativistic light-cone effects. Note that the
strongest contributions from redshift space distortions to
the density field are on large angular scales [51] we discard.
In the light-cone basis, we propose that a modified version
of the Komatsu-Spergel-Wandelt (KSW) estimator [52,53]
can be applied to sets of redshift-binned galaxy maps as an
optimal and unbiased estimator for the local, equilateral,
and orthogonal bispectrum shapes. We present a simple
scaling relation for the estimator variance in the light-cone
basis and demonstrate that the estimator variance increases
significantly for the local and orthogonal shapes when the
largest angular scales are polluted by systematic effects. We
then propose that there is an opportunity to restore much of
the missing large-scale information using the peculiar
velocity field on large angular scales, reconstructed using
the technique of kinetic Sunyaev Zel’dovich (kSZ) tomo-
graphy [54–59]. Because kSZ tomography reconstructs
velocities on large scales from small-scale statistical
anisotropies, we do not expect the large-scale velocity
field to suffer from the same systematic errors as the galaxy
survey. We explore to what extent reconstructed velocities
can mitigate information loss due to large-angular-scale
systematic effects in galaxy surveys.

II. POWER SPECTRA AND BISPECTRA
ON THE LIGHT CONE

We consider redshift-binned angular maps of the density
and velocity, which for the linear modes we consider in this
paper are described by the multipole moments

aXlm ¼
Z

d3k
ð2πÞ3 T

X
l ðkÞRkY�

lmðk̂Þ; ð1Þ

where X ∈ fδα; vαg denote the density or velocity field in a
redshift bin α, RðkÞ is the comoving curvature perturba-
tion, and T X

l ðkÞ are bin-averaged transfer functions
defined by

T X
l ðkÞ ¼

1

Δr

Z
rmax
α

rmin
α

drT X
l ðk; rÞ; ð2Þ

where r is comoving radial distance. The bin width is
defined by the bin boundaries Δr ¼ rmax

α − rmin
α and

T δ
lðk; rÞ ¼ 4πilDδðk; rÞjlðkrÞ; ð3Þ

T v
lðk; rÞ ¼ −4πilDvðrÞ

∂jlðkrÞ
∂r

: ð4Þ

In the following, we assume that the dark matter density
field can be related to the galaxy density field by a known
linear bias and therefore use the term “density” inter-
changeably for galaxy number density and dark matter
density.
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Using the definitions above, the angular power spectrum
of two fields fX1; X2g is given by

CX1X2

l ¼ 4π

Z
d lnðkÞT X1

l ðkÞT X2

l ðkÞPRðkÞ; ð5Þ

where PRðkÞ is the power spectrum of the comoving
curvature perturbation. The angle-averaged bispectrum
between three fields fX1; X2; X3g is defined as

BX1X2X3

l1l2l3
¼ fNL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

�
bX1X2X3

l1l2l3
ðfNL ¼ 1Þ; ð6Þ

where the reduced bispectrum bX1X2X3

l1l2l3
can be simply

defined for separable shapes, whose three-point function is

hRRRi ∝
X
i

fðiÞðk1ÞgðiÞðk2ÞhðiÞðk3Þ þ 5 perm: ð7Þ

The functions fðiÞðk1Þ, gðiÞðk2Þ, and hðiÞðk3Þ are determined
by the shape, and we have

bX1X2X3

l1l2l3
¼ 1

6

XNfac

i¼1

Z
∞

0

dr r2
X

l1;l2;l3

½KX1

l1
½fðiÞ�ðrÞ

×KX2

l2
½gðiÞ�ðrÞKX3

l3
½hðiÞ�ðrÞ þ 5 perm�; ð8Þ

where Nfac gives the number of functions required;
Nfac ¼ 1 for the local shape andNfac ¼ 4 for the orthogonal
and equilateral shapes. Following the notation of [60], the
K functionals appearing in Eq. (8) map the shape functions
from Fourier to harmonic space, e.g.

KX
l ½fðiÞ�ðrÞ≡ 2

π

Z
∞

0

dkk2fðiÞðkÞT X
l ðkÞjlðkrÞ: ð9Þ

The transfer functions T X
l are computed using CAMB [61].

We find that an accurate computation of the reduced
bispectrum requires fine sampling in both radial comoving
distance and momenta.

III. ESTIMATOR

A general and optimal estimator for the amplitude of
non-Gaussianity is [62,63]

f̂NL ¼ 1

6σ2
X

fli;mi;Xig
ðB1Þl1l2l3;X1X2X3

m1m2m3

× f½ðC−1aÞX1

l1m1
ðC−1aÞX2

l2m2
ðC−1aÞX3

l3m3
�

− ½ðC−1ÞX1X2

l1m1l2m2
ðC−1aÞX3

l3m3
þ cyclic�g; ð10Þ

where ðC−1ÞX1X2

l1m1l2m2
is the inverse of the covariance matrix

defined by CX1X2

l1m1l2m2
¼ hXlmX0

l0m0 i. For statistically iso-
tropic fields, we restore the power spectrum defined in
Eq. (5) via CXX0

l ¼ CXX0
lml0m0δll0δm−m0 . With this assumption,

the normalization σ2 describing the variance of the estimator
reads

1

σ2
¼

X
fXig

X
l1;l2;l3

ðB1ÞX1X2X3

l1l2l3
ðB�

1ÞX4X5X6

l1l2l3

×½ðC−1ÞX1X4

l1
ðC−1ÞX2X5

l2
ðC−1ÞX3X6

l3
�; ð11Þ

whereB� is the complex conjugate of the bispectrum. In our
forecasts below,wewill bemainly interested in the estimator
variance Eq. (11). Where relevant, we assume that the
impact of fractional sky coverage fsky due to masking
can be incorporated through σ2 → σ2=fsky.
Multiple approaches to reduce the complexity of the

estimator have been introduced [64,65]. In this work, we
will apply the KSW estimator [52,53], which reduces the
scaling with the maximal multipole lmax from Oðl6

maxÞ
to Oðl3

maxÞ.
Applying the estimator to Nbin 2D maps, such as those

obtained from photometric redshift surveys, leads to
another computational challenge. The sum over the six
different Xi in Eq. (11) leads to a scaling ofOðN6

binÞ, where
Nbin is the number of bins. Future photometric surveys
will be able to divide redshift space into Oð10–100Þ
bins [33,66], implying that there is a steep computational
penalty. Fortunately, with increasing numbers of redshift
bins, and at sufficiently high l, the bin-bin correlations
become concentrated near the diagonal. As we demonstrate
in more detail below, for the density modes nearly all of the
estimator variance is captured even when bin-bin correla-
tions are completely ignored, dropping the total computa-
tional cost of the estimator to OðN3

bin × l3
maxÞ. When

velocities are included, there are significant bin-bin corre-
lations, but these are nevertheless of relatively compact
support in bin space, and the range in lmax we consider
below is sufficiently small that it is still computationally
feasible to evaluate the estimator. For the near-term photo-
metric redshift surveys such as LSST, with Nbin ∼ 20 and
an lmax that includes all linear scales, we estimate this to be
roughly 100× the computational cost for the similar
analysis of Planck data [13].

IV. FORECAST SETUP

Our first goal is to forecast the constraining power of LSS
measurements for primordial non-Gaussianity, including
limited redshift resolution (as a model for photometric galaxy
redshift surveys), restricting to linear scales, and subject to
large-angular-scale systematics. In our forecast, we neglect
redshift space distortions, magnification bias, and other

ENHANCING BISPECTRUM ESTIMATORS FOR GALAXY … PHYS. REV. D 108, L021305 (2023)

L021305-3



contributions to the observed galaxy number counts. While
including these effects will have some numerical impact on
our forecast, we do not expect them to change our con-
clusions. For all our forecasts, we use the Planck 2018 best-fit
cosmology [1] and assume full sky coverage.
We further assume a linear galaxy bias and that shot

noise can be neglected in measurements of the galaxy
density over the redshift range 0.2 < z < 2; this is a
reasonable assumption for future surveys such as LSST.
We consider three fiducial redshift uncertainties,
σz=ð1þ zÞ ¼ f0.05; 0.02; 0.005g, which are used to map
onto a number of redshift bins Nbin ¼ f20; 48; 185g over
the redshift range we consider. The largest of these
uncertainties could be obtained by near-term surveys such
as LSST and SPHEREX, while the smallest uncertainty is
chosen based on target parameter constraints. The smallest
angular scales we consider, i.e., the maximal multipole
lmax, for the density field at a given redshift is set by the
nonlinear scale kNLðz̄Þ by

lmaxðz̄Þ ∼ kNLðz̄Þrðz̄Þ; ð12Þ

where z̄ is the mean redshift of the redshift bin and rðz̄Þ its
mean radial comoving distance. We define the nonlinear
scale kNL as the scale where the linear power spectrum
deviates more than 1% from the nonlinear one. We used the
HMcode 2020 [67] to calculate the nonlinear power spectrum.
Note that lmax increases with redshift both due to the
growth of structure and the projection.
In addition to the density field, we consider the peculiar

velocity field as reconstructed using kSZ tomography. This
technique exploits the statistical anisotropy in the cross-
correlation of the CMB temperature anisotropies and a
galaxy survey to reconstruct the radial peculiar velocity
field. The reconstruction has the highest fidelity on large
angular scales, and therefore when velocities are considered
below, we use lmax;v ¼ 20 to ensure that we are well within
the signal-dominated regime [57].

V. RESULTS

First, we investigated the dependency of the estimator
variance on the redshift resolution, varying the number of
bins between 1 ≤ Nbin ≤ 128 for the density field, and
found that the scaling is a power law in the number of bins

σðfNLÞ ∝ 1=Nγ=2
bin ; ð13Þ

where the parameter γ depends on Nbin. If the bins are
uncorrelated independent of their size, we expect γ ¼ 1 as
we sum over Nbin maps in Eq. (11). In reality, there are bin-
bin correlations that encode radial density perturbations,
which will be more important as the bin size is decreased.
However, computing the forecasted estimator variance
when including all bin-bin correlations we find that
γ ¼ 1 is a reasonable approximation for the redshift

resolutions we consider—the constraining power of near-
term surveys is therefore mainly coming from angular
correlations. Ignoring the correlation leads to an overesti-
mate of the estimator variance between 5% and 15%
depending on the shape and redshift resolution. We neglect
bin-bin correlations for the density field in the following;
the correlated result gives strictly better constraints mean-
ing the presented results are an upper bound.
In Table I, we present the 1σ constraints on fNL using the

density field only, in the uncorrelated bin approximation.
The results for the lowest redshift resolutions (top two
rows) are competitive with current and forecasted CMB
constraints [13,14]. To reach σðfNLÞ ≤ 1, the required
resolution is roughly σ=ð1þ zÞ ¼ 0.005. This implies that
practically speaking a spectroscopic survey is required to
reach σðfNLÞ ≤ 1 over the redshift range we consider.
Another way to increase the sensitivity is by extending

the redshift range to higher redshifts. At the lowest red-
shifts, the linear regime only spans up to lmax ¼ 50, while
the highest redshift bin reaches lmax > 800—there are
many more linear modes at high redshift. The l range could
also be increased by an ansatz to describe fluctuations on
nonlinear scales. Applying Eq. (12), the nonlinear scale
varies in the range 0.05–0.15 Mpc−1 depending on the
redshift. Assuming the model to describe the nonlinear
scales that allows us to increase the nonlinear scale by a
factor ξNL, then the l range would increase by the same
factor.
Varying the parameters of the forecast, we obtain the

scaling relation

σðfNLÞ ≈ A0

1ffiffiffiffiffiffiffiffi
fsky

p
�
0.05
σz
1þz

�1
2

�
rðz ¼ 2Þ
rðzmaxÞ

�
2 1

ξNL
; ð14Þ

with A0 being 3.4 for the local shape and 15 and 17 for the
equilateral and orthogonal shapes, respectively; the maxi-
mal redshift is expressed in terms of the comoving distance
rðzmaxÞ, where one factor of 1=rðzmaxÞ is accounted for by
the relation between the uncertainty and the available area,
i.e., σðfNLÞ ∝ 1=

ffiffiffiffi
A

p
with A ∝ fskyrðzmaxÞ2. The second

factor of 1=rðzmaxÞ arises due to σðfNLÞ ∝ l−1
max and

lmax ∝ rðzmaxÞ; see Eq. (12). The scaling relation only
holds if shot noise can be neglected, which might no longer
be the case if zmax or ξNL become too large.

TABLE I. Results of the forecast of σðfNLÞ for a full-sky
density survey in the redshift range 0.2 < z < 2. Results are
presented for different numbers of bins Nbin determined by the
redshift resolution σz=1þ z.

σz=1þ z Nbin Local Equilateral Orthogonal

0.05 20 3.4 15 17
0.02 48 2.1 8.5 10
0.005 185 1 4.3 5.2
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Finally, we studied how photometric calibration errors
and other large-angular-scale systematics [42] affected the
forecast. We demonstrate this by truncating the fiducial
model describe in Sec. IV at the largest scales as shown in
Fig. 1. The bold lines show the forecasted constraints on fNL
as a function of the lowest multipole lmin, i.e., σðfδNL;lmin

Þ.
For the local shape, the percentage deterioration is the largest
because the dominant contribution comes from configura-
tions combining large and small scales. The dominant
contribution for the equilateral shape comes fromcombining
equal scales; thus, removing large scales does not impact the
estimator as significantly as it does for the local shape.
The lost information can be partially restored by

including velocities. The dashed lines in Fig. 1 show the
combined estimator σðfδþv

NL;lmin
Þ of the truncated density

field together with the low-l velocity field up to
lmax;v ¼ 20. When including velocities it is necessary to
consider bin-bin correlation as large parts of the informa-
tion come from the correlation. We consider all possible
combinations of density and velocity, i.e., ðX1; X2; X3Þ ∈
fðδ; δ; δÞ; ðδ; δ; vÞ; ðδ; v; vÞ; ðv; v; vÞg plus permutations.
The scaling of the estimator remains the same albeit with
a different amplitude. By comparing the truncated uncer-
tainty σðfδNL;lmin

Þ and the velocity-only uncertainty σðfvNLÞ
at lmin, we can then accurately extrapolate the value for
σðfδþv

NL;lmin
Þ at lmax;v, without computing the fully correlated

estimator at large l.
For the local and orthogonal shape, large parts of the lost

information can be restored. The velocities are therefore
able to reduce the information loss of large-scale uncer-
tainties to less than 15% as long as lmax;v ≥ lmin.

VI. CONCLUSION

In this paper, we studied the constraining power
of photometric redshift surveys on primordial

non-Gaussianity. In Table I, we present the results of our
analysis, which shows that upcoming photometric surveys
will be able to perform measurements of non-Gaussianities
that are competitive with upcoming CMB surveys [14]. For
attainable photometric redshift errors, we showed that
nearly all of the variance for the KSW estimator is
accounted for by considering only angular correlations,
rendering an analysis of near-term surveys computationally
feasible. The expected constraints promise to be competi-
tive with current and upcoming CMB constraints. However,
reaching the target of σðfNLÞ < 1 from the bispectrum
using only the linear scales is likely not attainable with
future photometric surveys. A less conservative treatment
of the nonlinear scales provides a promising way to
improve the constraints as the number of multipoles in
Eq. (12) scales linearly with the nonlinear scale leading to
an inverse linear scaling for the estimator. The addition of
these higher multipoles will, on the other hand, require a
more careful treatment of shot noise.
Further, we investigated the impact of the large-angular-

scale systematics afflicting photometric redshift surveys.
Such systematics significantly affect constraints on the
local and orthogonal shapes. We demonstrated that, to a
large part, the losses can be negated by including the
reconstructed radial velocity field obtained by kSZ tomo-
graphy. Velocity reconstruction is expected to work best on
large angular scales, making velocity reconstruction
an ideal complement to the error-plagued large-scale
density maps.
Our findings are summarized in the scaling relation in

Eq. (14), which provides an estimate of the constraining
power on primordial non-Gaussianities for upcoming
photometric galaxy surveys. The scaling relation holds
as long as noise can be neglected.
We have studied the uncertainty of the bispectrum

estimator to forecast constraints on fNL. Estimation of
non-Gaussianities of a given photometric survey requires
evaluating Eq. (10). For the first-generation photometric
galaxy surveys such as DES [3], the constraining power is
rather limited, σðfNLÞ ≈Oð100Þ, primarily due to low sky
coverage and low photometric redshift resolution.
To summarize, in this work we showed the remarkable

constraining capabilities that future photometric galaxy
surveys have on primordial non-Gaussianity. They can
provide an independent measurement with a constraining
power comparable to that of CMB measurements.

ACKNOWLEDGMENTS

Most of the numerical calculations for this work were
performed on the computational cluster Katana, supported
by Research Technology Services at UNSW Sydney [68].
M. C. J. is supported by the National Science and
Engineering Research Council through a Discovery grant.
This research was supported in part by Perimeter Institute
for Theoretical Physics. Research at Perimeter Institute is

FIG. 1. Results for σðfNLÞ with truncated low multipole. In
bold, σðfδNLÞ of the density map in dependence on the lmin. The
dashed lines show σðfδþv

NL Þ when including low-l velocity
multipoles to the bold lines. For both lines we used Nbin ¼ 20.

ENHANCING BISPECTRUM ESTIMATORS FOR GALAXY … PHYS. REV. D 108, L021305 (2023)

L021305-5



supported by the Government of Canada through the
Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario
through the Ministry of Research, Innovation and
Science. M. F. acknowledges support from the “Ramón y

Cajal” Grant No. RYC2021-033786-I. M. F.’s work is
partially supported by the Agencia Estatal de
Investigación through the Grant IFT Centro de
Excelencia Severo Ochoa No. CEX2020-001007- S,
funded by MCIN/AEI/10.13039/501100011033.

[1] N. Aghanim et al. (Planck Collaboration), Astron.
Astrophys. 641, A6 (2020); 652, C4(E) (2021).

[2] S. Aiola et al. (ACT Collaboration), J. Cosmol. Astropart.
Phys. 12 (2020) 047.

[3] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D
105, 023520 (2022).

[4] S. Alam et al. (eBOSS Collaboration), Phys. Rev. D 103,
083533 (2021).

[5] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto,
Phys. Rep. 402, 103 (2004).

[6] X. Chen, Adv. Astron. 2010, 638979 (2010).
[7] J. R. Fergusson, M. Liguori, and E. P. S. Shellard,

J. Cosmol. Astropart. Phys. 12 (2012) 032.
[8] C. T. Byrnes, Astrophys. Space Sci. Proc. 45, 135 (2016).
[9] S. Renaux-Petel, C.R. Phys. 16, 969 (2015).

[10] D. Babich, P. Creminelli, and M. Zaldarriaga, J. Cosmol.
Astropart. Phys. 08 (2004) 009.

[11] L. Senatore, K. M. Smith, and M. Zaldarriaga, J. Cosmol.
Astropart. Phys. 01 (2010) 028.

[12] P. Creminelli, G. D’Amico, M. Musso, J. Norena, and E.
Trincherini, J. Cosmol. Astropart. Phys. 02 (2011) 006.

[13] Y. Akrami et al. (Planck Collaboration), Astron. Astrophys.
641, A9 (2020).

[14] K. N. Abazajian et al. (CMB-S4 Collaboration), arXiv:
1610.02743.

[15] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[16] J. M. Maldacena, J. High Energy Phys. 05 (2003) 013.
[17] V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto,

Nucl. Phys. B667, 119 (2003).
[18] M. Zaldarriaga, Phys. Rev. D 69, 043508 (2004).
[19] P. Creminelli, J. Cosmol. Astropart. Phys. 10 (2003) 003.
[20] P. Creminelli and M. Zaldarriaga, J. Cosmol. Astropart.

Phys. 10 (2004) 006.
[21] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent,

Phys. Rev. D 73, 083522 (2006).
[22] D. Wands, Lect. Notes Phys. 738, 275 (2008).
[23] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović,

and M. Zaldarriaga, Phys. Rev. D 106, 043506 (2022).
[24] D. Baumann and L. McAllister, Inflation and String

Theory, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2015).

[25] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović,
and M. Zaldarriaga, Phys. Rev. Lett. 129, 021301 (2022).

[26] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore, and
P. Zhang, arXiv:2206.08327.

[27] G. D’Amico, M. Lewandowski, L. Senatore, and P. Zhang,
arXiv:2201.11518.

[28] N. Dalal, O. Dore, D. Huterer, and A. Shirokov, Phys. Rev.
D 77, 123514 (2008).

[29] S. Matarrese and L. Verde, Astrophys. J. Lett. 677, L77
(2008).

[30] E.-M. Mueller et al., Mon. Not. R. Astron. Soc. 514, 3396
(2022).

[31] F. McCarthy, M. S. Madhavacheril, and A. S. Maniyar,
arXiv:2210.01049.

[32] A. Aghamousa et al. (DESI Collaboration), arXiv:1611
.00036.

[33] O. Doré et al., arXiv:1412.4872.
[34] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonovic,

and M. Zaldarriaga, Phys. Lett. B 841, 137912 (2023).
[35] D. J. Schlegel et al., arXiv:2209.04322.
[36] D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli, N.

Bartolo, and L. Verde, Mon. Not. R. Astron. Soc. 478, 1341
(2018).

[37] O. Leicht, T. Baldauf, J. Fergusson, and P. Shellard, Mon.
Not. R. Astron. Soc. 503, 2137 (2021).

[38] E. Di Dio, R. Durrer, R. Maartens, F. Montanari, and O.
Umeh, J. Cosmol. Astropart. Phys. 04 (2019) 053.

[39] R. Maartens, S. Jolicoeur, O. Umeh, E. M. DeWeerd, and C.
Clarkson, J. Cosmol. Astropart. Phys. 04 (2021) 013.

[40] O. H. E. Philcox, M. M. Ivanov, G. Cabass, M. Simonović,
M. Zaldarriaga, and T. Nishimichi, Phys. Rev. D 106,
043530 (2022).

[41] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore, and
P. Zhang, arXiv:2211.17130.

[42] D. Huterer, C. E. Cunha, and W. Fang, Mon. Not. R. Astron.
Soc. 432, 2945 (2013).

[43] J. Muir and D. Huterer, Phys. Rev. D 94, 043503 (2016).
[44] B. Leistedt et al. (DES Collaboration), Astrophys. J. Suppl.

Ser. 226, 24 (2016).
[45] S. Ho et al., Astrophys. J. 761, 14 (2012).
[46] S. Ho et al., J. Cosmol. Astropart. Phys. 05 (2015) 040.
[47] A. R. Pullen and C. M. Hirata, Publ. Astron. Soc. Pac. 125,

705 (2013).
[48] N. Agarwal et al., J. Cosmol. Astropart. Phys. 04 (2014)

007.
[49] N. Agarwal, S. Ho, and S. Shandera, J. Cosmol. Astropart.

Phys. 02 (2014) 038.
[50] T. Giannantonio, A. J. Ross, W. J. Percival, R. Crittenden,

D. Bacher, M. Kilbinger, R. Nichol, and J. Weller,
Phys. Rev. D 89, 023511 (2014).

[51] A. Challinor and A. Lewis, Phys. Rev. D 84, 043516 (2011).
[52] E. Komatsu, D. N. Spergel, and B. D. Wandelt, Astrophys. J.

634, 14 (2005).

JULIUS WONS et al. PHYS. REV. D 108, L021305 (2023)

L021305-6

https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1016/j.physrep.2004.08.022
https://doi.org/10.1155/2010/638979
https://doi.org/10.1088/1475-7516/2012/12/032
https://doi.org/10.1007/978-3-319-44769-8_3
https://doi.org/10.1016/j.crhy.2015.08.003
https://doi.org/10.1088/1475-7516/2004/08/009
https://doi.org/10.1088/1475-7516/2004/08/009
https://doi.org/10.1088/1475-7516/2010/01/028
https://doi.org/10.1088/1475-7516/2010/01/028
https://doi.org/10.1088/1475-7516/2011/02/006
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.1051/0004-6361/201935891
https://arXiv.org/abs/1610.02743
https://arXiv.org/abs/1610.02743
https://doi.org/10.1016/S0370-2693(01)01366-1
https://doi.org/10.1088/1126-6708/2003/05/013
https://doi.org/10.1016/S0550-3213(03)00550-9
https://doi.org/10.1103/PhysRevD.69.043508
https://doi.org/10.1088/1475-7516/2003/10/003
https://doi.org/10.1088/1475-7516/2004/10/006
https://doi.org/10.1088/1475-7516/2004/10/006
https://doi.org/10.1103/PhysRevD.73.083522
https://doi.org/10.1007/978-3-540-74353-8
https://doi.org/10.1103/PhysRevD.106.043506
https://doi.org/10.1103/PhysRevLett.129.021301
https://arXiv.org/abs/2206.08327
https://arXiv.org/abs/2201.11518
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1103/PhysRevD.77.123514
https://doi.org/10.1086/587840
https://doi.org/10.1086/587840
https://doi.org/10.1093/mnras/stac812
https://doi.org/10.1093/mnras/stac812
https://arXiv.org/abs/2210.01049
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1412.4872
https://doi.org/10.1016/j.physletb.2023.137912
https://arXiv.org/abs/2209.04322
https://doi.org/10.1093/mnras/sty1029
https://doi.org/10.1093/mnras/sty1029
https://doi.org/10.1093/mnras/stab616
https://doi.org/10.1093/mnras/stab616
https://doi.org/10.1088/1475-7516/2019/04/053
https://doi.org/10.1088/1475-7516/2021/04/013
https://doi.org/10.1103/PhysRevD.106.043530
https://doi.org/10.1103/PhysRevD.106.043530
https://arXiv.org/abs/2211.17130
https://doi.org/10.1093/mnras/stt653
https://doi.org/10.1093/mnras/stt653
https://doi.org/10.1103/PhysRevD.94.043503
https://doi.org/10.3847/0067-0049/226/2/24
https://doi.org/10.3847/0067-0049/226/2/24
https://doi.org/10.1088/0004-637X/761/1/14
https://doi.org/10.1088/1475-7516/2015/05/040
https://doi.org/10.1086/671189
https://doi.org/10.1086/671189
https://doi.org/10.1088/1475-7516/2014/04/007
https://doi.org/10.1088/1475-7516/2014/04/007
https://doi.org/10.1088/1475-7516/2014/02/038
https://doi.org/10.1088/1475-7516/2014/02/038
https://doi.org/10.1103/PhysRevD.89.023511
https://doi.org/10.1103/PhysRevD.84.043516
https://doi.org/10.1086/491724
https://doi.org/10.1086/491724


[53] A. P. S. Yadav, E. Komatsu, and B. D. Wandelt, Astrophys.
J. 664, 680 (2007).

[54] P. Zhang, Mon. Not. R. Astron. Soc. 407, L36 (2010).
[55] P. Zhang and M. C. Johnson, J. Cosmol. Astropart. Phys. 06

(2015) 046.
[56] A. Terrana, M.-J. Harris, and M. C. Johnson, J. Cosmol.

Astropart. Phys. 02 (2017) 040.
[57] A.-S. Deutsch, E. Dimastrogiovanni, M. C. Johnson, M.

Münchmeyer, and A. Terrana, Phys. Rev. D 98, 123501
(2018).

[58] K. M. Smith, M. S. Madhavacheril, M. Münchmeyer, S.
Ferraro, U. Giri, and M. C. Johnson, arXiv:1810.13423.

[59] J. Cayuso, R. Bloch, S. C. Hotinli, M. C. Johnson, and F.
McCarthy, J. Cosmol. Astropart. Phys. 02 (2023) 051.

[60] A. J. Duivenvoorden, P. D. Meerburg, and K. Freese, Phys.
Rev. D 102, 023521 (2020).

[61] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,
473 (2000).

[62] E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002
(2001).

[63] M. Liguori, E. Sefusatti, J. R. Fergusson, and E. P. S.
Shellard, Adv. Astron. 2010, 980523 (2010).

[64] J. R. Fergusson, M. Liguori, and E. P. S. Shellard,
Phys. Rev. D 82, 023502 (2010).

[65] M. Bucher, B. Racine, and B. van Tent, J. Cosmol.
Astropart. Phys. 05 (2016) 055.

[66] P. A. Abell et al. (LSST Science, LSST Project Collabora-
tions), arXiv:0912.0201.

[67] A. Mead, S. Brieden, T. Tröster, and C. Heymans,
Mon. Not. R. Astron. Soc. 502, 1401 (2021).

[68] D. Smith and L. Betbeder-Matibet, Katana (2010),
10.26190/669X-A286.

ENHANCING BISPECTRUM ESTIMATORS FOR GALAXY … PHYS. REV. D 108, L021305 (2023)

L021305-7

https://doi.org/10.1086/519071
https://doi.org/10.1086/519071
https://doi.org/10.1111/j.1745-3933.2010.00899.x
https://doi.org/10.1088/1475-7516/2015/06/046
https://doi.org/10.1088/1475-7516/2015/06/046
https://doi.org/10.1088/1475-7516/2017/02/040
https://doi.org/10.1088/1475-7516/2017/02/040
https://doi.org/10.1103/PhysRevD.98.123501
https://doi.org/10.1103/PhysRevD.98.123501
https://arXiv.org/abs/1810.13423
https://doi.org/10.1088/1475-7516/2023/02/051
https://doi.org/10.1103/PhysRevD.102.023521
https://doi.org/10.1103/PhysRevD.102.023521
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1103/PhysRevD.63.063002
https://doi.org/10.1103/PhysRevD.63.063002
https://doi.org/10.1155/2010/980523
https://doi.org/10.1103/PhysRevD.82.023502
https://doi.org/10.1088/1475-7516/2016/05/055
https://doi.org/10.1088/1475-7516/2016/05/055
https://arXiv.org/abs/0912.0201
https://doi.org/10.1093/mnras/stab082
https://doi.org/10.26190/669X-A286

