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Regular black holes are generically unstable because of the classical phenomenon that goes by the name
of “mass inflation” which destabilizes the inner horizon. In a recent article, [A. Bonanno, A.-P. Khosravi,
and F. Saueressig, Phys. Rev. D 107, 024005 (2023)], it is argued that semiclassical effects due to Hawking
radiation can cure this instability, and some concerns are raised against the validity of previous analyses
showing its existence in the first place. In this short comment, we explain our reservations regarding these
recent claims, and reiterate the relevance of the mass inflation instability for regular black holes of
astrophysical interest.
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In a recent work [1], it is argued that the backreaction of
Hawking evaporation is a relevant factor in the analysis of the
stability properties of regular black holes. However, in this
commentwe show that this claim is based on an extrapolation
of themathematicalmodel used beyond its regimeof validity.
The model used in [1] is an extension of the well-known

Ori model [2,3], used to study the instability of Reissner-
Nordström black holes. This extension can be applied to
study the behavior of different models of regular black
hole. Once a specific regular black hole model is chosen,
the following results follow [4] (see also [5] for a
complementary discussion):

(i) Regardless of the model selected, there is an
exponential mass inflation of the Misner-Sharp mass
that continues until backreaction cannot be ignored,
and thus the linear approximation breaks down
(in complete parallelism with the Ori model [2]).

(ii) If one insists in using the (unphysical) linear approxi-
mation beyond this point, then the Misner–Sharp
mass is always divergent but different background
geometries can display different degrees of diver-
gence (ranging from exponential to polynomial).

While from a mathematical perspective it is always possible
to push the linear model to its ultimate consequences, such
an exercise has clearly no physical relevance.

The authors of [1] call this polynomial behavior, in the
models in which it appears, “late-time dynamics”. For
instance, in page 2 of [1], the authors write:

In [30], it was established that this conclusion is
premature though. While the extrapolation works
for certain classes of static regular black holes,
including the geometries proposed byBardeen, the
Hayward geometry and renormalization group
improved black hole solutions are free from mass
inflation. In these cases the mass function at the
Cauchy horizon grows polynomially in time only
and the resulting curvature singularity may be
integrable. Technically, this behavior can be traced
back to the presence of a late-time attractor in the
evolution equation for the mass-function at the
Cauchy horizon, rendering this quantity finite at
asymptotically late times.

The statement above that some classes of regular black
holes are free from mass inflation is not correct. As
mentioned above and elaborated below, that the late-time
behavior is not exponential does not mean that mass
inflation has not taken place, and is in any case outside
of the range of validity of the Ori model.
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To make this concrete, let us consider the behavior of the
Misner-Sharp mass explicitly. If the Misner-Sharp mass
depends on the asymptotic mass linearly, i.e.,

Mðv; rÞ ¼ g1ðrÞmðvÞ þ g2ðrÞ; ð1Þ

then the behavior of the Misner-Sharp mass is always
exponential,

Mþ ∼
ejκ−jv

vγþ1
; ð2Þ

where κ− is the surface gravity of the inner horizon.
Geometries in this class include the Reissner-Nordström
black hole and the Bardeen regular black hole [6].
On the other hand, for Hayward’s regular black hole [7],

after the initial exponential phase, and beyond the regime of
validity of the linear approximation, we get power-law
behavior,

Mþ ∝ jκ−j
vγþ1

β
: ð3Þ

One could think that this different polynomial behavior
could alleviate the instability, in particular when Hawking
radiation is taken into account; this is what motivates the
authors of [1]. However, by the end of the exponential
phase the backreaction on the geometry is already very
large, and the linear approximation at the core of the model
can no longer be trusted. In the case of Hayward’s metric,
the transition between the exponential and polynomial
phase occurs when the ratio, between the Misner–Sharp
mass in the interior region Mþ, and the initial mass m0, is
given by

Mþ
m0

∼
vγþ1

6β

m0

l
≫ 1: ð4Þ

Hence, the backreaction of perturbations cannot be ignored,
and the linear model ceases to be valid. Any conclusions
that result from the application of this linear model beyond
its regime of validity are not reliable.
In particular, this applies to the analysis of the impact

that Hawking evaporation has on this “late-time behavior”
that is the driving motivation in [1]:

The taming of the mass-inflation effect then
suggests that the dynamics at the Cauchy horizon
and the black hole evaporation process could
happen on similar timescales. Thus, a more com-
plete understanding of the actual dynamics man-
dates to take the Hawking evaporation process into
account. Our work addresses this question for the
first time. As our main result, we discover two
classes of universal late-time behaviors whose

properties are dictated by simple structural proper-
ties of the mass function and the universality of the
Hawking effect. The late-time attractors governing
the dynamics either lead to a polynomial growth of
the squared curvature tensors or even renders these
quantities finite. Interestingly, the latter behavior
appears for the case of Reissner-Nordström geom-
etry once the Hawking radiation is included. The
final state of the black hole evaporation process is
still a cold remnant.

Note also that the authors of [1] are not properly
appreciating the extremely important separation of scales
between ringdown, the Price regime, and the truly enor-
mous timescale associated with backreaction induced by
Hawking radiation.

We stress that, strictly speaking, the Ori model
building on the Price tail behavior (10) is valid for
asymptotically late times v only. Therefore, con-
clusions drawn from the model in a regime where
v is small and the perturbation significant com-
pared to the mass m0 have to be interpreted with
care and should be confirmed by an analysis of
the full dynamics [36].

What the current authors call “late times” means late
enough such that the Price law provides a good description
of the system. It is true that at very early times after the
black hole spacetime is perturbed Price’s law cannot be
applied, but after a timescale v ∼OðMÞ (corresponding to
the ringdown time) it becomes the dominant one, while
Hawking radiation is completely negligible for a much
longer timescale v ∼OðM3=M2

PlanckÞ. Due to this vast
separation of scales, there is a very long transient in which
the exponential phase in the Ori model discussed in [8] is
building up.
Let us also stress that while an idealized analysis of the

role ofHawking radiationmay be legitimate, still one should
not neglect the cosmic microwave background (CMB) role
when the analysis is aimed at testing the phenomenological
relevance of regular black holes. Indeed, for a solar-mass
black hole, Hawking radiation is subdominant even with
respect to the incoming CMB radiation. Therefore, after
the decay of the perturbations following Price’s law, there
will be an extremely long transient in which the dominant
perturbation is given by incoming CMB radiation, not by
outgoing Hawking radiation. For a solar-mass black hole,
the order of magnitude of such a transient can be easily
estimated to be around 300 billion years [9], and is hence
even longer for supermassive black holes, which gives
plenty of time for the exponential buildup and subsequent
destabilization of the core. Nonetheless, still this should not
overshadow themainmessage of this comment that the early
exponential phase we discussed above is present even if the
CMB is ignored.
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For completeness, let us stress that our analysis should
not be taken as a criticism to models predicting regular
black holes as a possible piece in the resolution of the
singularity problem. In fact, our analysis simply shows that
if such solutions are generated, a small perturbation has a
large backreaction on the geometry which, as a conse-
quence, will then become nonstationary. The investigation
concerning the end point of such evolution is a question
that should be addressed on a case by case basis and which
depends on the dynamical equations of the theory.
Possible scenarios at the moment entail an outcome in a

regular black hole configuration with zero surface gravity at
the inner horizon [8,10], the increase of the regularization
length l so to generate a horizonless configuration [11,12],
a series of bounces that result into the formation of a
horizonless configuration [13,14], or a bounce destroying
the trapped region [15,16] (albeit in the latter case, the
mechanism that would allow to reconcile the instability
timescale with the long enough timescales needed to

accommodate observations of astronomical black holes
has not been identified). All of these possibilities lead to
interesting phenomenological consequences which are
worth exploring [17–22].
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