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In the context of bottom-up AdS/QCD models, we discuss how the configurational entropy can describe
heavy non-qq̄ states. Using the nonquadratic softwall model, introduced to describe nonlinear Regge
trajectories, we parametrize different multiquark and exotic meson structures to describe Zc, ψ , and Zb

states as non-qq̄ hadrons in terms of stability. We found that Zc is better described as a hybrid meson with
one gluon tube, ψ as hadrocharmonium, and Zb as hadronic molecule.

DOI: 10.1103/PhysRevD.108.126024

I. INTRODUCTION

Since the seminal work [1], the softwall model has
become one of the most famous bottom-up models in AdS/
QCD to describe a plethora of hadronic properties such as
form factors [2,3], deconfinement phase transition [4–6],
chiral symmetry breaking [7], scattering processes [8–10],
and hadron spectroscopy [11–15]. This model has also
been extended to dynamical versions [16–18], finite
density [19,20], finite temperature [21–23], and magnetic
field [24–26].
The main idea behind this model is the emergence of

bounded states in the AdS bulk because of a dilaton field
that breaks conformal invariance. These bounded states are
dual to hadrons at the boundary. The matching is achieved
by comparing the two-point function calculated in large N
QCD at high q2 with the holographic dual object. The most
particular feature of the softwall model is the linear
confinement, i.e., the bounded states form a linear mass
spectrum, dual to Regge trajectories. These trajectories are
suitable for describing light unflavored mesons. However,
when constituent masses start to be considered, linearity in
trajectories disappears [27].
An alternative to describe these nonlinearities in hadrons

spectra is a deformation of the quadratic structure in the
dilaton field, inherited from the softwall model. This idea

was applied to describe isovector mesons in [28]. With the
inclusion of the constituent mass, it is also possible to test
other hadronic species as non-qq̄ states. In particular, this
work wants to explore the configurational entropy as a test
tool to describe these states, as it was initially exposed
in [29,30]. In the first work [11], the authors explore how
configurational entropy (CE) is related to multiquark
hybrid meson states with a high CE value. On the other
hand, [30] discusses how CE is a tool for describing the
abundance of these non-qq̄ states in nature. This work
follows a different approach. We will connect the configu-
rational entropy with the hadron stability by discussing
how bulk locality is equivalent to confinement at the
conformal boundary. This will motivate the possibility of
using CE to distinguish what multiquark or hybrid meson
models are suitable for describing heavy quark exotica.
This manuscript is organized as follows: In Sec. II, we

give a summary of the ideas behind the nonquadratic
softwall model introduced in [28], and how it works
describing non-qq̄ states. Section III describes the differ-
ential configurational entropy (DCE) algorithm. Section IV
discusses the connection between DCE and hadron stabil-
ity. The application of DCE to what non-qq̄ structures are
suitable to describe heavy vector exotica is written in
Sec. V. Finally, we summarized our work in Sec. VI.

II. NONQUADRATIC SOFTWALL MODEL

A. Nonquadratic dilaton in a nutshell

The nonquadratic dilaton is a holographic proposal
developed to address heavy quarkonium masses with better
accuracy [28]. The motivation comes from the Bethe-
Salpeter formalism, where Regge trajectories, when includ-
ing constituent quark masses, can be written as [31]
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�
Mn −mq1 −mq2

�
2 ¼ aðnþ bÞ; ð1Þ

where a is a universal slope and b accounts for the effect
of the mesonic quantum numbers, it is expected that
nonlinearities associated with the constituent mass
emerge [32,33]. In the holographic AdS/QCD context, it
is possible to include these constituent quark mass effects
by adding an extra ν exponent to the radial trajectory as
follows:

M2
n ¼ aðnþ bÞν: ð2Þ

This nonlinearity in Regge trajectories is translated into
deformations on the static quadratic dilaton

ΦðzÞ ¼ ðκzÞ2−α; ð3Þ

where the SWM dilaton gains an extra parameter α that
captures the constituent mass effects. In this sense, κ and α
set a running with the constituent mass of hadrons in a
particular family. In the original work [28], the isovector
mesons are composed of ρ, ω, J=ψ , and ϒ mesons, and
labeled IGJPC ¼ 0−ð1−−Þ. The ρ meson corresponds to the
light unflavored case, where mesons, under chiral sym-
metry, have zero constituent mass. This mass scheme sets
the following parametrizations for κ and α:

αðm̄Þ ¼ aα − bαe−cαm̄
2 ð4Þ

κðm̄Þ ¼ aκ − bκe−cκm̄
2

; ð5Þ

where the fit coefficients are given by

aα ¼ 0.8454; bα ¼ 0.8485; cα ¼ 0.4233 GeV2;

aκ ¼ 15.2085 GeV; bκ ¼ 14.8082 GeV; cκ ¼ 0.0524 GeV2:

From the running of κ and α with the hadron constituent
mass, i.e., κðm̄Þ and αðm̄Þ, we can infer specific values for κ
and α for a given vector hadron, as a non-qq̄ candidate.
The input in this procedure is the parametrization of
the constituent mass m̄, which contains information on the
inner structure of the hadron. Thus, we will fix the
constituent mass parametrization instead of setting a
Regge scale and a quadratic deformation exponent.

B. Holographic setup

As customary in these models, the starting point is a
density action for the bulk field dual to vector hadrons:

IH ¼−
1

2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ϕðzÞ

�
1

2g25
FmnFmn−M2

5AmAm

�
; ð6Þ

where g25 ¼ 12π2

Nc
is fixed from the large q2 expansion of the

two-point function at the boundary [34].
This action lives in an AdS5 space described by the

Poincarè patch

dS2 ¼ R2

z2
�
dz2 þ ημνdxμdxν

�
; ð7Þ

where R is the AdS curvature radius and ημν ¼ diagð−1; 1⃗Þ.
At this point, mentioning the gauge invariance is

essential since we now have massive vector bulk fields.
Recall that the gauge invariance should be manifest at
the conformal boundary, where all dual fields are mass-
less [35]. The nonzero bulk mass does not affect the gauge
Az ¼ 0, which is imposed to decouple the bulk from the

boundary information. If we pay attention to the massive
e.o.m. for the vector bulk fields, i.e., for the z component

□Az − ∂zð∂μAμÞ þM2
5e

2AAz ¼ 0; ð8Þ

imposing the Az ¼ 0 gauge still implies the transverse
gauge ∂μAμ ¼ 0 at the conformal boundary, so Ward-
Takahashi identities hold.
From this configuration, after writing the equations of

motion in the Az ¼ 0 gauge, imposing the on-shell mass
condition M2

n ¼ −q2, Fourier transforming the massive
bulk field Aμðz; qÞ ¼ ÃμðqÞψ z;q and performing the stan-
dard Boguliubov transformation ψðzÞ ¼ eBðzÞ=2ϕðzÞ [1],
we can reduce the hadron spectroscopy problem to solve a
Schrödinger-like equation

−ϕ00ðzÞ þ VðzÞϕðzÞ ¼ M2
nϕðzÞ; ð9Þ

where the holographic potential VðzÞ is defined in terms of
the Bogoliubov transformation BðzÞ function as

VðzÞ ¼ B0ðzÞ2
4

−
B00ðzÞ
2

þM5ðΔÞ2R2

z2
ð10Þ

with BðzÞ ¼ ΦðzÞ − logðR=zÞ. This B function is funda-
mental in the bottom-up AdS/QCD scenario since it
encloses how the background captures hadronic physics
at the boundary. The other ingredient is the bulk mass M5.
From the field/operator duality, the operator creating

hadrons at the boundary is dual to the bulk field. The most
general operator that creates hadrons is a function of the
constituent fields (quarks and gluons) and the covariant
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derivatives, that is, O ¼ fðq̄; q; Gμν; DμÞ. This operator
definition allows us to consider more general structures,
such as hadronic molecules or hadroquakonium in the
non-qq̄ phenomenology.
The dimension of O, dimO ¼ Δ controls how the bulk

normalizable mode behaves near the conformal boundary,
i.e., ψðz → 0Þ → zΔ−1 for vector fields. Imposing that the
bulk field spin is equivalent to the hadronic spin S, we can
write the most general scaling dimension Δ in terms of
hadronic information [13]

Δ ¼ Δ0 þ Lþ anomalous dimensions; ð11Þ

where Δ0 is associated with pure constituent information
and L, counting covariant derivatives, sets the hadronic
angular momentum number. In the most general situation,
including data from the renormalization group is possible.
This information can be encoded in these anomalous
dimension terms [36–38]. For simplicity, we will not
include anomalous dimensions.
This relation for the scaling dimension, via the equations

of motion for the vector field, allows us to write an
expression for the hadronic mass identity, encoded into
the bulk mass as follows:

M2
5R

2 ¼ ðΔ0 þ L − 1ÞðΔ0 þ L − 3Þ: ð12Þ

However, this expression for vector hadrons does not
unambiguously define vector hadrons. Consider non-qq̄
structures with spin one as diquark-antidiquark pairs,
hadronic molecules, and hadroquarkonium. For a given
L, all of these tetraquark structures haveΔ0 ¼ 6. Thus, they
have the same bulk mass, i.e., M2

5R
2 ¼ 15. This degen-

eracy can be lifted in the nonquadratic dilaton scenario
since κ and α are sensible to the hadron structure.
Once the hadronic identity is defined, we can focus on

the holographic potential for the non-qq̄ vector states. In
the bottom-up context, once we have defined the dilaton
field, i.e., ΦðzÞ ¼ ðκzÞ2−α, it is straightforward to write
down the holographic potential using the expression (10)
and the Boguliubov transformation

BðzÞ ¼ ðκzÞ2−α − log

�
R
z

�
: ð13Þ

Therefore, the holographic potential for non-qq̄ states
acquires the following structure:

Vnon-qq̄ðz; κ;ΔÞ ¼ Vqq̄ðz; κ; αÞ þ
M2

5ðΔÞR2

z2
; ð14Þ

where Vqq̄ðzÞ is the potential used to compute the masses of
the isovector family in the s-wave. It is defined as

Vqq̄ðz;κ;αÞ ¼
3

4z2
−
1

2
α2κ2ðκzÞ−α þ 1

4
α2κ2ðκzÞ2−2α

þ 3

2
ακ2ðκzÞ−α − κ2ðκzÞ−α − ακ2ðκzÞ2−2α

þ κ2ðκzÞ2−2α þ κ

z
ðκzÞ1−α − ακ

2z
ðκzÞ1−α: ð15Þ

Setting α ¼ 0 in Vqq̄ðzÞ reduces the potential to the well-
known softwall model expression [1].
The holographic algorithm will now focus on defining a

threshold mass m̄, capturing the information about the
structure of hadrons in terms of their constituents. This
threshold mass will define a pair κðm̄Þ and αðm̄Þ for each
structure. We can compute the hadronic squared mass from
the holographic potentials with these inputs. With the
eigenmodes, it is straightforward to compute the associated
configurational entropy.
In the next sections, we will follow the following recipe:

once we define κ and α using a proper threshold mass m̄, we
set them as entries into the holographic potential (14) to
solve the eigenvalue problem (9).

C. Holographic non-qq̄ candidates

Exotic hadrons are all the mesonic states with quantum
numbers not allowed by the usual qq̄model. A good review
of the physics of such states can be found in [39–41] and
references therein. In top-down AdS/QCD, the work [42]
addresses the exotic meson spectra for Zc and Zb in the
context of Sakai-Sugimoto models.
This section will focus on three candidates for tetra-

quarks: Zc, ψ , and Zb states. We will test diquark-
antidiquark, hadroquarkonium, hadronic molecule, and
hybrid meson configurations. The first three configurations,
known as multiquark states, have Δ ¼ 6. The last con-
figuration, known as gluonic excitations, has Δ ¼ 5 for one
single gluonic tube and Δ ¼ 7 for two gluon tubes. All of
these states are considered in the s-wave.
To give a parametric description of the hadronic con-

stituent mass threshold m̄eh, we will consider a generic
exotic hadron with N constituents that can be quarks,
gluons, or mesons. Each of these constituents will con-
tribute in a weighted form to m̄eh as [28]

m̄eh ¼
XN
i¼1

�
Pquark
i m̄qi þ PGluon

i mGi
þ Pmeson

i mmesoni

�
; ð16Þ

along with the constraint condition

XN
i¼1

�
Pquark
i þ PGluon

i þ Pmeson
i

� ¼ 1: ð17Þ

Notice that each weight Pi measures the contribution of a
given constituent (quark, gluon, or meson) having a defined
constituent mass. In our case, we choose the following
constituent masses
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mu ¼ 0.336 GeV; md ¼ 0.340 GeV

mc ¼ 1.550 GeV; mb ¼ 4.730 GeV

mG ¼ 0.7 GeV; mρð770Þ ¼ 0.775 GeV

mJ=ψ ¼ 3.097 GeV; mϒð1SÞ ¼ 9.460 GeV:

Meson masses are extracted from [43]. Gluon constituent
mass is read from [44].
The threshold mass for exotic hadrons is an extension of

the proposal done in Ref. [28]. Since bottom-up models do
not have ab initio information about the hadron inner
structure in the holographic dictionary, the threshold
mass m̄ opens the possibility of including it from pure
phenomenological grounds. For the mesons, such as the
isovector or heavy-light ones, the arithmetic average seems
a reasonable choice since the dilaton slope κ, which fixes
the scale for the hadronic Regge trajectories, would carry
information about the constituent mass. This affirmation is
not new in holography. For example, in top-down app-
roaches, such as the D3/D7 systems, the quark mass plays a
double role: it sets the embedding distance between the D3
and D7 branes, and it also sets the energy scale for the
Regge trajectories that are not linear with the excitation
number, i.e., M2

n ∝ m2
qn2 [45].

By the same token, following the phenomenology of
these non-qq̄ candidates, it is possible to infer the inner
structure from the decay modes. Following [39,40], hadro-
quarkonium states have heavy meson cores appearing in
the decay modes along with pion. For example, for the
hadrocharmonium candidate, the ψð4230Þ state is expec-
ted to measure a J=ψπ mode. Thus, expecting to have
a larger contribution from a J=ψ core in the threshold
mass is consistent. A similar situation occurs with the
hadronic molecule, hybrid mesons, and diquark pairs: the

threshold mass is motivated by the decay modes expected
for these states.

1. Diquark configuration

Diquarks are noncolored singlet objects used as essential
building blocks forming tetraquark mesons and penta-
quark baryons. These fundamental blocks are either a
color antitriplet or a color sextet in the SU(3) color repre-
sentation [46]. Spin-spin interactions bind these diquarks.
The constituent diquark approach helps describe the spec-
troscopy and decay of multiquark states. These diquark-
composed candidates are expected to appear as poles in the
S-matrix, described by narrow widths.
Experimentally, charmonium and bottomonium tetraquark

states can be identified thanks to their decay into open-flavor
states instead of a quarkonium with a light meson due to the
spin-spin interaction dominance (See [39]).
In the case of charmonium, Zc states, with quantum

numbers IGðJCPÞ ¼ 1þð1þ−Þ, are candidates to be vector
tetraquarks. Following Bambrilla, we consider the Zc states
as a single trajectory. Other studies, such as [47], suggest
ψð4230Þ with 0þð1−−Þ as a vector tetraquark instead of
Zcð4200Þ. However, in this holographic picture, consider-
ing both diquark-antidiquark structures implies the same
threshold mass, m̄4q, leading to degeneration in mass.
Holographically, a hadron is conceived as a bag with N

constituents characterized by M5 despite its inner configu-
ration. The holographic approach to the tetraquark is
equivalent to having four quarks with Δ ¼ 3=2, implying
for the tetraquark M2

5R
2 ¼ 15.

For the threshold mass m̄4q, without any loss of general-
ity, we can assume that each c quark contributes equally,
i.e., Pc ¼ 0.25. Thus, we choose m̄4q ¼ mc ¼ 1.55 GeV as
the threshold mass, implying that κ4qðm̄Þ ¼ 2.151 GeV
and α4qðm̄Þ ¼ 0.5387, see Table I.

TABLE I. Holographic mass spectrum for the Zc non-qq̄ states candidates according to their threshold mass m̄.
Parameters κ and α are read from the expressions (4) and (5). In the case of Zc as a hybrid meson, we consider
one constituent gluon, i.e., Δ ¼ 5. The quantity inside the parenthesis is the relative error. Experimental data come
from [43].

Zc states

Non-qq̄ state Zcð3900Þ Zcð4200Þ Zcð4430Þ
Experimental masses (MeV) 3887.1� 3.6 4296þ35

−32 4478þ13
−18

Diquark-antidiquark (MeV) 4004.8 (3.0%) 4384.9 (2.1%) 4706.6 (5.1%)
m̄4Q ¼ 1550 MeV
κ ¼ 2151 MeV and α ¼ 0.5387

Hadronic molecule (MeV) 3817.1 (1.8%) 4214.7 (1.9%) 4552.1 (1.6%)
m̄HM ¼ 1432.3 MeV
κ ¼ 1907 MeV and α ¼ 0.4887

Hybrid meson (MeV) 3721.9 (4.2%) 4156.4 (3.2%) 4513.2 (0.8%)
m̄Zc

¼ 1533 MeV
κ ¼ 2114.8 MeV and α ¼ 0.5317
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2. Hadroquarkonium

Hadroquarkonium states are structures considering a
vector meson core with a cloud of two quarks [48].
Experiments showed that most of the candidates to be
heavy exotic states appear as final states composed of
heavy quarkonium and light quarks, motivating the idea
that these states are a compact heavy quarkonium core
surrounded by a light quark cloud [49]. This quark-
onium core interacts with the light quark cloud through
a colored Van der Waals force, allowing the decay of these
states into the observed quarkonium core and the light
quarks [50].
At the holographic level, hadroquarkonium structures

have the same behavior as tetraquarks, i.e., Δ ¼ 6 and
M2

5R
2 ¼ 15, since essentially, both models are a bag with

four constituent quarks. The threshold mass settles the
difference. Thus, for the hadrocharmonium threshold mass,
we have

m̄HQc ¼
1

2
mJ=ψ þ 1

4
ðm̄u þ m̄dÞ

¼ 1.717 GeV:

We will consider that states ψð4260Þ, ψð4360Þ, and
ψð4660Þ with 0þð1−−Þ are hadrocharmonium candi-
dates [50], forming a vector trajectory.
The summary of the holographic spectrum for ψ states

considered as hadrocharmonium is given in Table II.

3. Hadronic molecules

Hadronic molecules are states conformed by a pair of
internal mesons bounded by strong QCD forces, inter-
acting between them via a residual weak QCD colorless
force [41]. These structures usually have two heavy
quarkonia interacting or one heavy quarkonium plus a
light meson.
Recent works [39,40] suggest that the Zc or ψ states are

candidates for being charmonium hadronic molecules,

having at least one pair of cc̄ in the inner core of the
molecule. These states usually decay to J=ψπ.
On the holographic side, hadronic molecules have the

same Δ and M5 as tetraquarks and hadroquarkonium since
the constituent content is essentially the same. Degeneracy
is broken down by the threshold mass m̄HM that captures
information about the inner structure. For these charmo-
nium hadronic molecules, we have

m̄HM;ψ ¼ 1

3
mJ=ψ þ 2

3
mρ ¼ 1.549 GeV;

m̄HM;Zc
¼ 0.283mJ=ψ þ 0.717mρ ¼ 1.4323 GeV:

A similar situation occurs in the bottomonium sector [40],
where ZB states, with IGðJCPÞ ¼ 1þð1þ−Þ, are considered
candidates for hadronic molecules, with a ϒð1SÞ meson
core. In this situation, the threshold mass is

m̄HM;ZB
¼ 0.458mϒð1SÞ þ 0.542mρ ¼ 4.753 GeV: ð18Þ

The summary of the holographic spectra for the Zc, ψ ,
and Zc states, considered hadronic molecules, is given in
Tables I–III respectively.

4. Gluonic excitations

Gluonic excitations are hadrons with constituent gluonic
fields. Since QCD-confined states are naturally nonpertur-
bative, having constituent gluons inside hadrons is unsur-
prising. In this category, we have glueballs GG, hybrid
mesons qq̄G, and hybrid baryons qqqG, where G is a
constituent degree of flavor. In other words, a color-octet
pair qq̄ is color neutralized by an excited gluon G. These
hybrid configurations allow for introducing other quantum
numbers that are impossible in the quark constituent model,
such as JCP ¼ 1þ− for hybrid vector mesons.
Holographically, in the case of vector hybrid mesons, we

will consider mesons with one gluon for the Zc candidates
and two gluons for the Zb candidates. For a constituent
gluon, Δ ¼ 5 implies M2

5R
2 ¼ 8. For two gluons, Δ ¼ 7

TABLE II. Holographic mass spectrum for the ψ (or Y) non-qq̄ states candidates according to their threshold mass
m̄. Parameters κ and α are read from the expressions (4) and (5). The quantity inside the parenthesis is the relative
error. The experimental data come from [43].

ψ states

Non-qq̄ state ψð4230Þ ψð4360Þ ψð4660Þ
Experimental masses (MeV) 4222.5� 2.4 4374� 7 4630� 6

Hadrocharmonium (MeV) 4222.5 (0.2%) 4577.4 (4.6%) 4871.8 (5.2%)
m̄HQc ¼ 1717 MeV
κ ¼ 2522.6 MeV and α ¼ 0.6036

Hadronic molecule (MeV) 4003.5 (5.2%) 4383.7 (0.2%) 4705.6 (1.6%)
m̄HM ¼ 1549.1 MeV
κ ¼ 2149.2 MeV and α ¼ 0.5384
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yieldsM2
5R

2 ¼ 24. The threshold masses for both cases are
the following:

m̄Zc
¼ 0.98mc þ 0.2mG ¼ 1.533 GeV

m̄Zb
¼ 0.99mb þ 0.01mG ¼ 4.6897 GeV;

where we have assumed mq ¼ mq̄ implicitly.
A summary of the mass spectrum for these hybrid meson

candidates can be found in Tables I for Zc and III for Zb
states.

III. DIFFERENTIAL CONFIGURATIONAL
ENTROPY

Configurational entropy (CE) constitutes a fundamental
concept with far-reaching implications across various
scientific disciplines, including statistical mechanics, infor-
mation theory, and holography. This concept encapsu-
lates the various arrangements or microstates that a given
macrostate may embody. A higher CE value means a
correspondingly greater multiplicity of potential microstate
configurations. From a thermodynamic standpoint, CE
refers to the work performed by a system with a non-
exchange of temperature. Thus, CE could be helpful to
infer when a given physical system, at zero temperature, is
stable; we will say that the configuration with less CE is
more stable than the others.
In information theory, CE bridges the informational

content of physical solutions to the equations of motion
governing them. In particular, CE assumes the role of a
logarithmic measure quantifying the spatial complexity
inherent in solutions localized within predefined energy
boundaries. Conceptually, it quantifies the informational
content inherent in solutions corresponding to a specified
set of e.o.m. Consequently, CE may be construed as
assessing the information required to characterize functions
localized within a given parameter space comprehensively.
In a broader context, dynamic solutions emerge from the
extremization of actions, while CE functions as a metric

capturing the underlying information content within these
dynamically evolving states.
In the domain of discrete variables, CE is rigorously

articulated as an application of Shannon entropy, succinctly
formulated as [51–53]:

SC ¼ −
X
n

pn logpn: ð19Þ

In the transition to continuous variables, the concept of
differential configurational entropy (DCE) emerges, char-
acterized by:

SC½f� ¼ −
Z

ddkf̃ðkÞ log f̃ðkÞ; ð20Þ

where f̃ðkÞ ¼ fðkÞ=fðkÞMax. Here, fðkÞMax represents
the maximum value assumed by fðkÞ, and fðkÞ itself
belongs to the square-integrable space L2ðR2Þ, ensuring
its Fourier transformability. Mathematically, fðkÞ corre-
sponds to the energy density within the momentum space,
denoted as ρðkÞ.
In the context of AdS=CFT duality, the application of CE

finds fertile ground within both bottom-up and top-down
AdS/QCD models, as initially delineated by [54]. The
versatility of CE becomes apparent in its applicability to a
spectrum of physical scenarios, spanning from hadronic
states to heavy quarkonium stability under varying thermal,
magnetic, and density conditions. Furthermore, CE’s utility
extends to investigating the holographic deconfinement
phase transition, as elucidated in [55–58], and recently in
the exploration of holographic stability in light nuclides [59].
Within this discourse, the holographic dictionary serves

as a central construct, enabling the translation of spatial
configurations of boundary particles into the holographic
configuration of the dual bulk field. This process encap-
sulates the information encoded in the arrangement of
constituents within a hadron, briefly represented by the
energy density inherent in the temporal component of the
energy-momentum tensor, denoted as ρðzÞ≡ T00ðzÞ.

TABLE III. Holographic mass spectrum for the Zb non-qq̄ states candidates according to their threshold mass m̄.
Parameters κ and α are read from the expressions (4) and (5). For Zb as a hybrid meson, we consider two constituent
gluons, i.e., Δ ¼ 7. The quantity inside the parenthesis is the relative error. Experimental data come from [43].

Zb states

Non-qq̄ state Zbð10610Þ Zbð10650Þ
Experimental masses (MeV) 10609� 6 10652.2� 1.5

Diquark-antidiquark (MeV) 10224.5 (3.6%) 10517.6 (1.3%)
m̄HM ¼ 4753 MeV
κ ¼ 11269.5 MeV and α ¼ 0.8633

Hybrid meson (MeV) 10257.9 (3.3%) 10512.5 (1.3%)
m̄Zb ¼ 4689.7 MeV
κ ¼ 11102.3 MeV and α ¼ 0.8633
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The procedure for computing CE, as delineated by [54,59],
emanates from the on-shell bulk action, yielding the energy-
momentum tensor as

Tmn ¼
2ffiffiffiffiffiffi−gp ∂½ ffiffiffiffiffiffi−gp

LHadron�
∂gmn : ð21Þ

From the holographic potential VðzÞ (15) and inverting
the transformation ψðzÞ ¼ eBðzÞ=2ϕðzÞ, it is possible to
obtain the Sturm-Liouville modes to feed up the on-shell
energy-momentum tensor

ρðzÞ≡ T00 ¼
e−BðzÞ

2

�
z
R

�
3

×

��
1

g25

�
M2

nψ
2
n þ ψ 02

n

�
−
M2

5R
2

z2
ψ2
n

	

Ω: ð22Þ

The next step in the recipe for the CE is to define the
modal fraction. To do so is necessary to compute a Fourier-
transformed representation of ρ, i.e., ρ̄ðkÞ. Recall that
ρðzÞ∈L2ðRÞ, and also has information on how energy
is localized in the bulk. Thus, it is an indirect measure of
how normalizable modes are well localized in the AdS
space. Therefore, from Plancherel’s theorem,

Z
∞

0

dzjρðzÞj2 ¼
Z

∞

0

dkjρ̄ðkÞj2; ð23Þ

it is possible to quantify localizabilty by defining how
spread the energy density is using the modal fraction,
defined as

fðkÞ ¼ jρ̄ðkÞj2R
dkjρ̄ðkÞj2 : ð24Þ

The differential configurational entropy (DCE) for the
non-qq̄ state is written from the modal fraction as

SDCE ¼ −
Z

dkf̃ðkÞ log f̃ðkÞ; ð25Þ

where f̃ðkÞ ¼ fðkÞ=fðkÞMax. Notice that we normalize the
modal fraction with fðkÞMax.
In the following sections, we will use this tool to explore

the stability of tetraquark candidates from their holographic
duals constructed in the nonquadratic SWM.

IV. CONFIGURATIONAL ENTROPY AND
HADRON STABILITY

Since the first applications of DCE to AdS/QCD, the
connection between hadron stability and DCE has been
open since there is no apparent direct connection from
fundamental grounds.

Stability in hadrons is an issue following confinement.
Once constituents are bounded in a hadronic structure, it is
natural to wonder if such a structure is stable enough (in
time) to be considered a hadronic state.
The connection with configurational entropy arises with

the locality as a synonym for confinement: a QCD-bounded
state of constituent quarks and gluons has highly well
spatially localized wave functions for these constituents.
Regarding the configurational entropy, these systems are
more stable (less CE) than delocalized ones. In other words,
confinement can be understood as a transition from
localization to delocalization in space.
Let us turn these ideas to the AdS/QCD realm. Mesons in

bottom-up models appear from the field/operator duality:
operators creating hadrons at the boundary are dual to bulk
fields representing these hadrons.
The connection is done with the operator dimension

set as the bulk field scaling dimension (minus the spin),
Δ [60,61]. This information defines the bulk field massM5.
Thus, for a given hadron, defined by an operator O with
dimension Δ at the boundary, it will be dual to a bulk field
with mass M2

5R
2 ¼ ðΔ − SÞðΔþ S − 4Þ. In other terms, a

hadron in bottom-up models is a bag with N constituents
characterized by M2

5. Any information about the hadronic
inner structure is not present ab initio.
This map between boundary and bulk physics also

implies that normalizable bulk modes are dual to mesons
at the boundary. From the AdS=CFT correspondence
ground, this statement conflicts with field/operator duality
since spatially localized wave functions at the boundary
should be delocalized at the bulk because of the IR/UV
behavior. However, this holds for N ¼ 4 SYM theory
dual to a type IIB supergravity, where bulk states are un-
bounded [62]. Following [63,64], one of the consequences
of lifting the bulk conformal invariance (by placing a hard
cutoff or using a dilaton field) is precisely this reinterpre-
tation of the operator/field duality where extended and
localized objects at the boundary are dual to localized
objects at the bulk. This locality in the bulk objects seems
natural in nonconformal theories [65]. This idea supports
computing hadronic properties (mass spectrum, form fac-
tors, decay constants, thermal densities, etc.) in bottom-up
models.
Therefore, for bottom-up models (or models where

nonconformality exists), local operators at the boundary
can have local dual objects at the bulk. This affirmation
connects with the configurational entropy directly. Thus, it
is correct to infer that locality at the bulk (involving lower
configurational entropy) implies stability at the boundary.
This hypothesis is strongly supported by the thermal or

chemical analysis of these bottom-up models [53,66,67],
where the melting criterion is dictated by when the spectral
peak disappears. This peak broadening can be understood
as a thermal (chemical) delocalization of the bulk quasi-
normal modes.
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V. DCE FOR NON-qq̄ STATES

We can discuss stability further once we have established
that normalizable modes mimic hadrons at the boundary in
locality terms. One of the main features of the nonquadratic
dilaton is the inclusion of constituent mass dependence.
Inspired by the well-known [33] fact that the constituent
mass affects the concavity of the Regge trajectory, that is,
the linearity, this dilaton encloses the mass behavior in
the quadratic deformation parameter α. As in the original
softwall proposal [1], the slope κ is still flavor dependent.
However, this slope also runs with the constituent mass
threshold m̄. In practical terms, despite having two param-
eters at hand, we only have to deal with the mass threshold.
Thus, at this point, we have increased the hadronic infor-
mation encoded into the model since we have structural
parameters included.
In the original nonquadratic softwall work [28], the

holographic prediction of which non-qq̄ structure was
focused on minimizing the RMS error in the mass spec-
trum. Following this prescription, for Zc, the lowest RMS
error (1.5%) is achieved in the hadronic molecule case. For
ψ , the lowest error (2.7%) is for the hadronic molecule case.
And, for Zb, the lowest RMS error (3.5%) appears for
hybrid meson (with two gluon flux tubes). Let us compare
this criterion with the DCE analysis.

In the case of DCE, even though multiquark states for
vector hadrons have the same bulk mass, the nonquadratic
dilaton provides a mechanism to distinguish between
structures through the threshold mass. This parametrization
of the mass of the constituents allows the extrapolation of a
pair ðκ; αÞ for each structure. Tables I–III summarize the
extrapolated values for each structure, according to the non-
qq̄ candidate.
The DCE analysis calculates the configurational entropy

for each structure using the procedure exposed in Sec. III.
Following the idea that bulk modes capture locality infor-
mation about hadron modes at the boundary, the trajectory
with less DCE will be the most stable. This analysis differs
entirely from the one done in [30]. In this work, the authors
predicted the next generation of heavy non-qq̄ by con-
structing Regge trajectories inspired by the DCE behavior
of the associated bulk modes. They also discussed the
possible existence of excited non-qq̄ states from DCE
holographic grounds, arguing that the lower production of
these highly excited states agrees with the DCE holo-
graphic result, interpreted as hadronic information com-
pressed, according to Shannon’s information theory. Thus,
only lower excitation modes are allowed and expected to
dominate experiments.
The analysis proposed in this work deals with the

structural stability encoded in the threshold mass m̄.

FIG. 1. Differential configurational entropy, in natural entropy units, as a function of excitation number for non-qq̄ candidates. The
left-upper panel plots the Zc holographic comparison between diquark, hadronic molecule, and exotic gluon structure. We present an
analysis of ψ or (Y) with hadronic molecule and hadrocharmonium structures in the right panel. The bottom panel presents the DCE for
gluonic excitation (with two gluons) and hadronic molecule structures for Zb states. From DCE grounds, those structures with less
entropy are the most stable and, therefore, preferred.
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Thus, we will compare the entropic effect of one para-
metrization over another for each family of states. The
results of this analysis are summarized in Fig. 1.
We compare three possible structures for the Zc states:

diquark-antidiquark, hadronic molecule (multiquark states),
and hybrid meson with one gluonic flux tube. For the ground
state, the lowest DCE is achieved by the diquark structure.
However, hybrid mesons (one exotic gluon flux tube)
become more stable for excited states. Performing a quad-
rature analysis, i.e., looking for the smallest total DCE per
structure, we found that the most stable configuration is the
hybrid meson.
We compare two multiquark structures in the ψ states:

hadronic molecule and hadrocharmonium. In this scenario,
the smallest DCE is observed for hadrocharmonium.
Finally, for the Zb states, following hadron phenom-

enology [39], we tested the hybrid meson (with two gluon
tubes) and the hadronic molecule structure. We found the
lowest DCE and, therefore, the most stable structure for the
hadronic molecule.
The DCE holographic analysis brings results different

from the pure spectroscopic analysis, which does not
account for the configurational information encoded into
the threshold mass.

VI. CONCLUSIONS

As the vast and extensive literature demonstrates, in recent
years, configurational entropy has proven to be an interesting

tool to address in holographic models [29,30,56–58,68–70].
This work explored the DCE to analyze stability when
information regarding the hadronic inner structure is pro-
vided. In parallel, we also discussed the connection between
hadronic stability and configurational entropy. Even thermo-
dynamically speaking, CE does not account for processes
where energy transfers change the configuration of a system.
It can provide insights into configurational stability. Later,
we can complement this discussion with thermal or chemical
approaches to the concept.
Speaking about hadronic stability is equivalent to talking

about wave-function locality. This discussion stretches the
hypothesis that normalizable modes living in the AdS bulk
are dual to meson modes. This assumption is supported by
slightly breaking the bulk conformal invariance, inducing
bounded KK-towers dual to hadronic Regge trajectories. In
bottom-up models, this is achieved by introducing a dilaton
field. Thus, well-localized (bounded) bulk modes imply
localized and confined objects at the boundary.
In this context, we found that, as a holographic pre-

diction for heavy non-qq̄ hadrons, the Zc states should be
cataloged as hybrid meson, ψ states as hadrocharmonium,
and Zb as hadronic molecule.
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