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Quantum matrix geometry is the underlying geometry of M(atrix) theory. Expanding upon the idea of
level projection, we propose a quantum-oriented noncommutative scheme for generating the matrix
geometry of the coset space G/H. We employ this novel scheme to unveil unexplored matrix geometries by
utilizing gauged quantum mechanics on higher dimensional spheres. The resultant matrix geometries
manifest as pure quantum Nambu geometries: Their noncommutative structures elude capture through the
conventional commutator formalism of Lie algebra, necessitating the introduction of the quantum Nambu
algebra. This matrix geometry embodies a one-dimension-lower quantum internal geometry featuring
nested fuzzy structures. While the continuum limit of this quantum geometry is represented by overlapping
classical manifolds, their fuzzification cannot reproduce the original quantum geometry. We demonstrate
how these quantum Nambu geometries give rise to novel solutions in Yang-Mills matrix models, exhibiting
distinct physical properties from the known fuzzy sphere solutions.
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I. INTRODUCTION

It has been almost 80 years since the inception of
theoretical research on quantized space-time with Snyder’s
first explicit model [1,2]. This research field continues
to be active, contributing to a deeper understanding of
space-time. Noncommutative geometry presents a promis-
ing mathematical framework for describing the micro-
scopic nature of space-time [3]. A general mathematical
framework of noncommutative geometry was set up by
Connes [4]. More tangible noncommutative schemes are
those such as deformation quantization, geometric quan-
tization, and Berezin-Toeplitz quantization [5]. As these
ideas are rooted in the canonical quantization method
of the phase space [6,7], the corresponding noncommuta-
tive schemes are concerned with the quantization of the
symplectic manifolds or Poisson manifolds. However, in
the investigations of M theory, physicists encountered
even exotic noncommutative structures beyond the conven-
tional quantization schemes, including odd dimensional
fuzzy spheres [8—11]. From M(atrix) theory point of
view [12,13], matrix geometries known as fuzzy mani-
folds [14-26] represent fundamental extended objects in
the theory [27,28]. Moreover, it has been recognized that
the quantum Nambu algebra [29] plays crucial roles in the
formulation of M theory (see Refs. [30-32] as nice reviews
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and references therein). It may be evident that a new
noncommutative scheme is required to address these
extraordinary noncommutative spaces that extend beyond
the conventional quantization methods based on the com-
mutator formalism.'

Associated with the developments of the higher-
dimensional quantum Hall effect, the understanding of
higher-dimensional noncommutative geometry has signifi-
cantly advanced in the past 20 years (see [39,40] and
references therein). We have learned that the higher dimen-
sional noncommutative geometry on M ~G/H can be
obtained by examining the L.andau model on M in the non-
Abelian monopole background [41-52]. Specifically,
within the lowest Landau level, fuzzy manifolds My were
successfully realized. Nonetheless, it should be noticed that
the underlying reason for the success is still missing.
Furthermore, while the preceding analysis has provided
a nice physical understanding of noncommutative geom-
etries, one could argue that these analyses have not revealed
unknown matrix geometries. Until now, substantial atten-
tion has been given to the geometry in the lowest Landau
level; however, there is no logical reason for the exclusive
presence of noncommutative geometry solely in this level.
Indeed, it was demonstrated that the higher Landau levels
also give rise to fuzzy geometries [53], which clearly shows
that level projection to any Landau level generates

1Interestingly, a cubit matrix realization is known for the
quantum Nambu algebra [33-35], although we do not delve into
such possibilities in this paper. The deformation quantization
approach to the quantum Nambu geometry is also discussed in
Refs. [36-38].
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noncommutativity. With regards to a two-sphere, the
emergent noncommutative geometries of the higher
Landau levels are the same as that of the lowest Landau
level. In this sense, the geometry of higher Landau levels
might not be so intriguing. Nevertheless, this does not rule
out the possibility of discovering new noncommutative
geometries in higher dimensional systems. Following this
idea, explorations of novel quantum matrix geometries
have been conducted in various Landau models, such
as relativistic models and supersymmetric models [53],
odd dimensional models [54] and even dimensional
models [55-57]. It is also worthwhile to mention that
quantum matrix geometries associated with the Berezin-
Toeplitz quantization have been intensively studied in
recent years [58—64].

Importantly, now the higher dimensional studies are
not only relevant to theoretical interests but also to
practical experiments. The idea of the synthetic dimension
allows physicists to reach higher dimensional topo-
logical physics [65—67]. In particular, exotic topological
effects of the non-Abelian monopole in higher dimension
have already been observed through table top experi-
ments very recently [68-71]. It is expected that
physical consequences arising from higher dimensional
quantum geometry will be observed in these experimental
systems.

In the present work, with an appropriate interpretation of
the emergent noncommutative geometry in the Landau
models, we introduce a quantum-oriented noncommutative
scheme that leverages Landau models as an effective “tool”
to generate noble quantum geometries. Our approach
provides a concrete prescription for generating the matrix
geometry of the coset manifold M ~ G/H. It is shown that
this scheme encompasses pure quantum Nambu matrix
geometry, which cannot be described by conventional
noncommutative methods. We also demonstrate that these
quantum Nambu matrix geometries give rise to novel
classical solutions in Yang-Mills matrix models.

This paper is organized as follows. In Sec. II, we revisit
the derivation of the fuzzy two-sphere from the SO(3)
Landau model and address the underlying reasons behind
the emergent noncommutative geometry of the Landau
models. Section III presents explicit fuzzy four-sphere
matrix coordinates in the SO(5) Landau levels. We inves-
tigate the matrix structures of fuzzy four-spheres and
discuss their basic properties in Sec. IV. In Sec. V, the
nested internal structures of higher Landau level matrix
geometries are exploited. We investigate the continuum
limit and the classical geometry of the quantum matrix
geometry using the coherent method and the probe brane
method in Sec. VI. In Sec. VII, we demonstrate that the
obtained quantum matrix geometries realize unexplored
solutions of Yang-Mills matrix models and clarify their
physical properties. Section IX is devoted to summary and
discussions.

II. QUANTUM-ORIENTED
NONCOMMUTATIVE SCHEME

In this section, we discuss the underlying mechanism
behind the emergent matrix geometry in the simple SO(3)
Landau model and apply this observation to propose a
prescription for generating matrix geometries of G/H.

A. Behind the scene of the emergent matrix geometry

The SO(3) Landau model is a Landau model on S? and
the Hamiltonian is given by

1< )
—wZ(ai + A1, (1)
i=1

H=

where A; denotes the U(1) gauge field of monopole at the
origin:
1
Aj = ——F———€;i3X;. 2

i 2r(r+x3)€lj3xj ( )
The index //2 signifies the monopole charge (in the follow-
ing, we assume / to be a positive integer for simplicity). While
the present system is originally investigated in [72,73], we
will utilize the concise notation of [53] in this paper. The
eigenvalues of the Hamiltonian (1) are obtained as

Ey :54(1(1\@9 FN(V 4 1)) (N=0,1,2,..),
(3)

and the corresponding eigenstates are given by the monopole
harmonics

N 2N +1+1

v (0.9) = \/ TDN+§(¢, —0.=})1
—N+IN+I 1 N+I
m= 2k 3 s 5) )

(4)

where D denotes the Wigner D function:
Di(y.0.¢) = o-ir8? g=i6s) j=igs! 5

Here, SE” stand for the SU(2) spin matrices with spin
index /. We sandwich the coordinates on S? to derive the
corresponding matrix coordinates:

(x;"

l )mn

= ¥V x|YM) = / d0dg sin oy x, vV,
SZ
(6)
where
x3=cosf. (7)

X;=cos¢sinf, x,=singsind,
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FIG. 1.

Left: the schematic picture of the fuzzy two-sphere for N = 0 (8). Right: the distributions of the magnitudes of the monopole

harmonics, |Y£,],V :0>\, of m=1/2,1/2—1,...,—1/2 for I =4 are depicted as the red, orange, green, blue, and violet orbitals,

=0)

respectively. The monopole orbitals, |YSnN

In the Nth Landau level, X EN] are explicitly obtained as [53]

() 21 G+
X = S§2 7, 8
i T +2N)(I+2N+2)" ®)
which satisfy
2
(N) 3/ (N) !
X\ x\W = 1 , 9
i i (I+2N)(I+2N+2) I+2N+1 ( a)
(N) $(N)y _ 21 (N)
X xW = X (9b
[ i J ] l(]+2N)(]+2N+2)€ljk k ( )

Equation (9) represents the algebra of fuzzy two-
sphere [14]. Note that not only the lowest Landau level
but also each of the higher Landau level matrix geometries
realizes the fuzzy two-sphere matrix geometry.2 The
physical properties of (9) as a classical solution of Yang-
Mills matrix models are discussed in Appendix B.

We depicted the fuzzy two-sphere and the magnitudes of
the monopole harmonics in the left and the right of Fig. 1,
respectively. One may find an apparent resemblance
between the left and the right pictures. The latitudes on
the fuzzy two-sphere represent the degrees of freedom of the
matrix geometry, i.e., the “points,” in the fuzzy space.
Obviously, each point on the fuzzy space corresponds to
the monopole harmonics or each state of the SU(2)
irreducible representation. Therefore, one may consider
the fuzzy two-sphere to be composed of the SU(2) irre-
ducible representation.

Reflecting the emergence of the noncommutative geom-
etry, we can obtain the following insight:

(1) About the role of global symmetry and irreducible
representation: The SO(3) global symmetry of §? ~
SO(3)/SO(2) is naturally transformed to the SU(2)
symmetry on the matrix geometry side introducing the
projective representation of SO(3). In the matrix
geometry, an “uncertainty area” or a “point” corre-

*For completeness, we derive the noncommutative geometry in
higher Landau levels of the planar Landau model in Appendix A.
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, are localized around the latitudes z = 2m/I on the two-sphere.

sponds to each state of the SU(2) irreducible repre-
sentation. The irreducible representation is
“symmetric” in the sense that, while each state of
an irreducible representation is transformed, the set of
states in the irreducible representation remains un-
changed under any SU(2) transformation. In the
language of matrix geometry, this means that fuzzy
geometry also remains unchanged under SU(2) trans-
formations, as the fuzzy two-sphere is composed of the
states in the SU(2) irreducible representation. More-
over, the SU(2) group is a compact group, and its
irreducible representation is a finite-dimensional set
with discrete quantum numbers, which aligns with the
intuitive notion that a compact noncommutative space
consists of finite-dimensional discrete points. In this
way, while the fuzzy sphere is a discretized space, it
realizes a space symmetric under continuous SU(2)
transformations, unlike the lattice space, which is
symmetric only by the discrete translations corre-
sponding to the lattice spacing. This is the specific
feature of the matrix geometry composed of the
irreducible representation.

About the role of the stabilizer group and the gauge
symmetry: The stabilizer group SO(2) of §? =~
SO(3)/SO(2) is a subgroup of SO(3) that does not
change a point on the classical manifold S? [74].
A point in the classical geometry corresponds to a state
of the irreducible representation on the matrix geom-
etry side. Therefore, the stabilizer group is considered
to be some transformation that does not change that
state. The transformation that does not change physical
state is nothing but a gauge transformation. To
encapsulate, the stabilizer group represents redundant
symmetry of the SO(3) group in the classical system
when representing S? ~ SO(3)/SO(2), and such re-
dundancy is naturally regarded as a gauge symmetry
on the quantum mechanical side. Consequently,
the stabilizer group SO(2) corresponds to the U(1) ~
SO(2) symmetry on the quantum mechanical side. Itis
interesting to see that while the stabilizer symmetry is
an external symmetry on the classical mechanical side,
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FIG. 2. Flow of the procedure.

it acts as the internal symmetry on the quantum
mechanical side.”

(3) Reinterpretation of the Landau model: The above
observations suggest that the matrix geometry cor-
responding to $? =~ SO(3)/SO(2) is obtained by
considering a quantum system with global SU(2)
symmetry and U(1) gauge symmetry. As we are
dealing with the spatial manifold, the U(1) gauge
symmetry introduces the U(1) vector potential
whose field configuration should be compatible with
the SU(2) global symmetry. This necessarily leads
to the radially symmetric magnetic field of the U(1)
monopole. Thus, the magnetic field is just a conse-
quence of the gauge symmetry. In this way, we can
reproduce the original SO(3) Landau system. It is
important to note that the primary significance lies in
the gauge symmetry itself rather than the magnetic
field, although the presence of a magnetic field is
commonly believed to be essential for the emergence
of noncommutative geometry.

These speculations provide a natural explanation
for why the fuzzy two-sphere geometry has been
successfully generated through the analyses of the
SO(3) Landau model.

B. Noncommutative scheme for generating
the matrix geometry

With the above understanding, we now propose a
prescription for obtaining the matrix geometry of the
general coset manifold, M ~G/H. We will utilize the
quantum mechanics as a tool for generating matrix geo-
metries. What we need to do is simply replace the SO(3) in
the above discussions with G and SO(2) with H.*

1. General prescription

(1) Consider quantum mechanics with gauge symmetry
H on base-manifold M:

1

——N D2
2M — "

, (10)
M

This suggests that the external space and the internal
space should be treated on the same footing in the matrix
geometry [75].

While we will assume that G is a compact group with finite
dimensional irreducible representations, our discussions can also
be applied to noncompact groups with discrete series of infinite
dimensional irreducible representations [26].

where D, = d, + iA, are covariant derivatives with
the gauge field A, of the gauge group H. The gauge
field configuration has to be chosen to be compatible
with the symmetry G of the base-manifold M.

(2) Solve the eigenvalue problem of the Hamiltonian
(10) to derive the degenerate eigenstates of each
energy level Ey:

|l//N,a>' (11)

The set of degenerate eigenstates constitute an
irreducible representation of GS

(3) Derive the matrix elements of of the coordinates x,
of M utilizing (11) to construct the matrix coor-

dinates of M;M :

N
(Xt(z ))aﬂ = <l//N,a|xa|WN,ﬂ> = /M dQ ij,axal//N.ﬂv

(12)

where dQ is the area element of M.
Notice each energy level N hosts its own matrix geometry

XLN], and distinct energy levels yield different quantum
matrix coordinates in general. Consequently, multiple
quantum geometries will be obtained from a single classical
manifold. The flow of this procedure is depicted in Fig. 2.

2. Advantages

Here, we will outline the advantages of the present

construction.

(1) The first merit is that we do need to worry about
mathematical inconsistency. In the present scheme,
noncommutative geometry is not postulated a priori
but is what emerges in each of the energy levels. As
the original quantum system is totally physical and
the existence of mathematically consistent Hilbert
space behind the quantum mechanics is founded,
there is no need to be concerned about mathematical
inconsistencies.

(2) Following the above simple prescription, we can
mechanically derive matrix geometries for arbitrary

°In general, the Hamiltonian may possess symmetries other
than G. In such a case, the degenerate eigenstates constitute states
of an irreducible representation of the entire symmetry. See
Sec. V B.

®This is inspired by the idea of Ref. [76].
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classical manifolds of the type M ~ G/H. Notably,
odd dimensional manifolds are also within the
realm of this scheme. Therefore, this scheme is
not restricted to the symplectic manifolds unlike the
conventional quantization methods in which
the quantization is basically executed by replacing
the Poisson bracket with the commutator. This
suggests that the present scheme is beyond the
noncommutative geometry based on the canonical
commutator formalism.

(3) The present noncommutative scheme is primarily
based on irreducible representations of quantum
mechanics. In this sense, this may be referred to
as a quantum-oriented scheme. The emergent matrix
geometries may even encompass pure quantum geo-
metries that do not have their classical counterparts.
We may explore quantum geometries that have
eluded in the conventional noncommutative
schemes.

C. General properties

To examine specific properties of the present scheme, let
us consider even dimensional spheres:

§% ~ SO(2k + 1)/S0(2k). (13)

1. Covariance

We assume that the global symmetry SO(2k + 1) of S

is given by
Xe=12..2k+1 = Rapxpy  (Raypy €SO(2k+1)).  (14)
The stabilizer group is defined so that the condition

Xy = 0401+1 does not change, which is the SO(2k)
transformation:

Xy—12,..2k = Ry (R,, €SO(2k)). (15)
Transformations (14) and (15), respectively, correspond to
the following transformations on the quantum mechanics
side:

i) = ) U (U€SPIN(k+ 1), (16)

and

vi) = gylwd)  (9€Spin(2k)).  (17)
Equation (16) stands for the global transformation, and «
denote the index of the irreducible representation of the
Spin(2k + 1). Similarly, Eq. (17) represents the gauge

transformation, and i signify that of the gauge group
Spin(2k). Under these transformations, X, behave as

(Xl = D_(wi lealyy) = D Usalwrd Walw Y Upy
= (UTXaU)aﬂ - Rab(Xb)aﬁv (18)
and
6
(X )ap = Z<wfz>|x i) Zzg,,g,k wd xalyy)

= (Xa)ap- (19)

=> wid [xalwry)
J

The matrix coordinates thus transform as the SO(2k + 1)
vector, similar to the classical coordinates on S*, and they
are gauge invariant. Generally for M ~ G/H, the matrix
coordinates are H gauge invariant and transform under G in
the same way as the classical coordinates of the original
manifold M.

2. Beyond the commutator formalism

In the well known construction of the fuzzy 2k-sphere
[15,16], the matrix coordinates are given by the totally
symmetric combination of the gamma matrices, which
satisfy the following commutation relations

[Xavxb] = 4i2aba (208.)
[Xav th] = _iéahxc + iéucxh’ (ZOb)
[Zalﬂ ch} - iéaczbd - iéadzbc + iébdzac - iébczad' (20C)

The commutators of X, yield new matrices X,, (20a),
which are the generators of SO(2k + 1). In total, X, and
X, together form the SO(2k + 2) algebra. Such a matrix
geometry is known to emerge in the lowest Landau level of
the SO(2k + 1) Landau model [75]. The lowest Landau
level matrix geometry is well described by the commutator
formalism. On the other hand, for the higher Landau levels,
some subtleties occur. The SO(2k + 1) angular momentum
operators in the SO(2k) monopole background are con-
structed as [44]

1
Lab = _ixa(ab + lAb) + ixb(aa + iAa) + pFaln (21)
which satisfy the SO(2k + 1) algebra:
[LulﬂLcd] = iéacLbd -

iéadLbc + iadeac - iéthad' (22)

126023-5



KAZUKI HASEBE

PHYS. REV. D 108, 126023 (2023)

Since the coordinates x, on S?* transform as an SO(2k + 1)
vector, the algebra associated with the SO(2k + 1) trans-
formation is represented as

[xav Lhc] = _iéahxc + i(sacxh' (23)

Let us construct matrix coordinates for a given irreducible

representation of SO(2k + 1), {w(lr), y/g), - -wg(),‘)}:

(E)ap = W Laplr).
(24)

(X)) ap = 0l [xal)).

It is important to note that the completeness relation holds
for the total set of the irreducible representations:

D"
S W Wl =1, (25)
1

r a=
but not for each individual irreducible representation:

DU

)
) | # 1. (26)

a=1

Equation (26) is a direct consequence of the level projection
which is the heart of noncommutative geometry [53]. Due

to Eq. (26), XE,V) (24) generally become noncommutative
matrices, whereas the original coordinates x, are commu-
tative quantities. From the property of the irreducible
representation

W L") = (20)) agb,0 (27)

one may easily reproduce the lower two equations
of (20) using Egs. (22) and (23). On the other hand,
unlike Eq. (27), the matrix coordinates are not completely

block diagonalized, (.’ |xa|1,///(jr/>> # (z//{(,r)|xa|y/g)>5r,/ (see
Sec. III A for more details). Consequently, the first relation
(20a) turns out to be questionable,

X, X0 &gl (28)

Equation (20a) is not guaranteed in general. So, if the Lie
algebraic geometry fails, what kind of geometry will
emerge? That is the topic that we shall discuss in
Secs. IV and VIII. The failure of Eq. (20a) implies that
the present scheme is beyond the realm of the conventional
commutator formalism.

Here, we also mention relationship to the Berezin-
Toeplitz quantization. The Berezin-Toeplitz quantization
is a method that maps a function to a finite dimensional
matrix [5,62,77]. In this sense, the Berezin-Toeplitz quan-
tization shares the same spirit with the present scheme.

However, Berezin-Toeplitz quantization is primarily
concerned with symplectic manifolds and is based on
commutator formalism. The Kernel employed in the
Berezin-Toeplitz quantization corresponds to the zero
modes of the Dirac-Landau operator whose zero modes
are essentially equivalent to the lowest Landau level
eigenstates [53,55]. Therefore, the Berezin-Toeplitz quan-
tization is thus closely related to the lowest Landau level
matrix geometry and can be viewed as a special case of the
present scheme.” We will revisit this in Sec. IV.

III. MATRIX COORDINATES FROM THE
SO(5) LANDAU MODEL

In this section, we will directly apply the present scheme
to generate quantum matrix geometries for $*. Using the
SO(5) Landau model, we will derive the complete form of
matrix coordinates in arbitrary Landau levels. This section
also includes a review of Ref. [55].

A. The SO(5) Landau model

Since $* ~ 50(5)/SO(4), we need to consider a quan-
tum mechanics on S* with Spin(4) gauge degrees of
freedom. For the Spin(4) gauge field configuration to
respect the SO(5) global symmetry of $* we place a
Spin(4) monopole at the origin. While the Landau model
in such a Spin(4) monopole background has been inves-
tigated [57], we will consider a simpler system by taking
one SU(2) from the Spin(4) ~SU(2) ® SU(2). In the
following, we then consider a quantum mechanics on $* in
the SU(2) monopole background, which was originally
introduced in Refs. [41,80,81].

Let us briefly discuss such a SO(5) Landau model with a
modern notation [55]. The SO(5) Landau Hamiltonian is
given by

1 1

=——N D2 _=—Y A2 29
M — a |r—0 M — ab ( )

where D, = 9, + iA, and
Aab = —iXan + ibea. (30)

The gauge field is chosen to be Yang’s SU(2) monopole:

_ ~i (1/2)
Aﬂ=1,2,3,4——r(7’7’ S

As =0,
r+xs) " 3

(I=1,2.3,..). (31)

with 7, = €14 — 8,04 + 8,0,4. The SO(5) Landau
Hamiltonian is equal to the SO(5) Casimir up to a constant.

"Recently mathematicians are also interested in higher
Landau levels from the perspective of the Berezin-Toeplitz
quantization [78,79].
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Consequently, the energy eigenvalues are specified by two
indices of the SO(5) Casimir, (p,g)s = (N + I, N)s. The
SO(5) Landau levels are explicitly given by

Ey = —— (N + 1) + N(N +3))

N=0,12,..).
M ( )

(32)

The eigenstates of each of the Landau levels form an
irreducible representation of SO(5) and are referred to as
the SO(5) monopole harmonics in this paper8 to emphasize
its SO(5) covariance. We parametrize the coordinates of the
four-sphere with a unit radius as

4
Xy=1234= Siﬂéy,u X5 :C055<Z)’”)’ﬂ = 1) ) (33)
u=1

where & represents the azimuthal angle and y,, denote the
coordinates of (normalized) S* hyperlatitude:

y; = siny sin @ cos ¢, y, = siny sin@sin ¢,

y3 = siny cos 0, Y4 = COSY. (34)

Normalized SO(5) monopole harmonics are represented as

lI}N;j.m_/-;k,mk (5’)(7 9, ¢) = GN,j,k (5) ' Yj,mj;k,mk ()(’ 67 ¢) ’ (35)

where

, I 31
Gy jx(&)=(=1)"/ N+§+§@dN+§+l,—j+k,j+k+l (&),

(36a)

CEM D (2.0, )

Jmg55

k.m
Cmasio1 Pimsjom, 0 0, @)

j ;
Jo MR35y
Y]?mj:k.mk (r.0.¢) = Z -
mr=-j :
k,
Cmt 1 @mysjom (2 65 D)

: N
Jomgs—4

(36b)

Here, d,,,,w(&) =D,(0.¢,0),, in (36a) stand for
Wigner’s small D matrices, Cs in (36b) represent the
Clebsch-Gordan coefficients, and ®s in (36b) denote the
SO(4) spherical harmonics [54]. The SO(5) monopole
harmonics satisfy

*In the original paper [81], they are referred to as the SU(2)
monopole harmonics.

t _
/S4 AN s YNk mi, = ON NGOk ke Oy Oy

(37)
and
N 12 j k
n=0 s=-1/2 m;=—j my=—k
N+1)(I+N+2)(I+2N+3
_( )( )( ) L., (38)

1672

where dQ, = dédydOdpsin’Esin’y sin 6.
The SO(5) irreducible representation (p,q)s = (N +
I,N)s is decomposed as (see Fig. 3)

N N 12

(N+IN)s=Bn) =B D (.ks (39
n=0 n=0s=-1/2
where
12
(n)= @ (k) (40)
s=—1/2

signifies the set of the SO(4) irreducible representations in
the SO(4) line (the oblique line of the same color in
Fig. 3). The Nth SO(5) Landau level eigenstates consist of
SO(4) irreducible representations on the SO(4) lines with
n=0,1,2,...N. The SO(4) bispin index, (j, k), is
defined as

n I sn I s
k==t -+=,=F+-—= 41
(j,k)g <2+4+2,2+4 2)4, (41)
with
I 1 1
=0,1,2,3,...,N == ——1,...,—=. 42
n 9’ b 737 b 9’ S 272 b ’ 2 ( )

The dimension of the SO(4) irreducible representation (41)
is given by

dn,1,s)=2j+1)2k+1)

—(n+ E s ) (na s
=\ n 3 N n 3 N

=d(n,I,-s), (43)
and that of the SO(4) line is

1/2

d(n,I) = Z d(n,1,s)

s=—1/2

:é(” (P + (6n+5)1 +6(n+1)%).  (44)

Consequently, the Nth Landau level degeneracy is
counted as
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5 5Tl 37t S+N
L I J
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FIG. 3. Each of the filled circles represents an SO(4) irreduc-
ible representation (j, k). The SO(4) irreducible representations
denoted by the filled circles amount to the SO(5) irreducible
representation (p,q)s = (N + I, N)s. (Taken from [55].)

N N 12
DIN.I)=> d(n.)=>_ Y d(n.ls)
n=0 n=0s=-1/2

:é(N-H)(I—I—1)(1+N—|—2)(1—|—2N—|—3)- (45)

B. Matrix coordinates

The matrix coordinates have nonzero components only
within the same Landau level and among adjacent Landau
levels [55]:

(xs5) #0 > AN =0, (46a)

(x,) #0 = AN = 0, £1. (46b)
See the left of Fig. 4 where the nonzero matrix elements are
denoted as the shaded color regions. Under the SO(4)
rotation around the fifth axis, x5 behaves as a scalar (j, k) =
(0,0), while x,, transform as a bispinor (j, k) = (1/2,1/2).
From (41), we can see that the SO(4) selection rule implies
that nonzero matrix coordinates exist only for

XM 205 (An, As) = (0,0), (47a)

XM #0 = (An, As) = (£1,0),(0,£1).  (47b)

Yol 1| 2 | 3 | 01t ,f,N,‘
v wefofo 1fot 2[00 12 3] LIERNEE cl R al=2 D CEL
0o

0 |10
0 0
2|1

<£B5> = 2 0 _

0

1
)

3 O‘

N | | \ 3 | Iy Lot » |

N ol 1 ; RN — = =
R IR E W R B n%&{?...}j HE HE 5
e 0 i
1 0 —12

01 i | o 172 {7 ] _ID
2|1 Fal [N] 1 DD o

<$’u> = 2 0 i) 4 Xn = e - !__1
3| ! e f “h Mo
2 .
; O I:I -1/2 ] [

: 12 _,D
\\N H O D
172 []

FIG. 4. The matrix coordinate representation of x,.
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Equations (47a)/(47b) correspond to the upper/lower right

of Fig. 4. There are two cases in which X,[,N] take finite
values. The first is (An, As) = (%1, 0) that corresponds to
the green shaded rectangles in Fig. 4, representing tran-
sitions between two adjacent SO(4) lines in Fig. 3. The
second (An, As) = (0, £1) corresponds to the small purple
shaded rectangles in Fig. 4, signifying transitions between
two adjacent SO(4) irreducible representations on same
SO(4) lines in Fig. 3. With this in mind, we will explicitly
evaluate the matrix elements of x,,.

(Gl Grv) = A dESIn3EG 4 (6)* Gy 4 (&) = Sy

We can perform integrations of the azimuthal part and
the $° hyperlatitude part separately. For instance, the
orthonormal condition (37) is evaluated as

<TN’;j’,n1f/.;k’.m;( |TN;j.mj;k.mk>
= <GN’,j’,k’|GN.j.k> : <Yj’,m};k’,m;|Yj.mj;k,mk>’ (48)

where

(49a)

<Yj’,m};k’,mj( |Yj,mj;k.mk> = /S3 d)(ded¢ Sinz)( sin 9Yj.mj;k,mk ()(a 0, d))T X Yj’,m};k’,m;( ()(» 0, ¢) = 5jj'5mjm;5kk’5mkm:€- (49b)

[V]

The matrix elements of X are derived as’

N
X[S ]: - <\PN;j’,m};k’,m;‘ ’x5|lPN;j,mj;kmk>
= _<GN,j,k|x5|GN,j,k> : 5j,j’(Sk,k’&zn_,-,zn"/émk,m;a (50)
where
2n+1+2
—(Gy i Gy ir) = -2s. 51
< N,j,k|x5| N,],k> <2N+I+2)(2N+1+4> S ( )

N
X,[, ¥ <\PN;j’,m};k',m'k 1N ckem, ) =

Here, the azimuthal part is evaluated as

(G jrgirs

with'”

I

The matrix coordinate (51) takes equally spaced discrete
values specified by s =1/2,1/2—1,...,—1/2, which are
regarded as the hyperlatitudes on fuzzy four-sphere. This
structure is quite similar to that of the fuzzy two-sphere
(Fig. 1). However notice that while the latitudes of fuzzy
two-sphere are not degenerate, the hyperlatitudes of fuzzy
four-sphere are degenerate, resulting in an intriguing
internal structure as we shall discuss in Sec. V. Next, we
turn to

"The minus sign in (50) is not essential but added for later convenience.

In the derivation of (53), we used the formulas

0

/ " 40 5in 0dd 1,1 (0) S0 01 (0) it =

Z <GN7./'+%J€+§ Sin§|GN,j,k><Yj+%,m};k+%.m;(|yﬂ|Yj7mj;k7mk>5j”j+%5k/’k+%. (52)
o,1=+,—
SINE|G jk) = 05.:(G jig kgl SINEIGN j 1) + 86 (G jygig| SINE[G i), (53)
4S 1 — 0 1 + o
Gy ivopae|SINE|Gy i) = — N — — (N I1+2 ,
< N./+2.k+2|Sln§| N,j,k> (2N+I+2)(2N+I+4) \/( n-+ 5 ) ( +n+1+2+ 5 )
4n+21+4 1 I

G j18 2 i G H = - N P 1 N - 2 ) 55
(Gn jyzig|siné|Gy ) (2N+I+2)(2N+1+4)\/< +y-os+ >< +o o+ > (55)
N (ETE=(ET (54a)
QI+ DI+ 1)1 " +m). a
=il VIEn+ 1) F n). (54b)

0

/” a9 sin edl.m.n’(e) sin Hdl,m,n(9)|n’:nil ==

Qi+ D)+ 1)
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The S° hyperlatitude part is

V@i F N2kt (_])nm%{ j+g

<Yj+%,m;;k+§,m2 |y1 |Yj,mj;k,mk> - D)

<Yj+%.m};k+§,m;(|y2|Yj.mj;k,mk> =l D)

<Yj+%,m};k+§,m’k|y3|Yj,mJ;k.mk> - = 2

— \/(2J + 1)(2k+ 1) (_1)n+l+§{ ] %

Y gt seszom, ValY jomssem,) = i )

i+Z.m' . .
where C| &ngz denote the Clebsch-Gordan coefficients:

225JM
JAsm [j+xm+1 J+xm
C%’%j,m - 6m’,m+§ (67:,1 2] 1 + Kér.—l 2] 1 .

(57)

The formulas of Appendix D in [55] were utilized in the
derivation of Eq. (56). We thus derived the explicit form
of the matrix coordinates in the SO(5) Landau levels.
For a better understanding, in Appendix C of Ref. [82],
we provide the matrix coordinates for the case of
(N,I) = (1,1). Note that all of the quantities involved
in the matrix coordinate calculations, such as an integral
measure and S* coordinates, are SO(5) invariant or
covariant quantities. Consequently, the obtained matrix
coordinates are necessarily SO(5) covariant coordinates
that transform as the SO(5) vector like the original $*
coordinates [see Eq. (86)].

In the case of I =0, the gauge symmetry no longer
exists. Therefore, we cannot expect fuzzy geometries
(recall that the gauge symmetry is crucial in the present
scheme). Indeed, when 7 = 0, the energy eigenstates are
given by the SO(5) spherical harmonics and the matrix
coordinates become trivial:

xM=o. (58)

The corresponding dimensions of the SO(5) spherical
harmonics are

D(N,I1=0) :é(N+ 1)(N+2)(2N+3)=5,14.30. ...
(59)

Therefore in these matrix dimensions, the matrix geo-
metries do not exist. In Ref. [16], the authors argued the
nonexistence of five-dimensional matrix coordinates,
which corresponds to the smallest dimension in Eq. (59).

,\/(2j+1)(2k+1)(_1)n+,+%{j ¢ k4

NCEDED (—1)"+1+%{ j:

z I
k+3 3 51 5 i,
(_1) 2 1 k. C Ko k)
k i 1) E 25m; gk
T I e
2 2 CJ+§ my k45 my
k J 1 38y ko
2 ) k=+,—
k+2 1 .
2 2 C/+5,mj k-+5,m),
k i 1 350m; gk
2 ) k=+.—
g k4+z 1 P
2 2 2 el JH5m k45 m),
(_1) C]/x7- IC] i ! ’ (56)
1 s5dm; 5,5k
o) &= 2

IV. PURE QUANTUM NAMBU
MATRIX GEOMETRY

Using the explicit matrix coordinates, we now expand
concrete discussions about the matrix geometries. It is
shown that the matrix coordinates satisfy

5
SxMxN = ey(vo (60)

a=1

and

5
xa' X)) XN X = 416N D ewpeac X, (61)
e=1

where the quantum Nambu bracket denotes the totally
antisymmetric combination of the four quantities inside the
bracket:

[01 , 02, 03, 04] = Sgn(a) 00-1 00.2 00.3 00.4. (62)

(Detail discussions about the coefficients, ¢; and c3, will be
given in Sec. IV B.) Equations (60) and (61) signify a
realization of the fuzzy four-sphere [15,16]. The quantum
Nambu geometry thus emerges as the matrix geometry in
the SO(5) Landau levels. We delve into geometric struc-
tures hidden in the mathematics of the quantum Nambu
algebra using the explicit form of the matrix coordinates.

A. The lowest Landau level matrix geometry

For N = 0, Egs. (50) and (52) reproduce the lowest Landau
level matrix coordinates previously obtained in [55,60]:

0] 1
X0 — r,,
1+4 (63)

where ['“ represents the /-fold symmetric tensor product of
the SO(5) gamma matrices [16]:
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X5
Xa
X123 B . . lax~2
(I41) latitudes o o
L2 L]
—>
1
Vr7a ~ 1
FIG. 5.

M=y'®Il® - Q1+10r'® @1+

+1®1®"'®ya)sym (64)

with
_( 0 ia,.> _<o 12> _<12 o>
yii —iGi 0 ’ }/47 12 O ) y57 O _12 .
(65)

We can readily check that X, [ao | satisfy (60) and (61),

5
1
0] o [0
E XL]XL] I+ 41é(1+1)(1+2><1+3> (66)
a=1

and

2 3
X x X0 x) = —(142) (H—4> Careac XL, (67)

The radius and the noncommutative scale are derived as

qu/% (=),

2 I—00
=712 (= 0), (68)

AX
which implies that the ordinary four-sphere with a unit radius
is reproduced in the continuum limit (Fig. 5).

It should be emphasized that the algebra of X, can be
described within the commutator formalism, and the
quantum Nambu algebra (67) is not indispensable for
the description of the lowest Landau level matrix geometry.
The matrix coordinates XLO] and szl = % [XLO],XE?]]
satisfy a closed algebra

2 I - o

Fuzzy four-sphere in the lowest Landau level (the left) and its continuum limit (the right).

1 [0]
Xy
<I+4)2 a,b
X X0 = —io X+ i8,.X)),

aol];’X[c(g] = i5acX£?z]1 - iéadxg)c]

XY xP) = 4

+ X — i5ch£,0],

(69)

X

which is the SU(4) [20]. The quantum Nambu algebra (67)
is not exactly equivalent with the SU(4) algebra (69);
however, they have been treated almost synonymously
thus far. This is because the known matrix realization of
the fuzzy four-sphere was only the fully symmetric
representation that satisfies both (67) and (69). The closed
algebra (69) suggests that the natural symmetry in the
lowest Landau level is the SU(4) rather than the original
SO(5). This becomes clearer in the following discussion.
The symmetric representation can be simply realized using
the Schwinger boson operators'':

1

o _ . -
X 714 a(ya)aﬁ‘l’ﬂ (70)

with

[lil(zv l/,\/;;’] = 5(1/ ’ [li/(l’ l/,\//)’] =0. (71)

The boson number indicates the SU(2) index of Yang’s
monopole:

4
> ki =1. (72)
a=1

One may readily check that (70) satisfy the SU(4) algebra
(69) together with X' = —i 1y ([y4. 75))upivp- The fuzzy

“Historically, the Schwinger boson operators were utilized in
the first construction of the fuzzy four-sphere [15].
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manifold constructed from the SU(4) matrices of the
SU(4) fully symmetric representation is referred to as
the fuzzy CP? [19]. Note that the dimension of the SO(5)
lowest Landau level (p, g)s = (1,0)s, is exactly equal to
that of the SU(4) fully symmetric representation:

D0, 1) :%(H NI+2)I+3).  (73)

Therefore, the fuzzy S* is equivalent to the fuzzy CP? (see
Ref. [83] for discussions including matrix functions on
them). The commutation relations of the Schwinger boson
operators correspond to the canonical quantization of the
homogeneous coordinates of the symplectic manifold CP>.
Therefore, it may be reasonable that the lowest Landau
level geometry can be described within the conventional
commutator formalism of the Lie algebra. The correspond-
ing continuum limit is CP3, which is the coset

CP3 =~ SU(4)/U(3). (74)

Here, we encounter the SU(4) symmetry again. It is also
worth noting that CP3 is locally equivalent to

CP3 ~ §* x S2. (75)

While the original $* itself is not a symplectic manifold,
the S?-fiber twisted on S$* makes the entire bundle
symplectic.

B. Higher Landau level matrix geometry

From (50), we have

N
(V]2 1 2
w(xM?) = [+2+2
r(Xs7) (2N+I+4)2(2N+I+2)2;( +2+2n)
12
X z (25)%d(n, 1, s)
s=—1/2
1
:§cl(N,I)D(N,I), (76)
where
1(1+2)
)= .7
aWND=oyiraenv+izy

Since all of X LN] are related by unitary transformations, their
traces are the same, tr(X[lN]z) :tr(X[zN]z) = :tr(XgN]z) =
LeyD. The orthonormal relation for X,[N] is given by

1
tr(ng]ng]) :§C](N, I)D(Ns I)(Sab’ (78)

which implies Eq. (60):

5
ZXLN]XLN] =c (N, D)1pw ). (79)

a=1

One can explicitly check the validity of Eq. (79) using
Egs. (50) and (52). The radius of the fuzzy four-sphere is
given by

R(N.I)=+/e,(N.1)

B I(I+2) I
VN +T+4)Q2N+1+2) 2N+1T°

(80)

Since the matrix coordinates have two parameters, N and /,
there are two different infinity limits of the radius:

llimR(N,I) =1, (81a)
lim R(N.1) = 0. (81b)

Equation (81a) signifies the usual commutative limit in
which the fuzzy four-sphere is reduced to the continuum
four-sphere with a unit radius. On the other hand, Eq. (81b)
indicates the collapse of the fuzzy four-spheres at N — oo.

We will revisit this in Sec. IV C. It is demonstrated that X LN]
satisfy the quantum Nambu algebra (61):

e XV X XV =~y (N. 1) eapeac X, (82)
where
_ [Ny [N] 5[N] 5[N] 5[N]
NIl)=————tr(X: "X, X5 X, 'X:').
c3(N, 1) c,(N,I)D(N,I)r(l 2 A3 Ay 5)
(83)
. N w[N] [N] [N] [N
For instance, tr(X[l ]X[z ]X[S ]Xé[t ]Xg ]) = —7525391625,—%,

— 86 for (N.I)=(1,1),(1,2),(2,1)."” The matrix
coordinates of the higher Landau levels not only satisfy
the quantum Nambu algebra (82) but also encompass all
possible matrix realizations of that algebra, because the
higher Landau level matrix geometries encompass all

possible irreducible representations of SO(S5).
In the lowest Landau level, we have

1 5
tr(x P x P O x 0 Oy — <m> tr(Cy 55T )
1
== (I +1)(I+2)>I+3),
90(1+4)4(+ ) +2)*(1+3)

(84)

and Eq. (82) reproduces Eq. (67).
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It is also easy to see is apparent only after introducing the quantum Nambu
bracket and cannot be captured by the ordinary commutator
[XLN ) XLN ]] o izg\g (N>1), (85)  formalism. In this sense, the higher Landau level geometry
is considered to be a pure quantum Nambu geometry.
where ZLN,,] denote the SO(5) generators in the (N + 1,1)5
representation. Equation (85) is consistent with the general C. Nested fuzzy four-sphere
discussions in Sec. II C 2. While the commutators of X, do Let us delve into the matrix structure of Xg\’]_ We
not give rise to the SO(5) generators, X, themselves represent (50) by the following D(N, I) x D(N, I) matrix
transform as an SO(5) vector: (the upper left of Fig. 6):
N [N . N, . N
i ) = —is X + s, X)) (86) X 0 0 0 0
The higher Landau level geometry is thus the one that 0 Xgl) 0 0 O
adheres to the quantum Nambu algebra but not the SU(4) NN o) @)
algebra in contrast to the lowest Landau level matrix X5 _nejox5 =0 0 X7 0 0 [ (8)
geometry. Let us recall again that the present scheme is
beyond the conventional commutator formalism. The 0 0 0 ?N>

quantum geometry in the higher Landau levels is thus 0 0 0 0 X
qualitatively different to that of the lowest Landau level.

The algebraic structure of the higher Landau level geometry ~ where

|

. I+2n+2 2
Xg): +on+ @ ZSId(nIs)’
(2N +1+4)2N +1+2), 1) B
41102 0 0 0
0 (I =2)y(nr.1/2-1) 0 0
_ [+2n+2 0 0 (I =4 yr1/22) O (88)
(2N +1+4)2N +1+2) :
0 0 —1ypr-1/2)

The diagonal blocks in X ,[,N] that correspond to X g") are denoted as X ,(4") (the lower right in Fig. 6), which signify the matrix

coordinates on the SO(4) line (n). We will delve into the matrix structure of X " that represents the fuzzy geometry on the

SO(4) line (n). The sum of the squares of X is given by

RUID2L 0y ) 0 0

5 12 0 RO i) O 0
ZXEl )Xgl ) = @ R(nys)zld(n.l.s) = s (89)

a=1 =12 : 0 0

0 0 0 RUTI221 0 it
where
I+2n+2

(m5) = 2(B(j. k) + B(k. j)) + (25)* = R~ 90
(2N+1+4)(2N+1+2)\/( (k) + Bk, ) + (2) (90)
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FIG. 6. Matrix coordinates of the Nth Landau level. Nonzero matrix elements are denoted as the shaded color regions.

with B(j, k) defined by (104). Thus, $5_, XX is not
proportional to unit matrix 14, ;) (except for the special

case I = 1)," and so Xs,"> does not give rise to a complete
fuzzy four-sphere geometry but provides a fuzzy four-
sphere-like structure referred to as the quasifuzzy
four-sphere [55]. The I 4 1 diagonal blocks on the most
right-hand side of Eq. (89) signify the 7 + 1 fuzzy hyper
hyperlatitudes on the quasifuzzy four-sphere. Inside the

matrix coordinates ng ] (Fig. 6), there exist such N + 1

(n=0,12.....N)

quasifuzzy four-spheres X, . The nonzero off-

diagonal blocks of the X,[,N] (the green filled rectangles in
the lower left of Fig. 6) are interpreted as the interactions
between the adjacent quasifuzzy four-spheres.

The nested geometry of the N + 1 quasifuzzy four-
spheres is depicted in Fig. 7. One should not confuse the
present geometry with the nested structure made of a
completely reducible representation [84]: In the case of

BFor I = 1, we have only two hyperlatitudes with the same
radius, and 23:1 Xé")Xffo is proportional to 1:

) () _ 2n+3 2 (N +2)?
;X“ X = ((2N+5)(2N+3)> <2(n+2)(n+1)+1>

o1

X Log(n1)=2(n+2)(n+1)-

the completely reducible representation, the nested fuzzy
structure originates from the direct sum of the irreducible
representations, while in the present, the nested fuzzy
four-sphere is constituted from a single SO(5) irreducible
representation and each of the quasifuzzy four-spheres is
not made of an SO(5) irreducible representation [but
rather consists of the SO(4) representations on the SO(4)
line]."* Consequently, each quasifuzzy four-sphere is not
regarded as an SO(5)-symmetric object. This is also
evident from the right-hand side of (89), which is
apparently not SO(5) invariant. The quasifuzzy four-
spheres along with their interactions collectively form
an SO(5)-symmetric fuzzy manifold. We would like to
draw the analogy to benzene. Each Kekul€ structure only
respects the C; rotational symmetry, while quantum
mechanical superposition of two Kekulé structures results
in benzene, which exhibits higher C¢ symmetry. Such a
structure cannot be comprehended without quantum
mechanics, and benzene realizes a purely quantum
mechanical structure with no classical counterpart. In a
similar sense, the nested fuzzy four-sphere can be con-
sidered a pure quantum geometry. This stems from the
present quantum-oriented scheme, which can encompass
pure quantum geometries.

"*The very fuzzy fibers of fuzzy geometry is reported in [85-87].
That structure originates from the direct sum of irreducible
representations, and so it is more akin to [84] than the present one.

126023-14



GENERATING QUANTUM MATRIX GEOMETRY FROM GAUGED ...

PHYS. REV. D 108, 126023 (2023)

Xs
Xa I
AXD) ~
X123 (N + 1) shells -\ 2N+1
— ~ (n.s)
= Ry B ~u I
or © 12 2N +1
1axO~Grinz | B~ Gygie

(I + 1) latitudes —
of n=20

I
2N +1

R(N,I) ~

FIG. 7. Matrix geometry of the Nth higher Landau level is constituted from the N + 1 quasifuzzy four-spheres (and their interactions)

to exhibit a nested fuzzy structure.

The noncommutative scale differs in each of the quasifuzzy four-spheres (88):

AX() —

2

(2N +1+4)(2N +1+2)

(2n+1+2), (92)

and the “radius” of the quasifuzzy four-sphere is estimated as

R0 ~ AX™® 1

(2n+ 1)1

The outer quasifuzzy four-spheres have wider noncommu-
tative scales (see Fig. 7). It can be confirmed that the
outermost quasifuzzy four-sphere of n = N (93) exhibits
the same behavior as the nested fuzzy four-sphere (80), as
anticipated. We now provide an intuitive explanation for the
previous result of the two limits (81). In the commutative
limit 7 — oo, while AX™ ~2 (92) is reduced to zero, the
number of the hyperlatitudes / goes to infinity. These two
contributions are compensated to realize a continuum
four-sphere with a unit radius, which simultaneous implies
that all of the N + 1 quasifuzzy four-spheres are reduced to
the single four—sphere.15 On the other hand, in the limit
N — oo, while the number of hyperlatitudes remains

5In the commutative limit 7 — o0, each point on the four-
sphere is highly degenerate. Because of the SO(5) symmetry, we

can count this degeneracy, for instance, at the north pole X é’” =1:

N

Iy (n+1)=1I

n=0

(N+1)(N+2). (94)

N[ —

I
2 N+1+4)2N +1+2)

Cn+I1+2)I+1)~ (93)

(2N +1)*"

unchanged, the noncommutative length (92) AX() ~§

converges to zero. This leads to the collapse of the very
nested fuzzy four-sphere, R — 0 (Fig. 8).

V. INTERNAL MATRIX GEOMETRY

Fuzzy three-sphere geometry can be realized as a
submanifold of the (unnested) fuzzy four-sphere. Here,
we explore the generalization of this concept for the nested
fuzzy four-spheres.

A. Fuzzy hyperlatitudes

The quasifuzzy four-sphere is constituted from the
SO(4) irreducible representations on the SO(4) line (n).
The matrix coordinates of the hyperlatitudes on the
quasifuzzy four-sphere are readily derived from
Eq. (56):

(Yl(ln))m;,mi;mj.mk = <Yj’,m},k’,m’k|y/4|Yj.m‘/-.k,mk> j’+k’:j+k:n+%’

(95)
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FIG. 8. Behaviors of the quantities of the nested fuzzy four-sphere: The degeneracies (the upper left) and the radii (the lower left), the
continuum limit / — oo (the upper right) and the N — oo limit (the lower right).

which denotes a d(n, I) x d(n,I) matrix.'® The sum of the squares of ¥ ,(,") is given by

(n5)2
7?'Yn ’ 1(n+1+1)(n+1) 0 T 0
£-1)2
4 12 0 RT3 0 0
5)2 Y (n+1)(n+2)
S = @ RY 1400 = - 08
k=l i 0 0 K 0
(n.~$)2
0 0 0 Ry " Virinmsn
"“The matrix ¥ ,(,") has the same matrix form as X,(,n) (the lower right of Fig. 6):
0 i (et ) 0 0 0 0
- -1 n T - n—=2 n
yl(4+ )(1+; I’Tl) 0 yL+ )(I+2 2772) 0 0 0
. 0 y}(ﬁ_) (1+§—2,I’ZT+2) f 0 /(44‘_) (H»g—} ’%) 0 0
Yun = . (96)
- n=3 n i .
0 0 y}(f )(1+2 3’%3) 0 0
0 0 0 0 I (3.042)
0 0 0 0 7 (50) 0
and A(j, k) and A(k, j) in (99) are given by
4
SOV GGk = AG ) L) (97a)
p=1
(] ARSI, AW .
Zy” ]_E’k+§ Vi J_E’kJFE = A(k, ) 2j1)2k41)- (97b)
p=l
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FIG. 9. The distributions of R{"" (the left) and R\"") (the right) for 1/2 = 5. The SO(4) line index n(= 0, 1, 2.3, 4) corresponds to

red, orange, green, blue, and purple points, respectively.

where

_ Rg/n—s)

A(j. k) + A(k, j) (99)

with
j+3 k=%

A(j,k)EZ(j—l—l)k{ j

i}z. (100)

Note that A(% +£,4) = 0. Equation (98) represents a block
diagonal matrix, with diagonal blocks indicating the hyper

(,1’1)2
Ry ™ Vi) (nt1)
n n 2 n.5)2 ’
ZX/(t )X/(l ) = @ Rg(’ ) ld(n,I,s) =
- s=—1/2
where
2n+1+2
o) B(j, k) + B(k, j
AT T A
=Ry, 1oy
with
. I .
BUk)E4<N+§_j+k+l>
I i
x<N+§+J—k+2>“ﬁ@' (104

ni . .
For the distributions of Rgf '2), see the right of Fig. 9.
Obviously, the distribution of points of the same color
forms a quasifuzzy four-sphere. (The distribution of Rg;”)

is illustrated in Fig. 7 with X5 as the vertical axis.) At
I - oo and |s| < I, we have

latitudes of the radius R{". At I — oo and |s| < I, we
have

R 1 (A(Lk)—»%). (101)

Around s ~ 0, the radii of the hyperlatitudes converge to
unity, as anticipated from Zi:1 vy, = 1. The hyperlati-
tudes for s as the vertical axis are depicted in the left of Fig. 9.
We also evaluate the radii of the hyperlatitudes within the
quasifuzzy four-sphere. Using Eq. (52), we can derive

0 0
(nt-1)2
Ry™ " Lpuinmsy O 0 (102)
0
(192
0 Ry " Lpsrryme
(n,s) . 1 2
Ry’ —1 B(J,k)—)il . (105)

When [ is even, RE("‘S) takes the maximum value at
s=j—k=0:

R(n,s:O) _ I(I + 2) '
X (2N +1+4)2N +1+2)

(106)

This quantity does not depend on 7, indicating that the
equators of all the quasifuzzy four-spheres have the same
radius, which is identical to the radius of the fuzzy $* (80)
(see Fig. 7 also).

B. Fuzzy three-sphere

The fuzzy three-sphere is naturally embedded within
the geometry of the fuzzy four-sphere [18,21,23]. This
subspace is composed of SO(4) representations with
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Bea

T
d(n,I)

= SU+ D2+ 6n+5) +6(n+ 1))

o —.

S 1/2

O

~1/2

O

I )

T T
d(n,1,1/2) d(n,I,-1/2)

1
= %(2n+ I+3)@n+1+1) = n+I+3)@n+1+1)

FIG. 10. The fuzzy three-sphere matrix coordinates Y/(f) from Y,<,"> for odd 1.

s=1/2@® —1/2. In the case of the usual (un-nested)
fuzzy four-sphere, there exists only one fuzzy three-
sphere around the equator of the fuzzy four-sphere. In
contrast, the nested fuzzy four-sphere consists of multiple
quasifuzzy four-spheres, each of which accommodates a
fuzzy three-sphere. Consequently, the Nth Landau level

fuzzy four-sphere hosts N + 1 fuzzy three-spheres around
its equator. To extract the fuzzy three-sphere geometry,

we focus on the s = 1/2 @ —1/2 subspace of the matrix

coordinates Yf,">. For odd integer I, we can derive the

fuzzy three-sphere matrix coordinates (see Fig. 10)

(+-) (n 1 n 1
e 0 Vi (§+ﬁ—z’§+£+z) (107)
o (+=)(n I _1 n I I ’
y/l 2 + 4 417 + 4 + 0
which satisfy
v v Y = 0 v ) (1)
4
Z VOV = RY Laguraa). (108)  with
p=1
10, 0
where Is= d(nl.1/2)) ) (112)
( 0 _ld(n,l,—l/Z)
Ry =/A(j. k)| ;- =S =
B I+1 (109)  Fauations (108)and (110) clearly show that V,S ") realize the
N \/2(2n +I1+1)(2n+1+3) ' matrix coordinates of the fuzzy three- sphere Flgure 11
Unlike the sum of the squares of Y (98) Eq. (108) is "With
proportional to a unit matrix. This implies that while YS P (m) w I+1 1
themselves cannot be regarded as the coordinates of the Yy = FRN T p Ty ey s ])FSa (113)
fuzzy three-sphere, their sub-block matrices Y,(,") can be. .
Furthermore, YL") are shown to satisfy Y, 234 satisfy the orthonormal condition:
I+1
INZRAZRAZ ] w(VEIV)Y) = (—) Bap- (114)

I+1 2 v
€ c >
2n+I1+1)2n+1+3)) *°
(110)

:8(2n+1+2)(

where the “three bracket” [[V,,VY,,VY,]] is defined as

Equation (110) is realized as a special case of the four-algebra,

2n+1+42

V@n+1+3)2n+1+1)

=-2V2(1+1)} ceareacY).  (115)
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1000
800
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400

FIG. 11.

illustrates the behaviors of the matrix sizes and the radii
(109) of fuzzy three-spheres. The qualitative features of
these quantities are similar to those of the fuzzy four-sphere
(Fig. 8) as the fuzzy three-spheres being embedded in of the
fuzzy four-sphere. Note that the radius of the fuzzy three-
sphere is not equal to that of the fuzzy hyperlatitude of the

same s (99), RY=2 £ RY and RY” does not converge

to unity in the continuum limit, RSY" ) Ef 1/ V2 #1.

We also explain how the fuzzy three-sphere itself is
obtained within the present noncommutative framework,
without referring to the geometry of the fuzzy four-sphere.
Since S? can be identified with SO(4)/SO(3), the stabilizer
group SO(3) is interpreted as the SU(2) gauge symmetry
on the quantum mechanics side. Then, we consider an
SU(2) gauged quantum mechanics on S*, known as the
SO(4) Landau model [46,50,54]. In this model, n repre-
sents the Landau level index, and s signifies the subband
index. The SO(4) Landau model exhibits degeneracy due
to the presence of the left-right Z, symmetry, in addition to
the global SO(4) symmetry. The fuzzy three-sphere geom-

etry Y,(,") emerges in the lowest energy subbands with
|

R
0.7
06
0.5
04 I =25

0.3

0.2

0.1

0 2 4 6 8 n

The matrix size and the radius of the fuzzy three-sphere.

indices s = 1/2, —1/2, for arbitrary nth Landau level. The
degenerate energy eigenstates that constitute the fuzzy
three-sphere consist of the direct sum of irreducible
representations of the global symmetry SO(4), which is
an irreducible representation of the entire symmetry
group SO(4) ® Z,.

VI. CONTINUUM LIMIT AND THE $* GEOMETRY

We discuss the continuum limit and the classical geom-
etry of the nested fuzzy four-sphere. While the continuum
limit of the fuzzy two-sphere is the usual classical two-
sphere, this is not generally the case for other fuzzy
manifolds. For instance, the continuum limit of the unnested
fuzzy 2k-sphere yields the symplectic manifold SO(2k +
1)/U(k) [20], which is obviously distinct from S,

A. The second Hopf map

The Hopf maps are a key to bridge noncommutative
geometry and classical geometry [39]. The second
Hopf map

Warinza Wiwe =118 = x, = v, (V) apws €S*  (Xuxy = (wiw,)* = 1) (116)
|
provides a clear understanding of the fuzzy four-sphere . ata 1
geometry. The fuzzification is simply executed by replacing Vo Pafa=1)—>X,= I1+4 W“(y“)"ﬁwﬂ’ (119)
the components of the Hopf spinor with four annihilation
operators: which satisfy
Vo = 1 Vs (117) XX, = (ralre) (s +4) = ! (120)
VI+4 a4 4)? W AEBEP I1+4
with Notice that X, (119) coincide with the lowest Landau level
; coordinate operators (70). The total manifold S7 represents
Ve UA//;] = Oyps [rafir5] = 0. (118) the classical manifold of the Hopf spinor and the S” modulo

The “quantized” Hopf map is now given by

U(1) phase is CP?, which is the continuum limit of the
(unnested) fuzzy four-sphere. The second Hopf map thus
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presents a relationship between the unnested fuzzy four-
sphere and its continuum limit.

Also notice that the Hopf spinor for (116) can be
chosen as

1 =+ X5
1 0
X4 — IX3
Xy — iX;

COS ¢

2
0 121
| sin§(cosy —isinycos6) |’ (121)

. . 5 . . i
—isinsin y sin @’

which satisfies

5
> xavaw = . (122)

a=1

This is the simplest version of the SO(5) spin-coherent
state equation, which plays a central role in deriving the
classical geometry of the fuzzy four-sphere in Sec. VIC 1.

B. Continuum limit

To expand a concrete discussion, let us focus on the north
point of the nested fuzzy four-sphere. Since the nested
fuzzy four-sphere is an SO(5) symmetric object, we can
choose the north pole as a reference point without loss of
generality. The north pole is represented by the index
s = I/2, which corresponds to the N + 1 most right edges
of the oblique SO(4) lines in Fig. 3:

N N /] non
DG =B5+5.5) - (123)
n=0 n=0 2 2°2 4

Since j and k are two independent SU(2) indices, the
(j, k), realizes a direct product of two fuzzy spheres
specified by the SU(2) spins, j and k, in the language
of the fuzzy geometry. In the continuum limit 7 — oo,
Eq. (123) becomes

N ) N I
UHp~d(50). 2

which suggests that the fuzzy structure of the north pole is
well approximated by the N 4 1 identical fuzzy two-
spheres, each with the SU(2) spin /2. Since every
SO(4) line or quasifuzzy four-sphere thus accommodates
a fuzzy two-sphere, each quasifuzzy four-sphere is
described locally by §* x %, or CP? in the continuum.
Consequently, the nested fuzzy four-sphere is reduced to

N + 1 overlapped identical CP3s. This is also suggested by
the continuum limit of the degeneracy (45)

I-0

D(N,I) — (N+1)-él3, (125)

where %13 denotes the degrees of freedom of a single
fuzzy CP3.

It should be emphasized that while the continuum limit
of the nested fuzzy four-sphere is N + 1 overlapped CPs,
their fuzzification does not recover the original nested
fuzzy four-sphere but just provides N + 1 identical fuzzy
CP3s (or N + 1 unnested identical fuzzy four-spheres). In
other words, the nested fuzzy four-sphere geometry cannot
be reproduced from its corresponding continuum manifold.
This agrees with the previous observation that the nested
fuzzy four-sphere is a pure quantum object.

C. $* geometry

The coherent state method [88-90] and the probe brane
method [91-93] are systematic methods to obtain a
classical manifold corresponding to a given matrix geo-
metry. These two methods are related but not exactly the
same [60,93]. Here, we derive the $* geometry from the
matrix coordinates using there methods.

1. Coherent state method

For matrix coordinates X ,, the coherent method [88-90]
adopts the following matrix Hamiltonian,

H = (X[aN] - xalD(N.I))z'

M)

(126)

a=1

We can derive classical manifold as a configuration of x, by
following the three steps: First, we diagonalize the matrix
Hamiltonian to derive the groundstate energy Eg(x,).
Second, we examine the minimum of Eg(x,) as a function
of x, to determine the vacuum manifold of x,. Last, we take
the / — oo limit of this configuration.

The matrix Hamiltonian (126) is rewritten as

H = ng]z - Zangv] + rle(NJ)
I(I + 2) 5 V]
= 1 _2 th ’
<(2N+ I8N +112) ) D(N.I) ~ “a
(127)
with
r= /XX, (128)
The cross term of Eq. (127) is diagonalized as
T (N _ yIN
U('fv)(’ 9’ ¢) (ana )U('):’)(’ 9’ ¢) - rXS ’ (129)
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where

Uy 0.¢) = H(z.0. ) %5 H(y, 0. )

(H(y.0.¢) = e~ 7= o053 git2). (130)

The maximal eigenvalue of X [SN] is attained at the north pole

s = I1/2 of the outermost quasifuzzy four-sphere n = N
with degeneracy d(N,I,s =1/2):

1

[N
X S —
s ¢ ToNTI+a%

(6=1,2,....d(N.1,1/2)).

(131)

Here, e, denotes a D(N,I)-component unit vector with
(€5)az12....p(N.1)) = sa- The SO(S) rotation of e, to align
with the direction of x, will result in

I

NIy @lM.1] V1)
xIMypV T gV 132
(¥oXa™) "INtI+4 (132)
where
Ul,a
N.I Uz
(1.0, ¢) = U(E 1.0, p)e, = (133)
UDA,O'

Equation (132) signifies a generalized SO(5) spin-coherent
state equation and its simli)lest version (N =0,1=1)
corresponds to Eq. (122). ¥ The spin-coherent states
(133) constitute an orthonormal set:"”

W 0.0) W 0.0) = b, (135)
The ground state energy is then obtained as
1 I(1+2
Eg(r)=r*=2r + U+2) ,
AN+I1+4 (2N+I1+4)2N+1+2)
(136)
BFrom (132), we have
[NIJ 3 NIV _ !
Yool Xy Yy _r2N+I+4x“' (134)

This concise form of the transformation from matrix coordinates
X, to classical coordinates x, is given in Ref. [62].

“The SO(5) spin-coherent states are closely related to the
SO(5) Landau level eigenstates (35), as both are realized in the
unitary matrix (130) [57]. See Ref. [94] for more details.

and the corresponding eigenstates are given by (133) with
degeneracy

dN.1I)2) = (N+ D)(N+1+1). (137

The classical vacuum of Eg(r) (136) is attained by

1

= 1

"TON¥I+4 (138)
Note that Eq. (138) is equal to the radius of the outermost
quasifuzzy four-sphere n = N (93). From (138), we have

limr = 1.
-0

(139)

We thus obtained the classical $* geometry (x,x, = 1)
from ng ].

2. Probe brane method

The probe brane method [91-93] adopts the Dirac-
operator matrix

5
D(x,) = 7. ® (X&' —x,dpny).  (140)

In this method, the classical manifold is obtained through
the following two steps. First, we consider the condition for
the existence of the zero modes of the Dirac-operator
matrix (140). For zero modes to exist, x, must satisfy a
certain condition which characterizes a classical manifold.
Subsequently, we take / — oo limit of the classical mani-
fold to derive the corresponding classical geometry. Due to
the tensor product form of (140), it is rather technically
intricate to derive general results unlike the case of the
coherent state method. Hence, we conduct numerical

]

investigations by employing the explicit forms of ng .
The obtained numerical results imply

det(D(x,))| =0 (141)

7 2
XaXa=\aNi77a

and the number of the zero modes

AN, I+ 1,(I+1)/2)=(N+1)(N+1+2). (142)
Equation (141) indicates that the zero modes exist when
x, satisfy r=sL— which is equal to the previous
result (138). Therefore, both the coherent state method and
the probe brane method yield the identical classical geometry
in the present case. Meanwhile, the number of the zero
modes (142) is distinct from that of the coherent states (137).
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VII. REALIZATION IN YANG-MILLS
MATRIX MODELS

In this section, we demonstrate that the nested fuzzy
four-spheres realize new classical solutions of Yang-Mills
matrix models and investigate their physical properties.
In particular, we clarify distinct behaviors between the
lowest Landau level matrix geometry and the newly
obtained higher Landau level matrix geometries.

A. Basic relations

Using the explicit forms of X LN], we can demonstrate that

X LN] satisfy

Xt[lN]XgV] = CI(N’ I)ID(N,I)7 (1438')
xMxMxM = o) (v, nxY, (143b)
apeade X XM XMXM — _are, (N XM, (143¢)

where ¢ and c5 are given by (77) and (83), respectively. In
principle, we can determine all of values of the cs through

Eq. (143). For instance, c5(1,1) = — 3%, ¢(1,2) =
o (1.3) = 123121%’ c3(1.1) = 1286125’ c3(1.2) = 20736’
c3(1,3) = 253060747 20 Equations (143a) and (143b) imply
|
radius: R=-"1—

potential energy: V =

potential energy density :

The quantities in Eq. (150) are plotted in Fig. 13. The
radius R increases as N increases (Fig. 13) unlike the
original R (80) (Fig. 8). The behaviors of the quantities in
Eq. (150) are qualitative similar to those of the fuzzy two-

sphere (Fig. 17), except for the potential energy densities

In the lowest Landau level (N = 0), the coefficients are
given by

I > +41-8
0.]) = —— 0.N=—""°2
c1(0,1) I+4° c2(0,1) (1+4)2
I1+2
0,1 T 144
e(0.1) = 3(1+4) (144)

1 1
—3 (X X)) =2 (er = ed)erlpyy (145

and the potential energy is expressed as

VXM = ——w((xXV X02) = S (e = e)er DN, D).

1
2
(146)

The behaviors of the c¢s and the V are illustrated in Fig. 12.
Their behaviors are similar to those of the fuzzy two-sphere
(see Fig. 16 in Appendix B).

While we have utilized XaN as the matrix coordinates,
from an algebraic standpoint, it might be more natural to
adopt “normalized” matrix coordinates that align with the
quantum Nambu algebra:

[ALN]7X£;IV]7X£N]7X5V]] = —4! €abcdej([€N]’ (147)

or

£ = . (148)

PRIE

For )A(LN], important physical quantities are given by21

(XLN]}A(EV] = Rzl[)(/\u)), (150&)
e gy = Lo Z e, DN, D) (150b)
4 a b 2(,‘ 4/3 2)¢1 s L),
= —— (RN xVpy = 612 D(N, 1) (150c)
Cl

(the lower right of Fig. 13) in which the order of
magnitudes for / =1, 2, 3 is reversed between the
lowest Landau level (N = 0) and the higher Landau levels
(N >1).

2n the lowest Landau level (N = 0), Eq. (148) is reduced to

X = (281 + 4)XY = (;35)'T,, and Eq. (150) becomes

1/3
R=1'7(1+4)? & /,
I+2

V= 2(14%2) 1/31(1+ DI +3)(I+4),

21+ DI +2)(I+3)
=3 (149)

v
R I(1+4)
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a c c
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14
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FIG. 12. The upper: the behaviors of c¢s. The blue, orange, and green lines correspond to I = 1, 2, 3, respectively. The lower: the
behaviors of the potential (146).
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100 1
1 2 3 4 N 1 2 3 4 N
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I1=3

40000 & / I — 2
30000 =2 60 I=3

20000 40
I=1 I

10000 20

1 2 3 4 N / N
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FIG. 13. Behaviors of the matrix size D (the upper left), the radius (the upper right), and the potential energy (the lower left) and the
potential energy density (the lower right).
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B. As classical solutions of Yang-Mills matrix models

1. With a mass term

Let us consider Yang-Mills matrix model with a mass
term [95]:

! 2y 1 2

Smass = _Ztr([Aa’Ab] ) _zptr(Aa ) (,0 > O) (151)

Under the scaling A; — /pA;, the parameter p turns to the

overall scale factor of the action and does not have any
physical effect. We will take p = 1:

1 1
Smass = _Ztr([Aava]z) - Etr(Aaz)' (152)

The equations of motion are derived as
[[Aa’Ab}va] = A, (153)

Using (143), we readily see that the nested fuzzy four-
spheres realize new classical solutions:*

AT = ans (N DX, (154)
where the noncommutative parameter is given by

c3(N,1)'/3
V2(ei(N.I) = ¢>(N.T))

The noncommutative parameter « is a parameter-dependent
quantity unlike the case of the fuzzy two-sphere solution
(see Appendix B 2). This brings specific physical proper-
ties to the fuzzy four-sphere solutions. The physical
quantities (150) are evaluated as>

amass(N’ I) =

(155)

a (AzczlAle = Rmasszl) > (1573)

radius: Rmass = m

1 1 1
ation: S = (= 3-+5 (5. ATP) = (. A7)
1 Cq 1
=—= D=—--R D, 157b
8 Cl _ C2 4 mass ( )

22Fuzzy two-sphere and fuzzy torus are also solutions of
Eq. (153) [95].
»In the lowest Landau level (N = 0), Eq. (157) is reduced to

1
Rinass :Z V I(l+4)7

1
Sf},ass:—@1(14—1)(14—2)(1—&—3)(1—&—4),

S 2(I+1)I+2)(I+3)

mas . _Z ) 1
Roo =3 I(I14) (136)

Scl _ 1 1%
action density : —=% = — 012 “p— TR D=—=.
mass €1 mass R
(157¢c)

The behaviors of Eqs. (155) and (157) are shown in
Fig. 14. Similar to the case of }A(LN] in Sec. VII A, the
action densities (the lower right of Fig. 14) exhibit quali-
tatively distinct behaviors to the fuzzy two-sphere (Fig. 17).

2. With a fifth-rank Chern-Simons term

We next consider the Yang-Mills matrix model with a
fifth-rank Chern-Simons term [95]

1 A
Scs[Xa] = _Ztr([XmXb]z) + §€abcdetr(XaXchXdXe)-
(158)

The coupling constant A can be absorbed in the action when
scaling A, as A, — % - A,. We then set 4 = 1 and deal with
the following action:

1 1
SCS = _Ztr([Auva]z) + geabcdetr(AaAbAcAdAe)' (159)
The equations of motion are given by
[[Ads Apl, Ap] = —€apcacApAcAdA,.- (160)

From (143), we easily obtain new classical solutions as

AY = acs (N, DX, (161)
with
1 CI(N,I> — C2(N,I)
acs(N,I) =— , 162
CS( ) 12 C3(N, 1)2/3 ( )
and*
2In the lowest Landau level (N = 0), we have
_2( 3\ a_ w2
a—g(H—z) . Aa —aXa —I+—2Fa, (163)
which satisfies
cl pcl pcl Apcl 8 2 cl
[Aa »Ab ’Ac B Ad] = m eabcdeAe . (164)

Equation (166) reproduces the results of Ref. [95] for N = 0:

® 21T +4) G CRIT+1)(I+3)(1+4)
ST T2 S5 (1+2)°
S 2 (I+1)(I+2)(+3)

== . 1
Res* 15 I(1+4) (165)

s
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amass

Rmass

of Egs. (155) and (157).

1 - 172 R AN
radius: Res =55 (er=ca)er ™ _ acsR  (A2AY = a2 XKD = Res®1pv)s (166a)
C
P
o ed . 1 1 d ac 1 1 (c;—c)cy
ation: 3¢ = Scs 48] = = (=5 )AL ATP) = etV = LoD ) (166b)
cl lc—c 1V J R
. Siye CS 1 2 o .
action density : 10 o (N, I) SEL —gﬁ. (166¢)

Figure 15 depicts the behaviors of Eq. (166). There are
three noteworthy points. First, the order of acg for I =1, 2,
3 is the reverse of that of a,,,, (the upper left in Fig. 14).
Second, the order of magnitudes of Rqg for I =1, 2, 3 is
reversed between N =0 and N = 2. Last, the order of
magnitudes of both Sg (lower left in Fig. 15) and
S&s/Res* (lower right in Fig. 15) of N =0 for I = 1, 2,
3 is the reverse of those of N > 1. Thus, the lowest Landau
level matrix geometry (N = 0) and the newly obtained
higher Landau level matrix geometries (N > 1) exhibit
qualitatively distinct physical properties. It is rather curious
that, while the matrix size D is a monotonically increasing
function about / and the quantities such as Rcg and S&g are
expected to show similar behaviors the higher Landau level

matrix geometries, i.e., the nested fuzzy four-spheres, do
not follow this anticipation.

VIII. EVEN HIGHER DIMENSIONS

We here investigate higher Landau level matrix geom-
etries in even higher dimensions. The associated higher
form gauge field and Yang-Mills matrix model are also
discussed.

A. Landau level matrix geometries

It is known that (unnested) higher dimensional fuzzy
spheres are realized as the lowest Landau level matrix
geometries in higher dimensional Landau models
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FIG. 15.
density (the lower right).

[44,75,96]. Since S¢ ~ SO(d + 1)/SO(d), the correspond-
ing gauged quantum mechanics is given by the SO(d + 1)
Landau model in the SO(d) non-Abelian monopole back-
ground. The matrix coordinates in the lowest Landau level
are given by the fully symmetric combination of the
SO(2k + 1) gamma matrices:

(N=0] _

7, ®1®  ®1+1®y,® -®1
(167)

I+2k
"+1®1®"'®7’a)sym7

which satisfy the Spin(2k + 2) Lie algebraic commutation
relations together with the SO(2k) generators.

The higher Landau level geometries in the SO(d + 1)
Landau model have not been investigated so far. Though it
is in principle possible to derive higher Landau level matrix
geometries by following the present noncommutative

|

» I=1

Behaviors of the noncommutative scale (the upper left), the radius (the upper right), the action (the lower left), and the action

scheme, it is rather laborious to solve the eigenvalue
problem of the higher dimensional Landau Hamiltonian.
Furthermore, the resulting matrix structures may be
mathematically too involved to deduce useful informa-
tion about the higher dimensional noncommutative
geometry. Therefore, we will engage in a somewhat
speculative yet more general discussion based on group
theory. Let us focus on the following SO(2k + 1) irreduc-
ible representation

[11,12,... :[N+I,I,,I], (168)

Ailsorr)

which corresponds to the Nth Landau level eigenstates of
the SO(2k + 1) Landau model studied in Refs. [44,75].
From group representation theory, the corresponding
degeneracy is given by

k=1

D(N7 I)SO(2k+1) =

k-1 Nik—1)!

ON +1+2k—=1(N+k—=1)1(I+2k=3)""(N+1+2k=2)' 5 (I +21)! 1!
(I-1)N |H H

(169)

(N+I1+k=1)! L1 I+ DY

Meanwhile, for the one dimension lower SO(2k) Landau model, the Landau levels consist of subbands [96]. The
eigenstates of the s band of the nth Landau level constitute an SO(2k) irreducible representation:

I I
PO 1
e (170

|~

[ll, 12, ey lk—lv lk}SO(Zk) = |:7’l +
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with degeneracy

(2n + 1+ 2k —2)? — 45?

d(}’l’l’ S)SO(Z/() = 4(k— 1)2

I+2k—i—j

2k—i—j

2<i<j<k—1

There exists an exact relation between the degeneracies
(169) and (171):

1/2

D(N.I)so@xs1) Z Z

n=0 s=-1/2

n.1.s)soan-  (172)

Equation (172) signifies a higher dimensional generali-
zation of Eq. (45) and implies that the SO(2k + 1)
irreducible representation is constructed by adding up
the SO(2k) sectors from n = 0 to n = N each of which is
made of s = I/2,...,—1/2. Since the geometric structure
of the fuzzy manifold reflects on the structure of the
irreducible representation, the matrix geometry of the Nth
Landau level is expected to exhibit N + 1 nested fuzzy
structures in arbitrary dimensions, just like the nested
fuzzy four-sphere. It is also reasonable to consider that
fuzzy (2k — 1)-spheres are embedded within the nested
fuzzy 2k-sphere.

B. Higher form gauge field and Yang-Mills
matrix model

The lowest Landau level matrix geometry in 2k dimen-
sion is associated with a generalized Hopf maps [39] and
are described by both the SO(2k +2) Lie algebra and
quantum Nambu 2k algebra. Meanwhile, the matrix coor-
dinates in the higher Landau levels are not associated with
the generalized Hopf map but are covariant under the
SO(2k + 1) transformation like the lowest Landau level
matrix coordinates. Therefore, the higher Landau level
matrix coordinates will not conform with the Lie algebraic
description but instead is described by the quantum Nambu
algebra exclusively:

X, Xor o X

ap an»

(173)

ﬂzk] = (2]() !ikC3€alu2.4.a2k+]X2k+1 .
When one adopt more general irreducible representations
beyond Eq. (168), the corresponding fuzzy manifold will
exhibit a more exotic quantum geometry than the nested
fuzzy structure, however, due to the existence of the
SO(2k + 1) covariance, the matrix coordinates will also
adhere to the quantum Nambu algebra (173).

Interestingly, “magnetic field” appears on the right-hand
side of (173) [75], which signifies the tensor monopole
field strength:

(n+1+2k—i-1)(n+i-1)
(2k—i-1)(i-1)

2<i<k—1
(I + 2k —2i)> — 452 (171)
2<i<k-1 4(k = i)2
[
1
GZk 2k+l 2k+1 01‘12 A2k+1 02k+1dx /\dx /\ A dxﬂzk‘
(174)

The existence of the higher form gauge field behind the
quantum Nambu geometry is thus glimpsed. One may
wonder where such a higher gauge symmetry comes from,
where as the present quantum mechanical system only has
the SO(2k) gauge symmetry. Indeed, the tensor monopole
gauge field is directly obtained from the SO(2k) monopole
gauge field through the Chern-Simons term [75].

The (unnested) fuzzy 2k-sphere realizes a solution of [22]

Hxaa Xb]’Xb] = ikeaa2a3~~a2k+1XaZXa3 X (175)

Aofr1?

which is derived from the Yang-Mills matrix model with a
2k + 1 rank Chern-Simons term,

SeslXe] =~ (X0, X0

1

—ikmtr(é'alaz,,,aﬂ(“ (176)

XX, X

o1 )

Since the equations of motion are concerned with the
covariance of the matrix coordinates, it is anticipated that
the nested fuzzy 2k-spheres realize classical solutions of
Eq. (175). The action of for the fuzzy 2k-sphere solution is
given by

1 1
S X :Xcl — (= t XCI,XCIZ
cs(Xo = X8) = (=3 ey (s )
2k 3
——V(X, 1
where
V(XS = — (XL X5). (178)

While the signs of Scg(X¢) and V(X¢) are opposite for
k = 1, they have the same sign for k > 2, as we have seen,
for k = 2, in Eq. (166b).
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IX. SUMMARY AND DISCUSSIONS

Based on the insight obtained from the emergent fuzzy
geometry in the simple SO(3) Landau model, we
proposed a novel noncommutative scheme for generating
the matrix geometries for arbitrary manifolds of the coset
type G/H. In the present approach, manifolds need
not be either symplectic or even dimensional unlike the
conventional non-commutative schemes. We explicitly
derived the matrix geometries for $* by utilizing the
SO(5) Landau model. The emergent matrix geometries in
higher Landau levels realize pure quantum Nambu geom-
etries in which matrix coordinates are not closed within
the canonical formalism of the Lie algebra but are
described only by introducing the quantum Nambu
algebra. We also demonstrated that such pure quantum
matrix geometries manifest new solutions of the Yang-
Mills matrix models. The particular features of the nested
quantum geometry, such as the internal matrix geometries,
continuum limit, and classical counterpart, were clarified.
The pure Nambu matrix geometries are common to the
higher Landau levels of the Landau models in arbitrary
dimensions.

The conventional scheme is based on the spirit of
quantization of classical (symplectic) manifolds, i.e., the
replacement of the Poisson bracket with the commutator,
where as the present noncommutative scheme is largely based
on the mathematical structure of the Hilbert space behind
quantum mechanics from the beginning. In this sense, the
present scheme is considered to be a quantum-oriented
noncommutative scheme. That is the reason why we obtained
the pure quantum geometry. We showed this noncommutative
scheme is practically useful in deriving novel solutions of the
matrix models. As matrix model solutions, the nested matrix
geometries exhibit quantitatively distinct behaviors with the
unnested fuzzy four-sphere.

The discovery of the novel quantum Nambu matrix
geometries now brings various open questions, such as
brane construction, relation to tachyon condensation
[97,98], realization in the Nahm equation in higher energy
physics. The higher form gauge field implied by the
quantum Nambu algebra is closely related to the higher
Berry phase [99,100] whose usefulness is getting appreci-
ated in the very recent studies of strongly correlated many-
body systems. It would be intriguing to speculate on the role
of quantum Nambu geometry in condensed matter physics.
We also add that the present scheme itself should be
appropriately generalized to treat less symmetric fuzzy
objects, while we studied highly symmetric objects in
this work.

To the best of the author’s knowledge, this work is the
first example of quantum matrix geometry found in the
analysis of the Landau models being practically applied to
the solutions of the M(atrix) models. M(atrix) theory is
assumed to describe the physics at the Planck scale of
10! GeV, while the Landau models or the quantum Hall

effect are about the low temperature physics at millielectron
volt. It is rather amazing that same mathematics work in
both physics with such a huge energy gap.
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APPENDIX A: GROENEWOLD-MOYAL PLANE
FROM PLANAR LANDAU MODEL

We demonstrate a realization of the Groenewold-Moyal
plane in higher Landau levels. Let us consider a 2D plane
subject to a constant perpendicular magnetic field:

0,A, —0d,A, = B. (A1)
We employ the gauge-independent relation (A1), and so all
of the following results are also gauge independent. The

covariant derivatives and the center-of-mass coordinates are
respectively constructed as

Q.
Di :—+1Ai,

1
o XM=y, +i—¢;D;

BEiDi (i=1,2),

(A2)
which satisfy two independent commutation relations:

. 1
[D,.D,]=iB, [XCM,YCM]ILE, [D;, X$M]=0. (A3)
We then realize two sets of creation and annihilation

operators as

1 1
D,—iD,), a'=i——(D,+iD,),
\/2_3( y) \/2_B< y)

B B
b:\/g(XCM—HYCM), bT:\/;(XCM—iYCM), (A4)

which satisfy

a=i

la,a’] = [b,b"] =1, [a,b] = [a,bT] =0. (AS5)

The Hamiltonian of the planar Landau model is given by

1 B 1
H=——MD?2+D?*=—|d — . A6
i (02D = (a3 (a6)

The corresponding energy Landau levels and the eigen-
states are

B 1 1
Ey=—|N+=<]), N,m) = ———a"Vb'™|0
= (VE) Wemh =)

(N.m=0,1,2,...). (A7)
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Using
:XCM—ilD —L(bﬂﬂ)—i ! (a—a")
B’ /2B V2B
1 1 1
y:YCM—l—iEDx:—l _2B(b—bT)—|— (a+a') (A8)
we readily evaluate the matrix elements of x and y:
(N, m|x|N',m') = \/——'(\/—.5mm 1+ vm' 5mm+l)5NN’_l\/—-<\/_5NN’ VN/+15N.N/+1)5m,m’s
(N,m|y|N',m') = _i\/2_B (\/n75m.m’—l -Vm' + 15m,m’+1)5N.N’ +\/T_B (W(sN,N’—l + VN + 15N,N’+1)5m ' (A9)
The intra-Landau level matrix coordinates are then obtained as
(X(N>)mm/ = <N,m|x|N,m> *\/—_<\/—5mm 1 + vm + 5mm+]>
(V) = (Nl Ny = =i (Vi = Vi W1 (A10)
or
0 VI 0O 0 00 0 —v/1 0 0 00
VI 0O V20 00 VI 0 -2 0 0 0
m__ L 0ov20+v300 ywm_;, L]0 v2 0 =30 0 (A11)
V2B ’ V2B
0 V3 0 0 0 V3 0 0
0 0 0 .0 o 0 o0 . 0°

Notice that (A11) does not depend on the Landau level
index N, and the matrix coordinates satisfy

|
two-sphere [101,102], clarifying physical properties of
the matrix coordinates in the SO(3) Landau model.

1
XMV YWV = iEI. (A12) 1. Basic properties
The Nth Landau level matrlx coordinates X (8) satisfy
Obv1ously, the d1mens1onless coordinates, XV = \/BXWN the following relations:>
and Y™ = /BYW ), satisfy the Heisenberg- Weyl algebra
together with 1: XEN)XI(M = ¢ (N, I)1pw (Bla)
XM YW =i, KW=M =0 (AI13) xMx WX — (v, nx™, (B1b)
We have thus confirmed the emergence of the Groenewold- ) M) _ o; (N)
Moyal plane in any Landau level. eiX; Xy = 2ies(N DX, (Blc)
where
APPENDIX B: TWO-SPHERE
MATRIX COORDINATES IN YANG-MILLS D(N,I) =1+2N +1, (B2)

MATRIX MODELS

For comparison with the fuzzy four-sphere (Sec. VII),
we revisit the matrix model analyses of the fuzzy

BIn the literatures on matrix models, it is common to denote
the variables D and I as N and n, respectively.
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1
and VN, 1) = = te((x™ x V)
I? 1
N, I) = , B3 _
WD =T omasaN 1) (B3a) =5(e2=c)erD
r 2 r (2N +1+1). (B6)
N,I) = = .
WD) = NPT T aN 12 (I+2N)*(I + 2N + 2)?
X ((I+2N)(I+2N +2)-4),  (B3D)  The pehaviors of (B3) and (B6) are shown in Fig. 16.
I We introduce “normalized” matrix coordinates that
N,I) = . B3 i
c3(N. 1) (T+2N) (I +2N +2) (B3c)  satisfy the SU(2) algebra
These cs are not independent quantities; instead, they [)A(,(M,X;N)] = 2i€ijkf(](¢N) (B7)
satisfy
as
Cp —Cy = 4C32. (B4)
o (N 1 N &+N)
From (B3), we readily have V= (N 1) X,( )= PAYS (B8)
1 1 .
1 [X§N>,X§~N)]2 = 5(02 —c)erlp (B5)  Notice that XEN) depend on the SU(2) index [ =N +1
rather than N and /, separately. Several important physical
and quantities are evaluated as
N c
radius: R:ﬂ: V(I +2N)(I 42N +2), (B9a)
c3
1 2 2 2
potential energy : V:—Ztr([XEN), ﬁN)]z):—zch(N,I):2(I+2N)(I+2N+1)(1+2N+2), (B9b)
3
. 4
potential energy density : o 2D(N,I) =2(I +2N +1). (B9c)
The potential energy density is simply the twice the — The fuzzy two-sphere is realized as a solution:
matrix size of the fuzzy two-sphere.
2. Matrix model analysis A = Apass X EN), A = acsX EN)’ (B12)
Yang-Mills matrix models with a mass term and with a
third-rank Chern-Simons term are given by .
with
1 2 1 2
Smass:_ztr([Ai’Aj] )_Etr(Ai )1 | 1
1 ! Amass = 7 /= QAcg = —. (B13)
Ses = =7 (A AP) +igeputi(AAA). (B10) 2v2 4

and the corresponding equations of motion are, respec-
tively,

[[Ai, Al A}l = A, [[Ai,Aj], Al = —iejjA A, (B11)

Notice that both coefficients, a,,,,; and acg, are constant
unlike the case of the fuzzy four-sphere solutions (see
Sec. VII). The classical solutions (B12) have the following
properties:
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FIG. 16. The blue, orange, and green lines correspond to / = 1, 2, 3 of Eqgs. (B3) and (B6).
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FIG. 17. Physical quantities of the fuzzy two-spheres. All quantities monotonically increase or decrease as N and [ increase.
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RCS = acsR

(A9AY = Reg?1), (B14a)

=1/12

11
3

1 1
action: S%ass = <_Z+_) tr([Aqu’A(i:l]z) = _amass4v’ S%lS = SCS [Afl] = <_Z+_> tr([Atc'l’A;lP) = _gaCS4V’ (B14b)

radius: Rmass = amassk (AflAlCl = Rmasszl)’
—1/4
1
2
cl VvV 1 Sc]
action density: —% — g2 o> =——-D, & =
mass R4 Res?

See Fig. 17 for the behaviors of these quantities.
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