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In the context of N =1 four-dimensional type-IIB supergravity theories, the U-dual completion
arguments suggest including four S-dual pairs of fluxes in the holomorphic superpotential, namely the so-
called (F,H),(Q,P),(P',Q'), and (H', F'). These can generically induce cubic polynomials for the
complex-structure moduli as well as the Kédhler moduli in the flux superpotential. In this article, we explore
the insights of the four-dimensional nongeometric scalar potential in the presence of such generalized
U-dual fluxes by considering an explicit type-IIB toroidal compactification model based on an orientifold
of T%/(Z, x Z,) orbifold. First, we observe that the flux superpotential induces a huge scalar potential
having a total of 76,276 terms involving 128 flux parameters and 14 real scalars. Subsequently, we invoke a
new set of (the so-called) “axionic fluxes” comprising of combinations of the standard fluxes and the RR
axions, and it turns out that these axionic fluxes can be very useful in rewriting the scalar potential in a
relatively compact form. In this regard, using the metric of the compactifying toroidal sixfold, we present a
new formulation of the effective scalar potential, which might be useful for understanding the higher-
dimensional origin of the various pieces via the so-called “dimensional-oxidation” process. We also discuss
the generalized Bianchi identities and the tadpole cancellation conditions, which can be important while

seeking the physical anti—de Sitter/de Sitter vacua in such models.

DOI: 10.1103/PhysRevD.108.126020

I. INTRODUCTION

Flux compactifications in string theory have been exten-
sively studied for making attempts in constructing realistic
four-dimensional (de Sitter) vacua. The study of flux vacua
resulting from the four-dimensional effective potentials in
type-1IB supergravity theory, in particular, have received a lot
of attention in the last two decades [ 1-7]. Initial investigations
were focused on considering the scalar potential induced via
the S-dual pair of RR and NS-NS three-form fluxes denotes as
(F5, H3) [8,9]. Although such fluxes can generically stabilize
many of the moduli (especially the complex-structure moduli
and axio-dilaton modulus), it was soon realized that they fall
short in stabilizing a large set of (volume) moduli due to the
so-called “no-scale structure” in the type-1IB based models.
From this point of view, the subsequent consideration of
nongeometric fluxes which can generically induce the super-
potential couplings for the Kiahler moduli as well, has
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emerged as an important ingredient in the area of moduli
stabilization and model building in general [10-26].
Nongeometric fluxes are associated with duality transforma-
tions and generalized background fields, as opposed to
standard/geometric ones which are related to the curvature
metric of the compactification manifold.

Dualities are fundamental in connecting different limits
of string theories, providing supplemental interpretations,
and new perspectives. In this spirit, an interesting picture
emerges when we consider the T-duality between the two
kinds of type-II string theories in the presence of back-
ground fluxes. For example, implementing T-duality
on a type-1IB string theory on a Calabi-Yau (CY) manifold
in the presence of a three form flux H; = dB, a type-l1IA
mirror geometry is generated while a similar picture occurs
if one starts from type ITA supplemented with NS fluxes; in
such cases however, the T-dual analog cannot be described
by a CY manifold. Since T-duality is considered to
be a fundamental string theory symmetry, it has been
suggested that a new kind of (nongeometric) fluxes must be
incorporated into the theory, in order that the super-
potentials on both sides of type-II theories preserve the
symmetry of T-duality. More specifically, considering
the case of compactification on a T°~T7 x T3 x T3
torus, the H,,,, 3-form flux (where the indices m, n, p
take values in the compact dimensions), is mapped to a
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“geometric” flux w,," which induces a twist of the form

(dx™ — w,,,"x"dxP)? on the internal metric. Furthermore, a
second T-duality can be performed along the direction x”"
followed by a third one associated with the coordinate x”.
These latter two cases, however, require the inclusion of
two nongeometric fluxes denoted with Q,"™" and R™?,
respectively, since now, only local descriptions are possible
for the dual torus [27]. The chain of successive dualities
described above are summarized in the following equation:

H T’":/ m _Ln mn Ty R™Mnp
mnp WDpp Qp > .

(1.1)

Furthermore, in order to achieve modular completion of
type-1IB superstring compactifications, S-duality transfor-
mations must be applied on top of the 7-dualities given
in (1.1). Consequently, a new kind of non-geometric
P-flux, being S-dual to the nongeometric Q-flux, must
be introduced [28-34]. The implementation of the S-duality
imposes consistency constraints on Q and P fluxes derived
from the Bianchi identities that must be imposed
[28,32,35,36]. Taking these restrictions into consideration,
and using standard supergravity formulae, we can compute
the four-dimensional effective scalar potential. In general
the latter depends on all the aforementioned flux para-
meters and in principle it is expected to possess a rich
number of string vacua.

In such an ample flux compactification background
it is then possible to single out cases where a suitable
vacuum exists with all the moduli fields stabilized at their
minima [10-22]. Putting it in another way, the importance
of this nongeometric flux approach is that one can in
principle stabilize all types of moduli fields without
invoking nonperturbative contributions in the superpoten-
tial, or utilizing any corrections of the Kihler potential. It
should be emphasized that this method of stabilization
includes also the Kihler moduli fields which, in conven-
tional flux compactifications, are protected by the under-
lying no-scale structure. It should be noted however, that,
while the introduction of the new (nongeometric) fluxes
greatly facilitates the investigation for finding new flux
vacua, the apparent complexity due to the huge number of
flux-induced terms in the scalar potential, poses inevitably
hard challenges in phenomenological explorations. Indeed,
it has been observed in concrete examples—and in par-
ticular in the context of type IIB on T®/(Z, x Z,)
orientifold—that the resulting four-dimensional scalar
potential is very often so huge that it gets hard to
analytically solve the extremization conditions. Thus,
one has to look either for a simplified ansatz by switching
off certain flux components at a time, or else one has to opt
for an involved numerical analysis; for phenomenological
model building attempts with (non)geometric fluxes see
[13,15-17,29,30,32,37-40,40-45]. On top of solving the
extremization conditions, another obstacle comes with
imposing a huge amount of quadratic flux constraints

coming from a set of Bianchi identities and tadpole
cancellation conditions. Nevertheless, the possibility of
stabilizing all moduli at tree level still makes the non-
geometric flux compactification scenarios quite attractive,
and so is the relevant framework for future investigations.

Apart from the direct model building motivations, the
interesting relations among the ingredients of superstring
flux-compactifications and those of the gauged supergrav-
ities have significant relevance in understanding both
sectors as fluxes in one setting are related to the gauging
in the other one [10-12,27,28,46-51]. In the conventional
approach of studying four-dimensional (4D) type-II effec-
tive theories in a nongeometric flux-compactification
framework, most of the studies have been centered around
toroidal examples and in particular with a T®/(Z, x Z,)
orientifold. A simple justification for this specific choice
lies in its relatively simpler structure to perform explicit
computations, which led toroidal setups to serve as prom-
ising toolkits in studying concrete examples. Exploiting
this property of simplicity of toroidal setting, in this article,
we plan to study a more generalized version of the flux
superpotential which can have cubic couplings for both
types of (the complex-structure and the Kéhler) moduli via
inclusion of more exotic fluxes based on T/S dual com-
pletions. The basic idea is the fact that one can enforce/
implement the T/S duality arguments to seek for allowed
couplings of the moduli and fluxes in the holomorphic
superpotential from a 4D point of view and subsequently
study the effective scalar potential pieces induced by the
flux superpotential. On that line, the current work can be
considered as a natural generalization in the series of
iterative steps taken in the literature so far, and in order
to motivate the plan now we recall a couple of those stories.

A. Brief summary of the iterative steps

Here we briefly recall the iterative steps taken in the
literature to understand the insights of the (generalized)
flux superpotential. In the context of nongeometric flux
compactifications, the initial model building studies have
been performed by considering the 4D effective potential
derived by merely knowing the Kihler and superpotentials
[13-16,18,51-55], and without having a complete under-
standing of their ten-dimensional origin. However, in recent
years, a significant amount of interest has been devoted
towards exploring the form of nongeometric 10D action,
especially via two approaches; the first one being through
the double field theory (DFT) [56-58] and the second
approach being based on the study of the underlying
supergravity theories [51,52,54,59-65]. Some of the time-
lines about exploring the 10D origin of the 4D effective
potential can be recalled as

Step-0: In the context of standard type-IIB flux com-

pactification with the usual NS-NS and RR fluxes, H;
and F’, the four-dimensional scalar potential induced
via the so-called Gukov-Vafa-Witten (GVW) flux
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superpotential [9] has been compactly derived through
the dimensional reduction of the 10D kinetic
pieces [66,67].

Step-1: Motivated by the study of 4D effective scalar
potential in a type-IIA flux compactification setup
with geometric flux [51], a rearrangement of the scalar
potential induced via a generalized flux superpotential
with nongeometric Q-fluxes on top of having the
standard H;/F; within a type-IIB nongeometric
framework, was presented in [52]. This “rearranged”
scalar potential has a “suitable” form which helps in
anticipating the 10D origin of the 4D pieces, a process
called as “dimensional oxidation” of the nongeometric
flux superpotential [52].

Step-2: In order to restore the S-duality invariance
broken by including the nongeometric Q-flux in the
type-1IB T°/(Z, x Z,)-orientifold setup, the proposal
of [52] was further generalized in [54] via the
inclusion of the so-called P-flux which is S-dual to
the Q-flux. In the meantime the prescription was
further extended for the odd axion models within
a type-lIB compactification on T°/Z, orientifold
in [59,60].

Step-3: Let us mention that the studies presented in
[52,54,59] used the explicit knowledge of the internal
toroidal metric, and the extension for models based on
Calabi-Yau orientifolds were made in [58,65,68—71]
for the type-1IB case, and in [44,69,72] for the type-
ITA case. These beyond toroidal formulations are valid
for an arbitrary number of complex structure moduli
as well as Kihler moduli, and do not need the
knowledge of internal background metric.

In the steps mentioned so far, the effective scalar potentials
studied in the respective models are induced by a flux
superpotential having at most two pairs of S-dual fluxes,
namely (F,H) and (Q,P). Such a superpotential has a
linear dependence on the axio-dilaton modulus (S) and the
complexified Kidhler moduli (7',) while a cubic dependence
in the complex-structure moduli (U?). Therefore, one can
extend the §/T-dual completion arguments to arrive at a
more general flux superpotential which provides cubic
polynomial couplings for both the (U’ and T,) moduli.
However, this generalization is accompanied by the need of
including two more S-dual pairs of fluxes, denoted as
(P',Q") and (H',F') [28,32,35,36,73]. Such a U-dual
completed version of the flux superpotential has been
explicitly known in the literature for quite some time,
and for the toroidal type-1IB T°/(Z, x Z,) orientifold-
based model it has a total of 128 flux parameters and seven
complexified variables. However, its insights (or any
phenomenological application in model building) have
not been explored much, possibly because of the huge
size of the scalar potential which we find to have a total of
76,276 terms. In the current work we explore the internal
structure of the effective scalar potential by performing a

systematic taxonomy of its pieces, which is not only useful
in understanding their higher-dimensional origin but also in
applications towards phenomenological model building.

The article is organized as follows: In Sec. II, we start by
collecting the relevant ingredients about the toroidal setup
along with the previous iterative steps taken towards
understanding the scalar potentials in different simplified
scenarios, classified on the basis of the inclusion of only a
subset of fluxes at a time. Section III is devoted for
invoking the so-called ‘““axionic flux” combinations which
turn out to be extremely useful for rewriting the scalar
potential in a relatively compact form. In Sec. 1V, we
present a systematic taxonomy of the various scalar
potential pieces by rewriting them using the internal
toroidal metric and the axionic fluxes. In Sec. V we discuss
the Bianchi identities and the tadpole contributions. Finally,
we summarize the results in Sec. VI and present the explicit
form of the generic U-dual completed flux superpotential in
the Appendix.

II. DIMENSIONAL OXIDATION
OF THE FLUX SUPERPOTENTIAL

The F-term scalar potential governing the dynamics of
the N = 1 low-energy effective supergravity can be com-
puted from the Kéhler potential, and the flux superpotential
via the following well-known relation,

V = eX(KVD,WD;W - 3|W]?), (2.1)

where the covariant derivatives are defined with respect to
all the chiral variables on which the Kihler potential (K)
and the holomorphic superpotential (W) generically depend
on. We use this general N = 1 expression to develop a set
of generic ansatz for the Kihler and the superpotentials;
several “master formulas” for the scalar potential have been
presented in a series of papers [44,65,68,69,72,74-80].

For the sake of completion and making the overall
content self-sufficient for readers, in this section, we briefly
review the previous attempts for rewriting the scalar
potentials arising from the flux superpotential. This has
been found to be crucial for invoking the higher-
dimensional origin of the various terms in the scalar
potential, especially when the generalized fluxes are
present. Let us note that the inclusion of nongeometric
fluxes have been motivated purely on the basis of 7/S
duality arguments and for generic cases it is not fully
understood how such flux superpotential-induced terms can
be recast/recovered in the sense of the dimensional reduc-
tion of a higher-dimensional action. Subsequently, this
process of reformulating the scalar potential in a ““suitable”
form needed to invoke their 10D origin is what is known as
the “dimensional oxidation” of the superpotential.
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A. Type-1IB model using a T°/(Z, x Z,) orientifold

Let us start by briefly revisiting the relevant features of a
concrete setup in the framework of the type-IIB orientifold
compactification using the well-studied T°/(Z, x Z,)
orbifold, where the two Z, actions are defined as

)

D (AP - (-2 - ),
0: (7.2, 2%) » (21, =22, -2%). (2.2)
Next, the orientifold action is defined via O = Q,,I(—1)":
where €, is the world sheet parity, F; is left-

fermion number and /4 denotes the holomorphic involution
defined as

1 2

Is: (2',2%,2%) = (—2 (2.3)

ap=1A3AS5,
o=2r4N16,

ap=2A3AS5,
fl=—-1A4A16,

In the above we use the shorthand notations such
as 1 A3AS=dx!' Adx® Adx’ etc. along with the
normalization [, A f* = —5,2. Using these ingredients,
the holomorphic three-form can also be expressed
in terms of the symplectic period vectors (XA, F,) as
Q; = XMa, — F B>, where the complex structure moduli-
dependent prepotential F is given as

X' xras

X() — Ul U2U3

F (2.7)

which results in the following period vectors:

X0=1, xX'=U' X*=U% X=U°

F():—UIUZUS, f1:U2U3, f2:U3U1, f3:U1U2.

(2.8)

Now, using the same shorthand notations we choose the
following bases for the orientifold even two-forms y,,, and
their dual four-forms ji“,

m=1A2, w=3A4, u=5A6;
A'=3A4ASAN6, FP=1A2A5A6, P=1A2A3A4,
(2.9)

The massless states in the 4D effective theory are in one-to-
one correspondence with harmonic forms which are either
even or odd under the action of an isometric, holomorphic
involution (o) acting on the internal compactifying six-
fold X, and generate the equivariant cohomology groups

which subsequently results in a setup of O3/07 type. The
complexified coordinates (z) on the six-torus T® = T2 x
T? x T? are defined as

d=x'+U'R, Z=x+U%% Z2=x+U (24)
where the three complex structure moduli U”’s can be
written as U’ = v’ — iu’, i = 1, 2, 3. Now, the holomorphic
three-form Q; = dz! A dz? A dz® can be expanded as

Q3za0+U1a1+U2a2+U3a3

+U1U2U3ﬁO—U2U3ﬂ1—U1U3ﬂ2—U1U2ﬂ3, (25)

where we have chosen the following basis of the closed
three-forms:

a=1A4 A5,
pP=-2A3N6,

oz =1A3A6,

P =-2A4A5. (2.6)

H79(X). Let us mention that for this toroidal-orientifold
construction there are no two-forms which are anti-invari-
ant under the orientifold projection, i.e., 1! (X) = 0, and
similarly there dual four-forms are also trivial, and there-
fore no B, and C, moduli as well as no geometric-flux
components will be present in this model; for the con-
struction of concrete type-IIB orientifold models with odd
moduli, e.g., see [78,81-86].

The other chiral variables are the so-called axio-dilaton S
and the complexified Kdhler moduli which are defined as

S=Cytie? J=C®- %J AT =T %  (2.10)
where J = t"u, is the Kéhler form involving the
(Einstein-frame) two-cycle volume moduli * while

moduli T, = p, — iz, consists of RR axions CE;‘,L and

the four-cycle volume moduli 7;;,; which in terms of six-
dimensional components are given as follows:

_ 4 : _ 4 :
T, = C3456 — 173456, T, = C1256 — 171256,

4 ;
T3 = C§2)34 - 1’2'1234, (21 1)
where 7, = 22,7, = 1,73 = '1? are expressed in the
Einstein frame. The overall volume (V) of the sixfold (in
the Einstein-frame) can be given as

oV

V:tllztszg/TszTS, T(IIW, (212)

where a useful relation between the two-cycle volumes *
and the four-cycles volumes 7, can be given as

126020-4
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7773 7173 17
= [== =, £=,]—
7] (%) 73

(2.13)

Another crucially relevant ingredient in our current study is the information about the internal metric of the toroidal sixfold.
It turns out that the internal metric g;; is block diagonal and has the following nonvanishing components:

thy!

g1 = 912 = —1 = 921>
u

2,2

934 = —>5 = 043,
u

~

3

£
ul ’
2
933 = 5,
w2
3
3> 956 = —3 = Ye5>
u’ u’

955 =

(') + (0')%)
1

922 = » )
20(u2)? 4 (v2)2
g = L2 )
Je6 = t3((u3)2u;|_ ()) (2.14)

These internal metric components can be written out in a more suitable form, to be utilized later, by using the four-cycle

volumes 7;’s and the same is given as

g oYEVE vYEYE PR (G e G VYV
11 ul\/r_l’ 12 —ul\/r_l 21> 22 ul\/ﬂ s
VIS _ VT _ (@ + ))avE
933 2 \/7_2’ 934 ) NG 943> 944 2 NG )
= VIVE VAR g = 2+ ()T 2.15)
55 =3 Nl 56 s NG 655 66 pe N . .
eX — |CS + d|?eX. (2.18)

1. Kihler potential, Superpotential, and modularity

For the current toroidal setup, the (tree-level) Kihler
potential takes the following form in terms of the S, T and
U moduli:

(2.16)

Let us recall the fact that the four-dimensional effective
scalar potential generically has an S-duality invariance
following from the underlying ten-dimensional type-1IB
supergravity. This corresponds to the following SL(2, Z)
transformation:

aS+b
—
cS+d

wheread—bc=1; a, b, ¢, deZ. (2.17)

Under this SL(2, Z) transformation, the complex-structure
moduli (U') and the Einstein-frame internal volume (V) are
invariant. Moreover, the Einstein-frame chiral coordinate
T, is S-duality invariant, without orientifold odd axions,
i.e., h1(X4s/0O) = 0 [87]. Subsequently, it turns out that the
tree-level Kihler potential given in Eq. (2.16) transforms as

This subsequently implies that the S-duality invariance
of the physical quantities (such as gravitino mass-square
m3;, « eX|W|?) suggests that the holomorphic super-
potential, W should have a modularity of weight —1, which
means the following [87-89]:

w
CS+d’

W -

(2.19)

As we will discuss in the upcoming sections, a generic
holomorphic superpotential, respecting the modular weight
being —1, can have four S-dual pairs of fluxes denoted
as (F,H),(Q,P),(P,Q"), and (H', F') [28,32,35,36,73].
This set of eight fluxes transforms in the following manner
under the SL(2, Z) transformations:

F ab F 0 ab (0]
()= (Ca)) (G)= (D))
H' a b\ (H P a b\ (P
()=(Ca)(r) ()= (a)o)
(2.20)
Under the SL(2, Z) transformations, the various fluxes can

readjust themselves to respect the modularity condition
(2.19) in the following two ways [28]:

126020-5
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(). S > S+1, (ii).S—»—é. (2.21)
Note that the first case simply corresponds to a shift in the
universal axion Cy — Cy+ 1 which amounts to have a
constant rescaling of the Kihler potential as eX — |d|?eX,
and the superpotential as W — W/d. This follows from
Egs. (2.18) and (2.19) due to the fact that S — S + 1 simply
corresponds to ¢ = 0 case in the SL(2, Z) transformation
(2.17). The second case is quite peculiar in the sense that it
corresponds to the following transformation of the univer-
sal axions and the dilaton:

C() N

C _7’ —7
TTera T8+ C

(2.22)

which takes g, — ¢;! and hence is known as strong-weak
duality or S-duality. This relation (2.22) shows that Cy/s
flips sign under S-duality, something which will be useful
in understanding the modular completion of the scalar
potential later on. From now onwards we will focus only on
the second case, i.e., on strong/weak duality. This means
that under the SL(2, Z) transformation of the second type
which simply takes the axio-dilaton S — —1/8, the fluxes
can be considered to transform as

H-F, F--H, Q->-P, P-Q,

F'-H, H--F, P->-0Q, 0->P. (223)
In fact, the most generic (tree-level) flux-induced super-
potential can be classified in a series of the iterative steps
via making the 7'/S-dual completion arguments which we
will consider in the upcoming subsections.

B. Superpotential with (F,H) fluxes

The standard three-form fluxes F; and H; induce the
following so-called Gukov-Vafa-Witten superpotential [9]:

wb:/kF—yﬁAQ% (2.24)

where the explicit form of the nowhere vanishing holo-
morphic three-form €5 is given in Eq. (2.5), while the only
invariant components of the F; and H; fluxes surviving
under the orientifold action are summarized as follows:

H: H3s, Hys6, Hy36, Hous, Hose, Hozs, Hss, Hyse,

F: Fiss, Flae. F236, Foas, Foses Fss, Fras, Fizg. (2.25)
These constitute eight flux components for each of the F
and the H flux.

Using the GVW flux superpotential induced by the
standard three-form (F3, H3) fluxes as given in Eq. (2.24),
one gets the N =1 four-dimensional scalar potential

with 361 terms which can be rewritten in the following
form [66,67]:

Vovw =Vi+Vy + V3, (2.26)

where the three pieces are given as

1]l it i K
Vi Ry g[':ijk”:i’j'k'g g7 g" |,

LIt o, i i kK
Vy, = Y 5(3 WM e g 97 g |

1 [ 1 1 ijklmn
V3 = m (+2S) X 5 X ? [H]ljkg lFlmn . (227)

Here, we use the following redefinitions of fluxes in
Eq. (2.27),
[Fijk = Fijk - COHijk’

[H]ijk - Hijk’ (228)

along with the following definition of the Levi-Civita tensor,

gijklmn — eijklmn/\/% — eijklmn/v’ (229)
where e//km" denotes the antisymmetric Levi-Civita symbol.
The splitting of the 361 terms in the scalar potential arising
from the GVW flux superpotential can be appreciated by
noting the number of terms in each of the three pieces which
turn out to be the following:

#(V,) =277, #(V,) =176, #(V3)=8. (2.30)
Observe that the axionic flux combination for [;;; involves
the universal (RR) axion Cj as well as the H; flux. Such
combinations of (generalized) fluxes and RR axions
will be heavily utilized for rewriting the scalar potential
later on.

Finally let us note that after knowing the new formu-
lation of the scalar potential it is easy to anticipate that such
a piece can arise from the dimensional reduction of the
kinetic pieces in the 10D type-IIB supergravity action,

1
SESkin+Scs:E/dloxx/—9(£[F[F+£HH)+Scs7 (2.31)

where the 10D kinetic pieces (Sy;,) and the Chern-Simons
term (Scg) are given as

11 g
Lpp =— 3 {5 FipFiojwg” g" gkk] ,
e_2¢ 1 s ;! kk/
Lyy = — 5 {g H; i Hijwg" ¢ g }

Sﬁg—/w%dﬁAFAH. (2.32)

126020-6



TAXONOMY OF SCALAR POTENTIAL WITH U-DUAL FLUXES

PHYS. REV. D 108, 126020 (2023)

We note that the Chern-Simons term is generically relevant
for the tadpole contributions which are to be compensated
by introducing local sources such as D-brane and O-planes
with a given specific choice of involution. Now, one has to
follow the dimensional-reduction prescription in order to
recover the four-dimensional scalar potential from the
proposed 10D action. For that let us note the fact that
the nonvanishing components of the 10D metric in the
string frame can be understood as

g
——— 0.9} ). 2.33
T1T273 g;w glj) ( )

Jun = blockdiag<
where the string-frame internal metric gf;r is related to its
Einstein-frame version, as given in Eq. (2.15), by the
relation g;; = \/Egﬁjr. Subsequently, assuming that the
flux components are constant parameters, one has the
following:

/dlox\/__g(....)z/d“xx/%(%)/%)

(2.34)

as f d®x+\/—gk, =V, gives the string-frame 6D volume.
However, given the fact that the S-duality invariance
manifests itself more directly in the FEinstein-frame,
it is better to work in the Einstein-frame by taking
appropriate care of dilaton factors in the metric as well
as the two/four cycle volumes, e.g., V = 5% ZVS,gU =
gif\/s and g" = gg./+/s. This simply means that if we
consider the internal metric components in the Einstein-
frame, the relevant overall factor depending on the
Einstein-frame volume (V) and the dilaton (s) to appear
in the scalar potential pieces is given as

1 , 1
() ([ oevmat) = ()< (o)
(L
S \sV)’
For the reasons elaborated as above, the process of invoking

the higher-dimensional origin of the scalar potential pieces
induced from a holomorphic flux superpotential is called

(2.35)

dimensional oxidation. This has been proven to be useful
especially for the scenarios where nongeometric fluxes are
involved as a priori a 10D origin of the same was not clear,
unlike the current simple case of (F3, H3) fluxes which has
been well-studied from the dimensional reduction point of
view [52,54,60].

C. Superpotential with (F,H,Q) fluxes

Using the T-duality arguments along with a specific
choice of orientifold action resulting in Al (X) =0 =
h%'(X), it turns out that the GVW flux superpotential
(2.24) can be generalized by including the so-called non-
geometric Q-flux leading to a superpotential of the follow-
ing form [28]:

W, = /[(F CSH)+ 05T A Qs (2.36)

where the flux action for the nongeometric Q flux is such
that it takes a p-form to a (p — 1)-form, in particular a
4-form J to a 3-form defined as

3
<Q > ‘7)171]72173 = 2 Q[&j&&]mn (237)

In addition to the 16 flux components mentioned in (2.25),
one has the following 24 non-vanishing components for the
Qij k¥ flux,

0% 01, 0,%,0,%,0,%, 0513, 067,
05, 06", 051, 0,51, 05%%, 0,7,
Q2357 Q5237 Q3527 Q246’ Q4517 Q1457

05", 047, 06", 0:°1, 0%, 0™ (2.38)

Note that inclusion of nongeometric Q-flux can generically
induce the superpotential coupling for the 7, moduli, and
hence can help in breaking the so-called ‘“no-scale
structure”.

In this nongeometric setting, one gets the N = 1 four-
dimensional scalar potential with 2422 terms which (sub-
ject to satisfying a set of Bianchi identities for the two
NS-NS fluxes H and Q) can be rewritten in the following
form [52]:

V=V +Vy+V3+Vy+Vs+Vg+..., (2.39)
where ... denotes some terms to be nullified by the Bianchi
identities while the six pieces are explicitly given as
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1 1 ii' il Kk
Vi yﬂ:ijkﬂ:i’j’k’g grgr |,

T 45y

N -1 il J]/ Kk
szw yﬂ'ﬂijk”'”i’j’k'g 9",
1
V3

1 [ 1 .
Vy (=2) x <— Hypni Q™" g"

T4y 21

1 1

1 L L, , 1 . .
{3 X (5 QY Qp" gii’gjj’gkk) +2x <— Q,"Q,™ gii’):|7

)|

2!

[ 1 .
Vs =1y (+2) x (axaHijkg]kl l]:lmn):|a

1
Ve

Now, unlike the GVW case in (2.28), we have a more
complicated generalization of the axionic-flux combination
given as [52]

3 Im
Fijx = Fijr + EQH Pimj) — CoHiji

ij _ i
Qf = 0y.

Hijx = Hijks
(2.41)

It might be worth mentioning that there are two contribu-
tions Vi and Vg corresponding to the 3-brane tadpoles
and the 7-brane tadpoles respectively, and these are to be
compensated for by introducing local sources such as
D3/D7 and O3/07 planes.

The splitting of 2422 terms in the scalar potential
arising from the (nongeometric) flux superpotential
(2.36) can be appreciated by noting the fact that the six
pieces in Eq. (2.40) capture a total of 2086 terms with
counting as

#(Vs)=8, #(Vs)=24,

#(V3):288, #(V4) :60,

(2.42)

while the remaining 336 terms which are not captured by
the collection in Eq. (2.40) are nullified via the following
two classes of Bianchi identities which result in 48
quadratic flux constraints,

0,170, =0, OpHiny =0,  (2.43)
where in our convention throughout this article, the over-
lined indices are antisymmetrized with appropriate nor-
malization factor.

As we have discussed for the simple GVW case with
(F, H) fluxes, after having this so-called “suitable” refor-
mulation of the (nongeometric) scalar potential one can
anticipate the higher-dimensional origin of such terms. It
has been shown in [52,58,65] that this scalar potential can

1 1 S0 .
— m |:(+2) X <E X 5 @ij K ﬂ:j,k,jfklmngljklmn>:| )

(2.40)

|

arise from the dimensional reduction of the double field
theory action, and most of the terms descend from kinetic
pieces similar to the case of GVW superpotential. Since we
have already collected the scalar potential pieces in
Eq. (2.40) we do not find it necessary to repeat writing
the analogous dimensional-oxidation terms which can be
understood along the lines of the previous GVW case
which have been discussed in detail.

D. Superpotential with (F, H) and (Q, P) fluxes

After the inclusion of nongeometric Q-fluxes, the under-
lying S-duality of the type-IIB supergravity is no longer a
symmetry of the effective scalar potential, and in order to
restore it one needs to include the S-dual of the Q-flux,
which is known as P-flux. For example, as one can easily
see that the scalar potential (2.39) is not invariant under the
S-duality transformations mentioned in Eq. (2.23), the flux
superpotential is further generalized and now consists of
two S-dual pairs of fluxes, namely (F, H) and (Q,P)
resulting in a form given as [28,32]

sz/[(F—SH)+(Q—SP)>j] AQy,  (2.44)

where the action for the P-flux on a four-form denoted as
(P> J) is defined similar to the Q-flux in Eq. (2.37).
Moreover, 24 components of P flux are defined in a similar
way to those of Q flux as given in Eq. (2.38).

This setup has a total of 64 flux parameters; 8 each for
the S-dual pair (F,H) and 24 each for the S-dual pair
(Q, P). Explicit computations show that the scalar potential
induced by these four types of fluxes results in a total
of 9661 terms which can be reformulated in the following
way [54]:

V=V, +Vo+Vi+V,+Vs+ Ve +V,

+Veg+Vog+Vig+ ..., (2.45)
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where ... denotes some terms to be nullified by the Bianchi identities while the ten pieces are explicitly given as

1 1 ii' ij kK
Vi = 45y §[Fijk”:i’j'k’g g,
S 1 i ;s !
V, = oY, [g HijeHy e g™ g7 g }
1 L iia i Kk Lo iy mi
V3:m 3x y@k Qv'' gir9j79 +2x EQm Q," giir | |-
s [ Lo iim iy 9% Lo wim mi
V4:W 3x §Pk Pv'’ girgji g +2x E[Fbm P gi )|

1 1 "
V5 Ty (_2) X (_ HmniQi’m”g”

2!

_(—|—2) X

1 1
o]
* T 45y
1 11
(=2
V1o 4v[( )X<2! 2!

Now the axionic-flux combinations are further generalized
as compared to those presented in Eqgs. (2.28) and (2.41).
These are given as [54]

3
Fijr = <Fijk + EQ[ilmplm&]> = ColHjjx,

3
Hijx = (Hijk +§Pulml’zmﬁ]>,

Qi = QU — c,P,

P/ =P/. (2.47)
Subsequently, let us also emphasize that although some of the
expressions in the collection of scalar potential pieces appears
to be the same, they are not identical; for example although

Vir takes the same form in Eqgs. (2.27) and (2.40) as well as in
|

#(V)) =4108,  #(V,) = 1054,
#(Vs) = 1071, #(Vs) = 288
#(Vg) =128,  #(Vy) = 288,

ik ijkl
— X —PIJ Hj’k/kalmnSU mn>:| .

1 mn ii’
<5 [me'[pi’ g >:| ’
[ o 1 ,
Vi= 5 [ % (3@ ) unam (@070 )]
1 .
< [H]ijkgljklmn I]:lmn>:| s

1 1 R P
|:(+2) X (5 X 5@[./ K [Fj'k’kalmngljklmn>:| ,

(2.46)

|
Eq. (2.46), they include different amount of terms as the
axionic-flux combinations F [as respectively defined in
(2.28), (2.41), and (2.47)] and are different for all the cases.
Moreover, it is worth observing that the S-dual pairs of fluxes
(F,H) and (Q, P) are such that the axionic flux F and Q
consists of C times their respective generalized partners,
namely H and P. On these lines, it is well-anticipated that after
including more fluxes motivated by the 7/S duality argu-
ments these axionic fluxes will be further generalized to have
quadratic and cubic pieces in terms of the C, axions. We will
discuss this in the upcoming section regarding insights of the
U-dual completions of the scalar potential.

The splitting of 9661 terms in the scalar potential is quite
tricky for this case. It turns out that the pieces mentioned in
the collection (2.46) capture a total of 8233 terms having
the following explicit counting [54],

#(Vs) =450, #(V,) = 450,
#(V,) = 324,

while the remaining 1428 terms, which are not captured by the collection of pieces in Eq. (2.46), are nullified via the

following set of Bianchi identities [32],
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27, =0,

Finally let us mention that our statement about 8233 terms
being captured by the pieces in the collection (2.46) and the
remaining 1428 terms being nullified by Bianchi identities
should not be confused as if those 8233 terms are not
subject to satisfying Bianchi identities. The separation is
only to demonstrate that we have invoked the terms in
Eq. (2.46) based on contraction of indices and taking an
educated guess from the iterative process of including more
and more fluxes in a stepwise approach.

III. SCALAR POTENTIAL INDUCED
BY THE U-DUAL FLUXES

In this section, first we discuss the U-dual completion of
the flux superpotential and subsequently we will invoke the
so-called axionic-flux polynomials which are useful for
rewriting the scalar potential in a relatively simpler form.

A. Superpotential with (F, H) (Q, P), (P, Q'),
and (H', F') fluxes

So far we have considered a superpotential induced by
two S-dual pairs of fluxes, namely the (F, H) pair and the
(Q, P) pair. However, as one can notice from Eq. (2.44)
such a superpotential is only linear in 7, moduli
while cubic in U’ moduli, and it turns out that following
the 7'/S-dual completion arguments one can facilitate the
presence of cubic couplings for T, moduli as well. In this
process, one ends up in the need of including two more
S-dual pairs of fluxes denoted as (P',Q’) and (H',F')
[28,32,35,36,73]. Let us mention that the complete set of
fluxes, including the so-called prime fluxes P’, Q', H', and
F' which are some mixed-tensor quantities, have the
following index structure,

Fiit,  Hiji,

/i, jkl
pikim

ik
P

1ijk,l
H'i mnpqr’

Q/i,jklm F/ijk.lmnpqr. (31)
Subsequently, one can understand (P’, Q') flux as a (1, 4)
tensor such that only the last four-indices are antisymme-
trized, while (H’, F") flux can be considered as a (3, 6)
tensor where first three indices and last six indices are
separately antisymmetrized. These can also be understood

as the following:

1
/k 'k,Imn /I k__ tk,lmn
Pij 4! eijlm"PP r ’ ij 41 €ijlmnp Q p’
. 1 . . 1 .
1ijk 1ijk,l 1ijk __ 1ijk,l
H'i H'iiklmnpqr i Fijk.Imnpqr

aelmnpqr aelmnpqr

(3.2)

pliip, Ik — 0,
pliig Tk =

O Hinj = P Fiaj»

Qp”mePC = Pp“mePC. (2.49)

|

In fact we observe from our numerical computation of
scalar potential pieces that using this version (3.2) of prime
fluxes makes the computations efficient. Otherwise, it takes
huge amount of time while using their respective (1,4) or
(3,6) index versions. Moreover, this way of representing the
primed fluxes (P};*, Q;;*) look similar to the geometric flux
w;;* while the primed fluxes (H'"¥, F'i/) look similar to
the nongeometric flux R* in the sense of lower/upper
antisymmetrized indices. It is a bit easier to anticipate in
this formulation that number of flux parameters consistent
with our toroidal orientifold for (P’, Q') are 24 each while
those of (H’, F’) are 8 each. Subsequently, one has a total of
8+8+24+24+24424+8+8 =128 flux parame-
ters allowed by the orientifold action, however these flux
parameters are not all independent, and are subjected to
satisfying the Bianchi identities and tadpole cancellation
conditions. Further details about the mixed-tensorial nature
of such prime fluxes can be found in [36]. Let us note that
the antisymmetric Levi-Civita symbol e"/*"" contracted
with the internal metric satisfies the following identity
which turns out to be useful in switching between the two
notations (3.1) and (3.2) of the prime fluxes as we do many
times later on:

ijklmn —
€' 9ii 9 9kk' 91 Gmm! Inn' = det[gij]ei’j’k’l’m’n’

= Vzeirj/k/l/mrn/_ (33)

Using generalized geometry motivated through toroidal
constructions, it has been argued that the type-1IB super-
potential governing the dynamics of the four-dimensional
effective theory which respects the invariance under
SL(2,7Z)" symmetry can be given as [28,32,35,36,73]

Wom [ (fo-sf)-eT At (4

where J denotes the complexified four-form defined in
Eq. (2.10), and one has the following expansions for the
quantities f,

fi e/ =F+0>J+PoJ*+H 0 J°,

fored =H+P>J+Q oJ*+F o J. (3.5)

Here, the various flux-actions on the [7;j; four-form
polynomial pieces resulting in three-forms are defined as
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3 by b,

(Q > j)maﬂ; = Q zjazug by1by»
3 b b

(PD j)ala2a3 ; zjaza; bi1by»

l
/ 2 _ /c,b1bybsb.
(P oJ )a1a2a3 =P 4‘7[61_1@\Cb1\‘7“_3]b2b3b4’

4
(Q'¢ jz)a,a;a; = % Qlah]bz;)r%mj[ﬂﬂ leb, \jﬁ]hzhsbw
(H/ © j3>a1a2a3 = FlzH/ClCzC}ﬁlbzb}bwsbﬁj[ail@\clcz\jﬁ]cglﬂszbsbzzbsbe’
(F'© T?)aaya, = 19—2F'C‘CZCS’b‘b2b3b4b5b°\7[ﬂﬂ\cch\Ja_g]cgblszbgmbsbﬁ- (3.6)

Here, let us also mention that it has been suggested (e.g., in [90]) to express the superpotential (3.4) by introducing a set of two
“generalized twisted” operators as

W3:/ (D7 — S - e7) A O, (3.7)
X3
where

D=d+FA.+0>.+Po.+H O,
D=d+HAN.+P>.+0¢.+F 0. (3.8)

Subsequently one finds an explicit and expanded version of the generalized flux superpotential W5 with 128 terms each
having one of the 128 flux parameters such that they are coupled with the complexified moduli resulting in cubic polynomial
in T, as well as U’ moduli while being linear in the axio-dilaton S. The explicit form of generalized flux superpotential W7 is
given in (A.1) of Appendix.

B. Invoking the axionic-flux combinations

From the iterative models studied/revisited so far, one has the educated guess to invoke the following set of so-called
axionic-flux combinations which will turn out to be extremely useful for rearranging the scalar potential pieces into a compact
form,

3 b b 1 c 1 Cci1CyrC
Fije= (F ik T30 P jkini, TP Db 1P, g H bzh‘b“hﬁbﬁﬂmclczﬂﬁcwlbzﬂbsmbsbf) ~ Collijie

3 | 1
H; jkts P[z p}ﬂblbz +ZQ,L’blb2b3b4p[iﬂCbl\pk]bzb3b4 +19_2F/L10263 b b2b2b4b5b6pul’Clczpﬂc3b1b2pb3b4b5bﬁ> ’

48

1

. . 1
k r¢.jkbyb 1 jkebybybybsbsh
PR =02 p g, o B 20340 Db by Pbbybsbe | 5

2

. L1 . 1 .
Q= (Qi/k —EP/C”kb‘bzﬂicb]bz < H blb2b3b4b5b6picb]bzpb3b4b5b(,) —CoP i,
( i

- - 1 . .
P/t,/klm P/l,jklm +ZH/U KJ'm jklmpj’k’l’m’ _ Co@/l,_/klm’

/i, jklm 1i,jkl ik U m' jkl
Q' m_(Ql] m+ZF ij m'j mpj'k’l’m’ ,
[H]/ljk Imnpqr H/Uk Imnpqr __ Coﬂ:/ijk,lmnpqr’

[F/ljk Imnpqr __ F/ljk lmnpqr (39)
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Using Eq. (3.9) one can observe that for our toroidal
construction, there are 128 axionic fluxes corresponding to
128 standard fluxes, and one can solve this set of linear
relations to determine one set of fluxes from the other,

{F7H7 Q7 P7 P/7 Q/7 H/’F/} < {[F’ [H]’ @3 [FD’ [FD/’ le [H]l’ [F/}
(3.10)

In our detailed analysis of rewriting the scalar potential pieces
we find that using the set of axionic fluxes reduces the number
of scalar potential terms quite significantly. This subsequently
helps us in understanding the insights within each terms
towards seeking a compact and concise formulation of the full
scalar potential. For an immediate illustration of this point let
us mention that the most generic scalar potential with all the
128 U-dual flux parameters being included results in a total of
76,276 terms when represented in terms of standard fluxes
{F,H,Q,P,P',Q',H, F'}. However, this number reduces
to 10,888 if we wuse the axionic-flux components
{F,H,Q,P,P, Q' H,F}.

Another point worth mentioning here is the fact that all
the axionic dependences are encoded in the axionic fluxes
and the scalar potential does not have an explicit depend-
ence on any of the RR axions after being written in terms of
the axionic fluxes. For this reason, our formulation can be
understood as the so-called bilinear formulation of the
scalar potential presented in [44,45,91-94] and hence a
generalization of these works with the inclusion of prime
fluxes. However, unlike the standard bilinear formulation
which is a symplectic formulation, we rewrite the scalar
potential terms using the metric of the internal toroidal
background.

We will elaborate more on the use of axionic fluxes via a
detailed taxonomy of the scalar potential terms by taking a
couple of interesting scenarios in our discussion later on.
This will help the readers to understand/appreciate the
method of invoking a concise formulation of the scalar
potential out of such a huge and useless looking output of
76,276 terms arising from the F-term computations using
the flux superpotential.

C. Taxonomy of the scalar potential pieces

In this subsection we demonstrate the utility of axion-
flux combinations in rewriting the scalar potential. Through
a detailed taxonomy of the various types of scalar potential
terms allowed in different scenarios having a (sub)set of
fluxes being turned on at a time, we find that the scalar
potential takes a relatively simpler and useful form, with
significantly fewer number of terms. We present this
observation under the following cases:

Scenario 1: The GVW superpotential W, defined in
Eq. (2.24) leads to F-term scalar potential having a
total of 361 terms when written in terms of standard
conventional fluxes F;; and H;j,, however the same

TABLE I. Counting of scalar potential terms with standard flux
and axionic flux in Scenario 1.

Type of quadratic =~ Number of
Flux type flux terms terms Total #(V)
Standard flux {FF,HH,FH} {76,152,133} 361
Axionic flux {FF, HH, FH} {76,76,8} 160

scalar potential can be expressed in terms of only 160
terms when written in terms of axionic fluxes I;; and
Hjji- In order to appreciate the counting we present the
splitting of the number of terms in the three types of
quadratic-flux pieces in Table 1.

Scenario 2: The flux superpotential in the presence of
non-geometric Q flux leads to a form W, defined in
Eq. (2.36). This results in a F-term scalar potential
having a total of 2422 terms when written in terms of
standard conventional fluxes F,;, H,j, and Q;/% as
observed in [52]. However we find that the same scalar
potential can be expressed in terms of only 772 terms
when written in terms of axionic fluxes F;j, H;j, and
Q,;/*. In order to appreciate the counting we present
the splitting of various terms in the six types of
quadratic-flux pieces in Table II.

Scenario 3: Now, the S-dual completion of the flux
superpotential in the presence of nongeometric (Q, P)
flux pair leads to a form W, defined in Eq. (2.44). This
results in a F-term scalar potential having a total of
9661 terms when written in terms of standard conven-
tional fluxes (Fj., H,;) and (Q;/*, P/*) as observed
in [54,68]. However, now we find that the same scalar
potential can be expressed with only 2356 terms when
written in terms of axionic-flux pairs (F;j, H, ;) and
(Q/%,P/%). In order to appreciate the counting we
present the splitting of terms in the ten types of
quadratic-flux pieces in Table III.

Scenario 4: Finally, we consider the 7/S-dual comple-
tion of the flux superpotential in the presence
(F,H,Q,P,P',Q' H',F") fluxes which lead to a
superpotential of the form W3 defined in Eq. (3.4).
In the current work, first we observe that this super-
potential results in a F-term scalar potential having a
total of 76,276 terms when written in terms of
standard conventional fluxes, and can be compactly
reformulated in only 10,888 terms via using the
axionic fluxes. In order to appreciate the counting
we present the splitting of various terms in all the 36
types of quadratic-flux pieces in Table IV.

So far, we have simply computed the F-term scalar
potential from the flux superpotential and have some
classification so that we could make some educated guess
to rewrite those pieces using the metric of the internal
toroidal orbifold. As a byproduct of this detailed analysis
and as a consistency check, we have rederived the previous
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TABLE II. Counting of scalar potential terms with standard flux and axionic flux in Scenario 2.
Type of flux Type of quadratic flux terms Number of terms Total #(V)
Standard flux {FF,HH,QQ,HQ,FH,FQ} {76, 152,1059,603, 133,399} 2422
Axionic flux {FF, HH, QQ, HQ, FH, FQ} {76,76,408, 180, 8,24} 772
TABLE III.  Counting of scalar potential terms with standard flux and axionic flux in Scenario 3.
Type of flux Type of quadratic flux terms Number of terms Total #(V)
Standard flux {FF,HH,QQ,PP,HQ,FP,QP,FH,FQ,HP} {76,152,1059,2118,603,603,3720, 133,399,798} 9661
Axionic flux {FF, HH, QQ, PP, HQ, FP, QP, FH, FQ, HP} {76, 76,408,408, 180, 180,972, 8,24, 24} 2356
TABLE IV. Counting of scalar potential terms with standard flux and axionic flux in Scenario 4.
Type of flux Type of quadratic flux terms Number of terms Total #(V)
Standard flux {FF,HH,QQ,PP,P'P,Q'Q' . HH', {76,152,1059,2118,2118,4236, 608, 1216, 76,276
F'F,FH,FQ,FP,FP',FQ',FH FF/, 133,399, 603, 603, 1461, 487, 1334,
HQ,HP,HP'.HQ',HH',HF',QP, QP', 00, 603,798, 1461, 1206, 1334, 974, 3720, 3057,
QH',QF',PP',PQ', PH', PF', 6414, 1206,2922,6414,6114,2922,2412, 7440,
P'Q . PH,PF,QH,QF HF'} 1596,2412,2412,3192, 1064}
Axionic flux {FF,HH, QQ, PP, P'P', Q'Q", H'H', F'F, {76,76,408,408, 408, 408, 76,76, 8, 24, 180, 180, 10,888

FH, FQ,FP, FP', FQ', FH', FF, HQ, HP,
HP', HQ', HH', HF, QP, QF', QQ', QH’, QF,
PP, PQ, PH, PF,P'Q, P'H, P'F,
@,[H]l, QI[FI, HI[FI}

474,158, 185, 180, 24,474, 180, 185, 158,
972,522,474, 180,972, 24, 180, 180, 24, 8}

results claimed in a series of iterative works
[52,60,65,68,69]. While doing so we observe in this
work that using the axionic fluxes instead of the standard
fluxes can reduce the size of scalar potential very
significantly. Moreover, working with axionic-flux combi-
nations helps in simply discarding the C- and C4-axion’s
explicit presence in the game, and this subsequently
also helps in reducing the number of terms to deal
with while working on some explicit construction. In this
way it will make it relatively easier to handle the scalar
potential for any application purposes, such as doing any
phenomenology, e.g., flux vacua analysis and de Sitter
search.

IV. REWRITING THE SCALAR POTENTIAL

In this section we present a systematic taxonomy of the
four-dimensional (effective) scalar potential induced by the
generalized fluxes respecting the U-dual completion argu-
ments for the flux superpotential. Being bilinear in eight
class of fluxes, the full scalar potential can be expressed in
“36 types” of terms which we collect in the following three
categories,

V= Vdiag + Vcrossl + Vcross21 (41)

where

Viaieg = Ve + Vun + Voo + Vep + Ve + Voo + Vuw + Vep,
Veaosst = Ver + Ve + Ve + Vg + Viug + Vi + Voo + Vaw + Ver + Ver + Ver + Vaw,
Veoss2 = Ven + Vea + Vi + View + Ve + Ve + Vur + Vap + Vapr + Var

+ V[p@' + VP[H]’ + V[p:/@/ + V[P”H’ + V@/[F' + V[H]’[F“

(4.2)

Let us mention that the first collection V;,, in (4.2) has eight terms of diagonal type while the terms collected in V
correspond to the cross-term which do not include tadpole contributions (as we will see later), while the collection Vo
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also includes the topological terms besides having some internal metric dependent pieces. We define the following
shorthand notations using the flux actions in Eq. (3.6) which will be used whenever needed,

3 b
(@T)alaza3 = EQ[ézrﬁﬁ]h]bzy

_ 2 pbib,
(PT)alazas ol Tay aslby by

1
/ _ 1c,bybybsb
(P'tz) = POV gy leby | Tas]bybyby s

aaas 4

1
/ _ 1c,bybybsb
(Q TT)a1a2a3 = Q7 AT[ﬂﬂkbl\Tﬁ]bzbzbﬂ

4
(|]-|]’ ) —_] H/ €1¢2€3.01b2b3b4b5be
)0 = Jo5 T
([F/TTT) — L [F/c]czc'3,h|h2h3h4b5h6,[
drazds 192

and

. 1 ..
— ijklmn
(GT)U 4! e Tkimn>»

(e77);; = l . l . ieklmnpqr T .
ij — 2 21 4! kimn* pqijs
. 1 ..
ijkl ijklmn
(eerr) N = 561 (€77) n
_ 11 ijklrs JK'I'm'n’ pq 4.4
= g ' 476 € TIm'n'Tpgrs- ( . )

For the toroidal model, this results in the following simple
cases:

0 7, 0 0 0 0
7z, 0 0 0 0 0
(er)i 0 0 0 7 0 0
0 0 -, 0 0 0]
0 0 0 0 0 1
0 0 0 0 -3 O
0 ToT3 0 0 0 0
—1,73 0 0 0 0 0
0 0 0 7|73 0 0
€= 6 0 ez 0 0 0
0 0 0 0 0 71T,
0 0 0 0 -7, O
(4.5)

In addition, the antisymmetric 4-rank tensor (eez7);;, has
only three independent nontrivial components, (€€77)53, =
7172, (€€TT) 3455 = 7273, (€€TT) 155 = 7173, and this also
gives the following relation:

a1 a3 |e1c2|Tagesbyby Thybsbshe

(4.3)

a1 a3 |e1¢2|Tas)esbyby Thybybsbe:

ijkl

1 .
(eetrr) = 2 (eett) ekimng 1 (€77) = 3V2

Tk =51 4
(4.6)

Now we present the explicit forms of all the 36 scalar
potential pieces in detail.

A. Diagonal terms

In this class, there are eight types of terms which we
consider one-by-one.

1. FF type

Such terms can be rewritten in the following piece:

l 1 T /
FF = Y, [5 FinFirjwg” 9" gkk} (4.7)

2. HH type

Such terms can be rewritten in the following piece:

N

Vium = v (4.8)

1 ey
{; HijHy i g g7 g** ] .
Although the qualitative form of the above mentioned two
pieces, Vg and Vg, look identical as compared to previous
simpler cases, e.g., the GVW scalar potential givenin (2.27).
Let us emphasize here the fact that the internal structure is
vastly difference because of the definitions of the general-
ized axionic-flux combinations (3.9).

3. QQ type

Such terms can be rewitten in the following three pieces:
1 2 3
Vaa = Vah + Vas + Ve (4.9)

where
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m _ 1 [ Lo iia 7 /
VQQ —m 3. <§@k1@k/ Jgii’gjj’gkk>:|’

(2) _L [ . l niy mi'
V@@_4SV 2 <2'@m Qn gii’>:|,

VQ(R} = m _@m ”Q fom ”l]thkl:|

(4.10)

As we have earlier explained, although the first two terms
look similar to those of (2.40) further generalization of the
axionic flux combinations in (3.9) makes it much compli-
cated having large number of terms. Moreover, the last
piece is VSG)J is a new piece which has not been reported in
the earlier approaches of dimensional oxidation [52,54,60],
as these terms are nullified by the Bianchi identities.
However for the sake of completely rewriting the full
scalar potential arising from the F-term superpotential we
have invoked this term as well.

4. PP type

Such terms can be rewritten in the following three pieces:

Vep = V[%lu; + Vn(lzu; + Vu(fu;’ (4.11)
where
V[gul :% 3. (1, Pkupk’ gii’gjj’gkk/>:|v
Vlgfn; = % 2 <1 ni[pnmi/gii’)]v
Vﬁfﬂi :% Bt —p,,llip, kgl k,] (4.12)

Similar arguments which have been made for the QQ-type
hold for this case as well. In that regard, we mention that the
last piece is VE:?[F)., is a new piece which has not been reported
in the earlier approaches of dimensional oxidation [54], as
these terms are nullified by the Bianchi identities. We will
discuss the aspect of Bianchi identities later in the upcom-
ing section.

5. P'P’ type
Such terms can be rewritten in the following three pieces:
1 2 3
Ve = Vb +VEL + VB, (4.13)

where

1 1 1 i
Vlgj,/ﬁy — ﬁdet{gll} |:3 (3' Ip/lj [FD/ i / g gJ] gkk’>:|

2 1 m ii
V[(F"’?P” :Hdet[gij} |:2 (2,P/m lp/mt g ):|

3 1 1 m n ij
VI](:‘”?F‘” = m EP/[U l]:D/I_cm gj]”(é'é"l"[) K

(4.14)
Notice that there is an additional overall factor det[g;;] in
the first two pieces, as compared to the pieces with
unprimed fluxes. This can be understood from the defi-
nition (3.2) and the identity (3.3). The third piece has two
pieces of the antisymmetric Levi-Civita symbol (corre-
sponding to each of the two P’ fluxes which are) encoded in
(eerr)M, and therefore the overall factor det[g;;] does not
appear in this case.

6. Q'Q' type
Such terms can be rewritten in the following three pieces:

Voo = Vi + Vi + Vi, (4.15)
where
VSZQ/ = %det[gu} [3 ) (% @/ijk@/i’j’klgii,gjj/gkk’>:|7
Vie = %det{giﬂ [2' (% @,nilemi’ngii,>i|’
VS,)@, = {4'@’-- @’,;m"g;]n(eerr)ijkl]. (4.16)

All the arguments which have been made for the P'P’-type
hold for this case well.

7. H'H' type

Such terms can be rewritten in the following single piece:

1 AR
VI]'U’H-I]’ = As Vdet[g”] |:3' |]-|]/ljk|]-|]/lj k g”’g]j’gkk/:| (417)

Moreover, using the shorthand notations in Eq. (4.3) this
piece can also be written as

1 1 s /
Vﬂ'ﬂ/[]-[l' = m |:3‘ . (H/TTT)ijk(H/TTT)i/jrk/g” ng gkk:| s

while the identity in Eq. (3.3) ends up reexpressing the
same term as

VH/ H =

1 11 — Mk dmnpgryyi iK' m'n p'' Y
45V |31 6!

X gii’gjj’gkk/gll'gmm’gnn’gpp'gq(/grr':| . (4 1 8)
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8. F'F type

Such terms can be rewritten in the following single piece:

S 1 .. oy
Vepp = Edet[gij] {g FOkpiTk gii’gjj’gkk’] . (419)

Similar to the H'H’ type piece, using the shorthand
notations in Eq. (4.3) we have

N

V//:—
FE T4y

1 A /
[; ([F/TTT)ijk(PTTT)i’j’k’g” g’ gkk} )

while the identity in Eq. (3.3) ends up reexpressing the
same term as

V[F’[F § |: 1 . l [F/ijk,lmnpqr[':/i’j’k’,I’m’n’p’q’r’

T4 (316!

X Gir 9 Gik' 9ir Gmm' Inn' Gpp' gq' 9rr’ | - (420)

This shows that there can be multiple ways of rewriting
the same expression and one has to invoke additional
insights for anticipating the higher-dimensional origin of
such terms.

B. Cross-terms of the first type

We classify the remaining 28 pieces into two categories
of cross-terms. The first type includes 12 terms while the
remaining 16 terms are those which involve topological
terms. We will summarize all these terms now.

1. FP type

Such terms can be rewritten in the following two
pieces:

Vep = VI + V), (4.21)
where
(U_L . l mn i’
V[F[F" _4V |:(2> (2| [thn[FDz’ g >:| ’
Ve = detlgt]| () (-12) - (P iy ecer))
FP =4y 4\l T mjkInl]
(4.22)
2. HQ type

Such terms can be rewritten in the following two
pieces:

Via = Vi + V., (4.23)

1 _ 1 1 mn ii’
Vig = 4y {(—2) X (5 Hipn Q™" g >]
Vig, = o det[g] [ (=2) - (-12

HO etlg"]|(=2) - (-12)

ol G | RS

3. FP type

Such terms can be rewritten in the following two
pieces:

2
V[F[F‘” — V[Efll]:‘)” + V;:D;Z/, (425)
where
(n 1 1 i,mnpi
V[Fum/—m[(2>' (a[':mnp[pl r gii’>:|’
2 1 1 m,[ijkn 1
V[E:[F?’/ :m |:(2> . (—4) E <P/ ’[ Jk l]:mpngpl]Tijkl>:| . (426)
4. HQ' type
Such terms can be rewritten in the following two pieces:
1 2
Vi = Vi, + VI, (4.27)
where
V(l) _ S 2 1|]'|] 1i,mnpi’
H@,_W ( ) 5 mnpQ gii' ’
) _ S L (qm i i
Ve =3 [(2).(—4)-4!(@/ ik Hmpng"”rijkz)]. (4.28)
5. PF type

Such terms can be rewritten in the following two
pieces:
1 2
Ver = Vi, + V2, (4.29)

where defining (F'z77),;, = (F' © 777) we have

s 1 . "
Vit =g |2 (PP |

2 s 1 i = mi/‘»/
Vit =15 [(2) L(4)- <2! P T gii,(en)jj,)] ,

(4.30)
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Let us note that the first piece can also be expressed as

n_s o
Vil = @12 (5 PP R (err) 5 )|
(4.31)
where we define (Pg)/f = 1P, [/g"H.
6. QH' type

Such terms can be rewritten in the following two pieces:

+ve

1
V@IH]/ - V( ) QH'’

o (4.32)

where defining (H'zzz),;, = (H' © 777) we have
n 1 1 ik il
Vil = g |2 (3000,

V=25 @@ (575

miU[H]/mi/ﬂgii’<€TT)jj/>:| '
(4.33)
Let us note that the first piece can also be expressed as

m 1 U ooyt
VQH/m[(2>(12)<2' 4'|]_|]]7 ]<Qg)kl (efr)quijkl>:|’

(4.34)

where we define (Qg)"* = %@mﬁ]‘ P

7. P'F type

Such terms can be rewritten in the following two pieces:
1 2
Vo = Var + VEL. (4.35)

where

1 1 1 iE/mni’
Vé)/?]:/ :@ |:(2) ° det[glj] N <2!P/mn ﬂ:/ g”/>} ’
v®, — L 10). 12 1[F’ Gmpr kgl
P _E ( ) et[gij] ( ) mn g Tijki
(4.36)

Let us note that the first piece can also be expressed
as a piece in which the det[g;;] factor does not explicitly
appear,

1 1 1 i,jlmn
Véyﬁ:/ = E |:(2) . (a P/ gl (H:/TTT)lmngij>:| . (437)

Moreover, although we have separated this piece Vp into
two terms keeping in mind the separation of the pieces to be
nullified by the Bianchi identities, it is possible to express
all the terms of Vpy in a single piece as

1 1 g
- [(2) ) <2 ) u:D/m,nPngnrﬂ:/rlel.jkl(€TT)mp>:| .

(4.38)

VIP"[F’

8. Q'H type

Such terms can be rewritten in the following two pieces:

Vaw =V + V. (4.39)
where
Vil =5 |(-2)- et (@bt ) |
Vi = g (-2 -detl] - (12
(i' Wiing kg de)} (4.40)

Let us note that the first piece can also be expressed as a
piece in which the det[g;;] factor does not explicitly appear,

1 1
vgﬂw—w[(—z) (S'@”Jl’""(ﬂ-l]'rr‘r)[mngij>]. (4.41)

Moreover, although we have separated this piece V gy into
two terms keeping in mind the separation of the pieces to be
nullified by the Bianchi identities, it is possible to express
all the terms of Vgyy in a single piece as

1 1 .
V@’I]-ﬂ’ :W |:<—2) . <m@lm’npug”rl}'ﬂ/rk17l’jkl(GTT)mp):| .

(4.42)

9. FF type

Such terms can be rewritten in the following two
pieces:

1 2
Ver = Vig + Vio

(4.43)

where
1 1 l l mni
V[(F[F)':W[( 2 <3v 31 o ’kg"gjj’g""’ﬂ’

2) 1 1 rmn,pqij
ViR =1y [(—2) (4)- <2 S "kl[F[ﬁmngq}rTijklﬂ :

(4.44)
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Here the first piece can also be expressed as

1
Vi = | @ (5P )| @as

10. HH' type

Such terms can be rewritten in the following two pieces:

1 2
Vi = Vil + V2, (4.46)

1 1 1 1 mni’
Vﬁﬁ’zﬁ{(z) <3v 3 il /kg"gjj’g""’ﬂ’

Here the first piece can also be expressed as

vgﬂ‘gﬂ,zﬁ{( 2). ( L (We20) 517 g7 o )] (4.48)

11. QQ' type

Such terms can be rewritten in the following five
pieces:

_ vy @) ®3) ) ©)
o . Voo = Voo + Voo + Voo + Vo + Yoy,  (449)
. rmn,pqijkl
Vu—uu—u’—w[(z)'(“)' (2,2,41H/ pais Hipmnga)rT ljkl>]'
(4.47) where
|
V(l) _ 1 2 3 1 i iy k].mi'j'&
00 = 7y (2)- 3 @0 i 9jj 9w | |»
V(z) _ 1 2 8 1 Q [fn@/p,m}/_ci]
oQ — @ ( ) ' ( ) ' 21 41 m ginijkl ’
3 i 1 S
Vou =2y |®-(=16): (2! PTR 'p’kl]gnpfi/klﬂv
4 1T 1 im n "m'n' j
ng);p' Y (2)-3 BRI (9" Q" P Tpjic) (@”’ Jle’m’n'i>:|v
5 1 [ 1 -
VG(M)I’ iy (2)-(2)- ( d Q/lmpgp/]<€r)j)] (4.50)
12. PP’ type
Similar to the previous case, such terms can be rewritten in the following five pieces:
Ve = VAL + V&, + v, + v 4 vB) (4.51)
where
@m LT U Gimme
Vop = oY, (=2)-(3 'a[pm P 9ir 97 9k | |+
(2 _ LT 2 8 1 lin! pmj k1)
V[F"[PV = E (— ) ( ) 2. 41 P P GnpTijkl ’
3) 1 1 in/m.pjkl
V[P’IP” - @ (_2) : (—16) ’ <2’ 41 Pm[ P’ mkl]f]ﬂp’l‘f“)}
4 1 I 1 lm n 4 m/n/ :
V[I(:"[ll’ = W (_2) -3 31.21.21 ’ (g P, anpjk) (P/l' jle’m’n’i):| s
5 1 1 m n ij
Vi =5 [0 @ (PP uramte) | (4.52)
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C. Cross-terms of the second type

In this section we present the cross-terms which may also
involve the tadpole contributions, which are to be com-
pensated by introducing the local sources such as D-branes,
O-planes or other exotic branes.

1. FH type

These terms are generalized version of the ' A H term in
the GVW scenario, which correlates with the D3-brane
tadpole contributions. These are given as

1 1 .
Vg = o2 [(2) : (ﬂ [Fiijlmneuklmn>:|- (4.53)

Notice the fact that the explicit overall volume factor
is now V? rather than V and the dilaton dependence is not
there. Subsequently, this piece turns out to be self-dual under
the S-duality transformations. Moreover, this term does not
involve the metric of the toroidal sixfold, and therefore one
can anticipate that these are topological contributions.

2. FQ type

This term corresponds to the D7-brane tadpole contri-
butions and can be given as

Veg :%vz {(2). (ZI![F[,,W,Q]] "(ex)i )} (4.54)

Notice again the absence of metric in this pieces which is
due to its topological nature. This piece can also be
expressed using the shorthand notations of three-forms
defined in (4.3), and can be given as

vm:ﬁ{(—z) <3'1 Fiie(Q) wklmnﬂ. (4.55)

known as [7-brane contributions. This can be
given as
s 1 mn ij

Notice again the absence of metric in this pieces which is
due to its topological nature. Similar to the previous case
with Vg piece, this piece can also be expressed using the
shorthand notations of three-forms defined in (4.3), and be
given as

s

1
Vie =33 (<20 (570 P )| (457

4. QP type
Such terms can be rewritten in the following three pieces:

Vap = Vas + Vi + V5L, (4.58)

1 1 1 1 T ook 1im ,q.7
=0 (g @) e o)
1

(2) ney -m no _m _ ij
Var =177 [(2) ([P’ Q™ g5~ QP lgnj])gkl(”) ’}7
®) __1 o). (p nlig mil_g nip i )
Vb= (Pm Q,"-Q,"Pp, )(en)u}.

(4.59)

5. P'Q type
Such terms can be rewritten in the following three pieces:

3. HP type Ve = Vo + VL +VEL. (4.60)
Due to S-dual completion, there is a piece analogous
to the D7-brane tadpole contributions, which is also where
|
(1) 71 [ 1 1 . _ _ ijklmn
Voo = 4 (2)- (3 3 3. 3 (P/[ijpgp,k]) (Q/[zmng,ﬁ])ejkl )
V(z)_l_z P!, m injl /m/[ln]]
PQ g ( ) - ( kn @ml g = Q" P ) (6”),;,-],
3 Ir m n m n ij
Vow=7]@- <[P>’[;n @i — VP )(er) J] (4.61)
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6. FQ' type
Such terms can be rewritten in the following three pieces:

Vﬂ:@’ = V;;g/ + V[(F%' + V(3)

o (4.62)

where

m _1 1 m it gif
Vre =3 [Q) (2' 3! Fijm@'i"g" ¢ )}
) ! 1 K[y p. J]lmn
V[F@’ = W (_2) 21 7 Frmg™Q (671)1/ ’
1 .
V[%’ Y [(2> (2' [Fum@ ki )(een)”kl} (4.63)

7. HP' type

Such terms can be rewritten in the following three pieces:

Vip = Vb + VL + VO, (4.64)
where
m _1 1 m it jf
2 1 mn
Véw)w:m)z [(2) ( Hipmg TP/ P-71 )(5”)1']]’
V<3),:i (=2)- T W™ ) (eerr) K| (4.65)
HE 42 21.20
8. FH' type
Such terms can be rewritten in the following two pieces:
Vew = Vi, + V2 (4.66)

where

v _

FH/

1 1 1 . y
Vil =gz | @O (giFamamgpe ) eerey|.
: (4.67)
: .

V
s {(2) 2). (%[F,.jkwffkﬂ.

9. HF' type

Such terms can be rewritten in the following two pieces:

Vige = Vil + V), (4.68)

where

N

1 .
Vib = 1oz | @ ©) (Hesmiip ™ ) cereyt.
1
H[F’_ |:(2) ( ) ( Hl}kﬂ:”]k>:|'

10. QF type
Such terms can be rewritten in the following three pieces:

(4.69)

Var = Vol + VEL + Vi, (4.70)

where

(1) _1 [ 1 ijmey i)
Var =7|(2) <3!-2![F” D Jg”/g”/ﬂ’
V(z) _l _(2) . (12) 1 [1m@ jnﬂ:/pkl]

QF — 4 4'9 npTijki
v~ 1 _pimg, 4 471

@[F’_Z()'<) 21,21 Tijkl ( )

11. PH' type

Such terms can be rewritten in the following three pieces:

Vew = Vi + VEL + VD (4.72)
where
(n _ 17 1 ijm i'j
Vew =72 (3!-2!H” i jg""’g""’ﬂ’
(2) _1 [ 2 12 1 [?m[p }'nﬂ_n/pl_ﬂ]
V[FD[]-[V - Z (_ ) : ( ) : Eg m InpTijki s
3) L7 1 lijmp Kl
VP[H]/ - Z (—2) . (2) . ﬂl}'ﬂ Ipm Tijkl . (473)
12. QP type

Such terms can be rewritten in the following three pieces:

Vap = Vb +VEL +vE, (4.74)

where

m _ 1 1 np o - mimijkl
V@P’—4sV2 {(—2)'(2!'2!@;11 pgn[ig[’/][p/ ! (6”)1(1”’

2 _ 1 1 _mn _ - ij
VQ[F"’ —W |:(_2) : (24) : (47@[1 gmjlplnkpgpl] (GGTT) jkl):| ’

ve), :4% [(—2) (2)- <2l!@ifknﬂ>’ jkiﬂ . (4.75)
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13. PQ’ type
Such terms can be rewritten in the following three pieces:
1 2 2
Vo = Vi + VR + Ve, (4.76)

where

N

1 1 n m,i
VSDQ?)’ :4—])2 |:(_2) (2| 2'|]:D pgn lgpj Q Jkl(ETT)kl):|

N 1 -
V[%/:— {(—2).(24) (4'[@[ "Gni Q@ ui? 91 (een)z]kz>}

4)?

Vﬁf@f——[( —2)-(2)- (;,Pfk@',klﬂ (4.77)

14. P'H' type

This piece can be given as

1 1 1 - -

(4.78)

or equivalently one has

1 1 / / ijklmn
157 [(—2) . (W([P’ n)l-jk([HI 777) €K )] .
(4.79)

VP'H/ =

15. Q'F type
This piece can be given as

K 1
o = — 2 .
Var 4[()

(2' Q [i.pqjk] (61‘1’) lené'ijklmn) :| ’

31-.3!
(4.80)
or equivalently one has

(Ver + Vim)s (Vaa + Vep),
(Vep + Via)- (Vep + Vig),
(Vea + Vip), (Ve + Vup),
(Vag + Ver), (Ver + Vi),
(VEw)s (Vap), (Vo)

V@/F =

= [(_2) . <3! 1 (@), jk([F/Tn),mneifklmnﬂ .
(4.81)

16. H'F type

Finally, the last term can be expressed as

Vz 1 1kt imn o

or, one can equivalently express this in the following
different ways,

Vip =

1 1
Z |:(2) <3, 3,H/Ukﬂ:/lmngl]klmn>:| (483)

VH/ ﬂ:/ =

and

1 1 N
Vier = 337 | @ (573, (550 et |.

(4.84)

Now, let us mention a couple of insights about this

generic collection of pieces:

(1) In the absence of prime fluxes 26 pieces of the
scalar potential are trivial and there remains only
ten pieces as studied in [54,68]. This includes
four pieces of diagonal type (Vig, Vigu, Vaa. Vep)s
two pieces of cross-terms of the first type
(Vua, Vep) and four pieces 0f cross-terms of second
type (Viw. Vea: Vi Vig)-

(ii) Recalling the four pairs of S-dual fluxes, the scalar
potential can also be clubbed into various collections
which remain invariant under the S-duality. For
example, we have the following S-dual invariant

pieces among the overall 36 pieces of the scalar
potential in which there are some pieces which are
self S-dual as well,
(Vep + Vao), (Viw + Vep), (4.85)
(Vaw + Vo). (Ver + Vaw),
(Var + Vew), (Vew + Vo),
(Vew + Vur), (Vap + Veg),
(Vug). (4.86)

'Recall that the axionic-flux combinations involved in these ten term generically depend on prime indexed fluxes as well and
therefore explicit expressions of these axionic flux combinations will simplify in their absence. So, it should not be naively assumed that
the internal structure of these ten pieces remain the same in the absence of prime fluxes.
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Given that complex-structure moduli as well as the Einstein-frame volume moduli do not transform under the
S-duality, one can easily verify the above-mentioned claims by using the transformations (2.22)—(2.23) and the
axionic fluxes defined in Eq. (3.9). Let us quickly demonstrate it for one simple case of GVW scenario using the

following transformations:

N Co = CO
s_)i’ _7’
5+ C§ 0 s+ C;
Ta = Tgs Pa = Pa> V- V’

u;, —> u;, v; — U,

i —gi  F-H, H — —F. 4.87
g g

Subsequently one can understand the S-dual transformation of the (Vg + Vi) piece in the following way:

gii’ g i gkk’
31-4.Y
9" g ¢

T34V

Ver + Vin =

1
( thkFt’jk’ R —

Therefore, the first two pieces are exchanged under
S-duality while the third piece is self-dual as
Co/s = —Cy/s under S-duality.

(iii) The new scalar potential formulation presented in
this work is a direct generalization of a series of
previous works which include only a subset of fluxes
considered in the present work. Moreover this
formulation of the scalar potential is manifestly
S-duality invariant.

V. CONSTRAINTS ON THE FLUXES

In order to address phenomenological issues (such as
moduli stabilization, flux vacua, etc.) one has to find the
genuine nontrivial scalar potential. This is crucially impor-
tant in the sense that many of the 76,276 terms in the full
scalar potential may get nullified due to possible constraints
on the flux parameters. Although it is always quite tricky to
know/claim an exhaustive set of constraints which can be
present in a given construction (e.g., see [18,42,53,95]),
there are two main sources of constraints which arise form
the so-called Bianchi identities and the tadpole cancellation
conditions. In this section, we plan to discuss these aspects
in the current toroidal model.

A. Bianchi identities

In the presence of generalized fluxes beyond the conven-
tional (F, H) S-dual pair, there are quadratic flux constraints
arising from the nilpotency of the twisted differential
operator [18,27,28,53]. Such an operator gets further gen-
eralized with the inclusion of more and more fluxes based on
the 7'/S duality arguments as we have considered in (3.8),
and the choice of orientifold setting which restrict some of
the flux parameters in a nontrivial fashion.

In the absence of prime fluxes, such identities
have been studied in good detail at various occasions
[18,27,28,30,32,53]. Generically, there are two formulations

1
( l]:l/k[Fl']k’ + SlH]l]le]l /k'>

2+C Co

H kHl/jk! - 2 < Flijl jk’)' (4.88)

of Bianchi identities, one in which fluxes are represented in
terms of the real six-dimensional indices (e.g., F;j, H;j etc.)
like the current work, and the second formulation involves
fluxes represented with cohomology indices. However, it has
been also found that the set of constraints arising from the two
formulations are not always identical [18,42,53,95].

In the interest of the current model, the Bianchi identities
have been studied in good detail in [35,36]. We would like
to understand those constraints and their relevance for the
newly formulated scalar potential pieces presented in
the previous section. Collecting the pieces of information
from [18,27,28,30,32,35,36,53] we classify the Bianchi
identities into seven classes involving a total of 14 types of
pieces. First we present a list of such identities relevant for
current setup where H:!(X) is trivial. Taking an educated
guess from the set of Bianchi identities known in different
formulations in [28,32,35,36], we invoke various additional
flux constraints after looking at the scalar potential pieces
in our collection. These are collected in Table V where we
also mention which collection of terms are (partially)
nullified by the respective identities.

In this analysis we find that the most complicated set of
Bianchi identities turns out to be the so-called (QQ' — PP’)
type giving a total of 180 constraints which we have
expressed in terms of two identities as also pointed out
in [36]. We find them to take a form as given in BI4. A
subset of such constraints can be also expressed in a
relatively simpler form, for example each of the following
identities results in 12 flux constraints,

P k’”P’ m Qrk’” ;(ﬂ’”, m not summed over.
PP, ’] = 0,0, 7.

p/m[ljknp Q/m[uan

pmliiknp I — gmijkng 7],m' (5.1)
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TABLE V. List of Bianchi identities and their impact on some of scalar potential pieces.

Bianchi identity #(BIs) Pieces in V to be reduced #(V) to be reduced
Bl Q[;irilef}]"t = PﬁlmFﬂ]m 24 VIE—H‘I?I + V<2> 240
BI12 3Qp[_t;7Qn_k]p _ P/m,r_/kamnp 24 Vﬂ(}gJ + V[(F[Pz’ 240
BI3 3P li iP klp — le.ijkamnp 24 V( u3> + Véﬂé’ 240
BI14 p'm [lenP _ Q/m ljan 12 4+ 168 V[(p[p:)n/+vgq3’
P]m[lﬁp/n,]nfmk]__i_ Pln[lPilm,jmink] ] V[(;u:)ul + Vg{)y > 720
— le[inn.jnmk] + Q[n[inm,jmnk] a, b = {]7 3,4}
BIS  prmniikp 1 =30, Fipme 24 Vo + Vo 240
nijk 1 _ ij imk]l ®3) 2
BI6 Q,Wj_mj 0.l =3P, [ij frmk] 24 V?,)@, + V(P[)F’ 240
B17 ijm k m 24 2 2 24
plijmpt 8 _ glijmgr A Vit + Ve, 0
TABLE VI. Additional flux constraints of QP and P'Q’ type.
Bianchi identity #(BIs) Pieces in V to be reduced #(V) to be reduced
C1 Qpij P,k = Ppi.iQmPk 120 V‘gﬂl > 600
C2 Qlﬁ]‘pni]l —0=Pp [?]‘Q k]t 48
C3 QPP " = PO " 120 Vﬁg, > 600
/! Ipl n _ /Ll n
c4 ;5 Py = Py Oy 48

Finally let us mention that the flux constraints continue to
hold after being promoted to the axionic flux combinations
instead of using the standard notation as argued in
[42,69,95]. By this we mean that considering the full set
of flux constraints is equivalent to having the analogous
identities in terms of axionic fluxes, i.e., one can have BI1’
which takes the form,

PG F5 s

Q" Hgy, = (5.2)
where all the extra terms induced due to using the
definitions (3.9) are nullified by other set of identities.
Given that there are a total of 20 terms which are part of
“diagonal” and “cross-terms of first kind” in our scalar
potential formulation, and out of these 20 pieces, there are
six type of pieces which do not have any terms to be
directly nullified by the Bianchi identity.2 The remaining
14 types form seven pairs of terms as collected in
(BI1-BI17). Many of these identities result in the same
set of constraints given in [35,36]. However, for our case
these identities are more compactly written along with
having a proper contraction of indices.

Finally, we also note that the flux constraints represented
by C1-C2 in Table VI have been proposed in [32] based on

*While stating this we mean a direct nullification by exploiting
the constraints without looking at their solutions which, in
addition, may kill several more terms.

antisymmetry of commutators of the generalized flux
algebra, and using the symmetry arguments in this setup
it is anticipated to conjecture the analogous constraints for
prime fluxes, as given in C3-C4 which we think should
also exist as manifested from the scalar potential pieces
Va.p and Vi oy which have a total of 972 terms each, out of
the total number of 10,888 terms present in the full scalar
potential. It turns out that 600 terms out of each of these
collection with 972 are cancelled by the constraints C1 and
C3 in their respective pieces.

B. Tadpole contributions

In our explicit collection of various scalar potential
pieces, we find that there are 512 terms’ out of 10888
which can be expressed without using the internal
toroidal metric, and a priori look like being some topo-
logical terms. For explicitness of this statement we express
such 512 terms using the shorthand notation defined in
Eq. (4.3) which ends up in having the following collection
of pieces:

This number is 4880 in the collection of 76,276 terms
expressed using the standard fluxes. However, the additional
terms appearing with the RR axions (C, and C, = p,) through
the axionic-flux combinations are canceled by the Bianchi
identities to ensure that there is no mismatch between the two
descriptions.
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1 1
Vtad 2SV2 31. 31 {S[Fl]kHlmn - [Fijk(QT)lmn - sz[H]ijk([P)T)lmn + S(QT)ijk(PT)lmn
- ([FD TT)ijk([H]/TTT)lmn - S2<@/Tr)ijk<ﬂ:/TTT>lmn + S<H/TTT)ijk([F/TTT)lmn
+ S(P/TT)ijk(@/TT)lmn - (QT)ijk(P/TT)lmn - SZ(PT)ijk(Q/TT)Imn
+ 25(P1);j (H'z77) 0 — 25(Q0), 3 (F'727) 0 + 250 (P'77)
- ZS[Fijk(@/TT>lrnn + 2S2|H]ijk<[F/TTT)lmn + 2ﬂ:ijk(HITTT)lmn}€ijklmn
- 1 .
+ {_S@mn[t[pnmj] (gm-)ij + 5 qur[p/qrpeuklmnfijkl(eff)mn
o1 .
- sP’m[;"@’nﬂm(er)” + > szﬂj’pqr@’qrf’e’fk’m"rijk,(err)mn H . (5.3)
It is worth noting the following points about this collection various terms via a set of respective Chern-Simons
(5.3): terms in the higher dimensions. Notice that, similar
(1) It does not involve the presence of complex-structure to the oxidized form of the GVW scenario in
moduli, and that has been the reason to facilitate writing Egs. (2.31)-(2.34), which does not have the ,/—¢g
it without using the internal metric g;; and/or its inverse. factor in integration measure, and this is the under-
(il) Moreover, we observe that these terms belong to the lying reason for having an overall factor V2
16 type of pieces which we have collected under instead of V™! as has been the case of pieces which
the class “cross-terms of second type” because of the could possibly be descending from some (higher-
same reason that the “cross-terms of the first type” dimensional) kinetic pieces.
do not have any term which is independent of the (iv) In the absence of prime fluxes, the tadpole piece
complex-structure saxion u'. (5.3) reduces to the following simple form recover-
(iii) The overall volume factor in this tadpole piece (5.3) ing the results of [54],

is V=2 which hints towards the possible origin of

1 i, - -
F.HQ.P __ ijklmn nli m
Vtad e 2 Vz 3. 3, { [thkl]-l]lmn ijk(QT)lmn - szl]-[lijk(PT)lmn + S(Q1>ijk (Pf)lmn}e I - s@m [ |]:Dn ] (ETT)ij X (54)

(v) The number of (tadpole) terms within each of the explicit pieces of (5.3) is given as

#(viad) — #Ved) =24, #(VEd) =24, #(Vad) =38,
#VSL) =8, #(VEd) =24, #(VAL) =24,  #(VEd)—3,
#VEL) =72, #(VEL) =72, #(VE) =72,  #(V&d,) =72,
BVE) =24, B(VEL) =24 #(VE) =24, #(VEd) =24 (5.5)

(vi) We find that there are six types of terms which are purely topological in nature summarized as

tad __ tad __ tad __
VIJ?[I-I] - V[FI]-U» V[El@ - V[FQ? Vl]fﬂlﬂl> - V[]-[I[F"v

‘/t HEF — V[H]/“t/ ‘/t PH V[FD/[H]/ VB(}":/ - VQ'F, (56)

while the remaining ten types of terms also have metric dependent pieces beyond the collection (5.3).

In order to connect these observations and findings on the tadpole corrections from a different perspective, we consider
the mixed-symmetry potentials as studied in [35,36] and subsequently we correlate the two approaches. The so-called
mixed-tensor potentials couple to the various (standard as well as exotic) branes leading to the tadpole contributions in this
model can be generically of the following 12 types,
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Cy, Cs. Es, Egy, Eony, Ejsr, Grosns are usually denoted by symbols D, , = while a = -3 are
G G G J It (5.7) denoted via E,, . Also, it is conventional to denote a
10341 H0.622: - HH0.662: - 7106620 7106660 A p-brane with @ = —n and having m orthogonal isometries
m M
In fact one can classify all the mixed-symmetry potentials a; p 't’ t We refer the readers to [35,36] for more details
about it.

relating to branes in lower dimensions via a nonpositive
integer a correlating the tension of the corresponding
brane with respect to string coupling g¢,. Moreover
T-duality relates different potentials with same value of
a; e.g. the RR potential C, have @ = —1. Similarly @ = -2
|

For example, the RR four-form potential C, which is
invariant under S-duality induces the D3-brane tadpoles via
a 10D Chern-Simons term leading to the following 4D scalar
potential term after performing the dimensional reduction,

1 1 y
Td1: /c4 AFAH S Vig =505 [(3' 5 kH,m,,e’/k’m")}, (5.8)

where Vg = Vi up to satisfying the Bianchi identities which holds true for the other tadpole terms as well. Similarly the
S-dual pair of the eight-form potential (Cg, Eg) induce the D7/I7-brane tadpoles as [28-30,32],

1 1 .
Td2: /Cs AN(QBF), = Vigp = 252 [(EF[ianj]mn<€T)u>:|,

s 1 .
Td3: /Eg VAN (P[>H)2 = VTd3 = TW |:<2‘H[;nmP}.]"m(€T)U>:| . (59)

Here subscript “2” in (Q > F), and (P > H), is explicitly mentioned to remind that this quantity is a two-form, given that
the Q/P flux actions on a p-form takes it to a (p — 1)-form.

Now, the tadpole contributions arising from the potential Eg 4 and Eg , ; potentials consists of three types of pieces of the
form (P-Q+ P'-H— Q- F), and this contribution can be collectively given as

Td4: /Es,4A(P-Q+P’-H—Q’-F)§+E9,z,1A(P-Q+P'-H—Q’.F)§~1 =

1Tl —— ’ .
Vria = —2—]}2 {m (12P[7h[”Qﬁ]kl] + PPk, - Q/p’”lepmn)Tijkl(ef)mn]

W (4Q thlk/] _ Hkl p'k.Imij 4 F Q!k lmt/) (GTT) (510)

ij*

Next, the tadpole term induced via Ejj4, has the following form:

Td52 /E]0.4,2/\(Q‘P/+F'H/)4'2:>

1 1 i ij
Vigs =——— |:— (IZQP’/P/p'klm" - 2qurH/sz.klmnqr) z'ijkl(eﬂ'-)rnn +

_ml[k 1 ij
207 |21 a1 405 lP;nﬂﬂ(er)f(en)kl . (5.11)

1
2!1.21

The S-dual of the tadpole term induced via Eyy4, corresponds to the so-called Gy 4, potential which results in the
following piece:

Tdé6: /610.4,2 AP-Q+H -F)* =

P T(er)ier)y|.  (5.12)

s 1 - . 1
Viis =~ {— (12P, QP 4m — 28, PP )y (e, + 5

2% (241

The tadpole piece generated through potentials G5 4.1 and Gy 6, potentials consists of three types of pieces of the form
(P'- Q'+ P-H —Q-F'), and this contribution can be collectively given as
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a7 /G10.5,4.1 AP -Q+P-H—-Q -F)P*+Gpeoa AP -Q+P-H—-Q- -F)? =

1

(5.13)

- AL R [ N iy AN Rl e )
VTd7 — Z [(lejF/mkl,l_/ Kl'm'n" _ szjH/mkl,tjklmn > (Ti’j’k’l’)(efr) T

. 1
/ ngHl m 1
+4Pp "0 (e7) 1] + 5

Now, the tadpole pieces generated via the potential Gy 662
can be given as

TdSZ /G10.6,6,2 A\ (Pl 'H/)6'6’2 =

1 1 .
VTdSZ_W [ﬂ(P’Tr)ijk(H"n'r),mne’fklm” . (5.15)
while the S-dual counterpart of the above which is
generated via the potential /,p66, is encoded in the
following piece:

Td9: /110,6,6,2 A (Ql . F/)6'2’2 =

s 1 g
Viao = 2 {ﬂ (Q'77); 1 (F'12T)), 7K | (5.16)

Finally, the self S-dual piece generated via Gigg¢. ¢
potential can be given as

Td10: /110,6,6,6 AN (H/ . F/)6’6'6 =
1 1 ! ! ijklmn
VleO = 2—]}2 ﬂ (H TTT)ijk(F TTT)lmne J s (517)

which is similar to the F A H term corresponding to the
D3/ 03-tadpole contributions in the simple GVW scenario.
A detailed summary of the tadpole contributions in con-
nection with the approach of [35,36] using the mixed-
tensor potential is presented in Table VII.

TABLE VII. Detailed summary of the tadpole terms.
(Mixed-)form Type of pieces = Number of terms
potential involved (in 10,888)

1 Cy FH 8

2 Cy FQ 24
3 Eg HP 24
4 Eg4tEon, QP, HP', FQ' 120
5 E\042 QP, FH’ 80
6 Gro42 PQ’, HF 80
7 Giosa1+Grsrn PH,P'Q, QF 120
8 Gio6.62 P'H 24
9 Tp66.2 Q¥ 24
10 L0666 H'F 8

/im,iji'j’ oy a).kIK' T
|:P [m gy Q n] (GTT)mnTijkli| .

m'n' Vijkl

(5.14)

VI. SUMMARY AND CONCLUSIONS

In this article, we have presented a reformulation of the
four-dimensional scalar potential which arises from a gener-
alized flux superpotential having a cubic polynomial in
complex-structure moduli (U?) as well as the Kihler moduli
(T,). The underlying setup is a type-lIIB superstring com-
pactification model based on a toroidal T®/(Z, x Z,)
orientifold. We, subsequently, introduce the T/S dual com-
pletion arguments in the minimal Gukov-Vafa-Witten flux
superpotential induced by the standard three-form (F5, H3)
fluxes, which leads to incorporating a total of four pairs of
S-dual fluxes denoted as (F,H),(Q.P),(P,Q'), and
(H', F'). This gives a superpotential with 128 terms in seven
complexified coordinates, which has been available in the
literature since more than a decade [28]. However, the N = 1
four-dimensional scalar potential arising from the “F-terms”
of this superpotential has not been explored much, possibly
because of having a huge size with a total of 76,276 terms as
we observe in our current analysis. In this regard, we find it to
be useful to explore the underlying insights from the scalar
potential point of view, so that to possibly understand the
higher dimensional origin of such terms. Having this broader
goal in mind along the lines of the so-called dimensional
oxidation process [52,54], we have rewritten the scalar
potential using the internal metric of the toroidal sixfold.

To begin with, such a huge scalar potential where there is
no prescription like LVS [2] to discard certain terms enabling
one to consider only a few terms at the leading order, it is
almost impractical to make use of it for any phenomenologi-
cal purposes. The main motivation and the results of this work
can be summarized along the following lines:

(1) We have explored the deeper insights of the four-
dimensional scalar potential by studying each type
of terms, and reformulating those in some “suitable”
form using the internal metric of the toroidal sixfold.
This could be useful for tracing the higher-
dimensional origin of such terms, a la the so-called
“dimensional oxidation” as proposed in [52] and has
been found to be useful in the context of realizing
scalar potential terms from the dimensional reduc-
tion of the kinetic terms in the DFT. On these lines,
the current work is an extension of the iterative series
of works presented in [52,54,58,60,65,69] (some of)
which we have recollected in a concise and self-
contained fashion in the review section.
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(ii) Itis important to point out that as a first step we have
managed to express 76,276 terms of the scalar
potential in 10,888 terms via invoking a set of
axionic flux combinations which make all the RR
axionic dependences being encoded in these combi-
nations and making their explicit dependence go
away from the scalar potential. Such a rearrange-
ment in which the scalar potential pieces are ex-
pressed using saxionic ingredients along with these
so-called axionic flux combinations has been also
called as “bilinear formulation” of the scalar poten-
tial as proposed in the type-IIA/IIB case in
[44,91,93,94], and the F-theory case in [45]. How-
ever, the main difference in the bilinear formulation
of the scalar potential and the current one is the fact
that it uses the metric of the internal sixfold like
[51,52,54] while the other approach uses the sym-
plectic ingredients as in [58,65,68,69].

(iii) We discussed the flux constraints arising from the
Bianchi identities and the tadpole cancellation con-
ditions. In performing this analysis we have ex-
plored the implications of the tadpole and Bianchi
identities from the scalar potential point of view in
correlation with [35,36]. We find that there are more
than 3000 terms (out of 10,888) which can be
trivialized through the Bianchi identities, and hence
should be discarded before the study of moduli
stabilization and flux vauca related aspects.

Some of the very natural next steps to follow from this work is
to promote this formulation using the symplectic ingredients,
|

given that the current formulation depends on the metric of the
internal toroidal orientifold and therefore cannot be directly
used for more general compactifications beyond the toroidal
cases, e.g., in models based on the Calabi-Yau orientifold.
Also, with the detailed taxonomy of scalar potential terms at
hand it is very likely to seek for higher dimensional origin of
such terms in more generic frameworks such as S-dual
completion of the double field theory. We hope to address
some of these issues in a companion paper [80].
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APPENDIX: EXPLICIT FORM OF
GENERALIZED FLUX SUPERPOTENTIAL

The generalized flux superpotential (3.4) has 128 terms
such that each of the 128 fluxes are coupled to a set of
complex variables {S,U’,T,} resulting in cubic polyno-
mials in U’ and T, moduli while having a linear depend-
ence on the axio-dilaton (§) modulus. The explicit form of
W3 is presented as

W3 = —(Fasg — F1agU' — Fa36U? — FousU° + F136U' U? + FpasU?U? + F1ysU'UP

— Fi3sU'UPUP) 4 S(Hass — H136U' — Hy3gU? = HyysU? + Hy36U' U? + HpsUU?

+ H145U‘U3 _ H135U‘U2U3) + TI(Q235 _ Q135U‘ + Q245U2 + Q236U3 _ Q145U‘U2

4 Q246U2U3 _ Q136U1U3 _ Q146U1U2U3) _ ST] (P235 _ P135U1 + P245U2 + P236U3

_ P145U1U2 +P246U2U3 _ P136U1U3 _ P146U1U2U3) + Tz(Q451 + Q452U1 _ Q351U2
+ Q461U3 _ Q352U1 U? — Q361U2U3 + Q462U1U3 _ Q362U1 U2U3) _ STZ(P451 + P452U1
_ P351U2 +P461U3 _ P352U1U2 _ P361U2U3 +19462U1 U3 — P362U1U2U3) + T3(Q613
+ Q623U1 + Q614U2 _ Q513U3 + Q624U1U2 _ Q514U2U3 _ Q523U1U3 _ Q524U1U2U3)
_ ST3(P613 + PBU + Pg14U? — PsBUP + PAU'U? — PS1#UPUS - PSBUUS

- Ps2U'UPUP) + T\ Ty (PSS — P OUY = PySU? + PLOSUP + PLSUTU? - PLLSUPUP

—- P\ SU'UP + P/136U1 U2U?) — ST T,(Q,5 — Q),5U" — Q’235U2 + 0,,5U% + Q’135U1U2
— 04,5020 — Q/,5U' U3 + Q/,CU URUR) + T T3 (P! + Pl2U" — Py 'U? — P03

— PLAUU? + PLURUR — PLRU DB + PL2U URUP) — STLT5(Q! + Q42U — 04 U2
_ Qg51U3 _ Q/362U1U2 + Q’351U2U3 _ QQ52U1U3 + Q/352U1U2U3) + T1T3(P/623 _ P/613U1
+ PL*U? — PLUP — Py YU U? — PLAUPUP + P UM UP + P *UNUPUP) — ST T5(04,°
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_ Q/613U1 + Q/624U2 _ Q/523U3 _ Q/614U1U2 _ Q/524U2U3 + Q/513U1U3 + Q/514U1U2U3)
_ T1T2T3(H/135 + H/235U1 + H/145U2 + H/136U3 + H/245U1 U2 + H/l46U2U3 + H/236U1 U3
+ H/246U1 U2U3) + ST1T2T3(F/135 + F/235U1 + F/145U2 + F/136U3 + F/245U1 U2

+ F/146U2U3 + F/236U1 U3 + F/246U1 U2U3).

Here we used the redefinitions (3.2) for the prime fluxes.

[1] S. Kachru, R. Kallosh, A.D. Linde, and S.P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005
(2003).

[2] V. Balasubramanian, P. Berglund, J.P. Conlon, and F.
Quevedo, Systematics of moduli stabilisation in Calabi-Yau
flux compactifications, J. High Energy Phys. 03 (2005) 007.

[3] M. Grana, Flux compactifications in string theory: A
comprehensive review, Phys. Rep. 423, 91 (2006).

[4] R. Blumenhagen, B. Kors, D. Lust, and S. Stieberger, Four-
dimensional string compactifications with D-branes, orien-
tifolds and fluxes, Phys. Rep. 445, 1 (2007).

[5] M. R. Douglas and S. Kachru, Flux compactification, Rev.
Mod. Phys. 79, 733 (2007).

[6] F. Denef, M.R. Douglas, B. Florea, A. Grassi, and S.
Kachru, Fixing all moduli in a simple f-theory compacti-
fication, Adv. Theor. Math. Phys. 9, 861 (2005).

[7]1 R. Blumenhagen, S. Moster, and E. Plauschinn, Moduli
stabilisation versus chirality for MSSM like type IIB
orientifolds, J. High Energy Phys. 01 (2008) 058.

[8] K. Dasgupta, G. Rajesh, and S. Sethi, M theory, orientifolds
and G—flux, J. High Energy Phys. 08 (1999) 023.

[9] S.Gukov, C. Vafa, and E. Witten, CFT’s from Calabi-Yau four
folds, Nucl. Phys. B584, 69 (2000); B608, 477(E) (2001).

[10] J.-P. Derendinger, C. Kounnas, P. M. Petropoulos, and F.
Zwirner, Superpotentials in IIA compactifications with
general fluxes, Nucl. Phys. B715, 211 (2005).

[11] M. Grana and D. Marques, Gauged double field theory,
J. High Energy Phys. 04 (2012) 020.

[12] G. Dibitetto, J. Fernandez-Melgarejo, D. Marques, and D.
Roest, Duality orbits of non-geometric fluxes, Fortschr.
Phys. 60, 1123 (2012).

[13] U. Danielsson and G. Dibitetto, On the distribution of stable
de Sitter vacua, J. High Energy Phys. 03 (2013) 018.

[14] J. Blabick, U. Danielsson, and G. Dibitetto, Fully stable dS
vacua from generalised fluxes, J. High Energy Phys. 08
(2013) 054.

[15] C. Damian, L.R. Diaz-Barron, O. Loaiza-Brito, and M.
Sabido, Slow-roll inflation in non-geometric flux compac-
tification, J. High Energy Phys. 06 (2013) 109.

[16] C. Damian and O. Loaiza-Brito, More stable de Sitter vacua
from S-dual nongeometric fluxes, Phys. Rev. D 88, 046008
(2013).

[17] F. Hassler, D. Lust, and S. Massai, On inflation and de Sitter
in non-geometric string backgrounds, Fortschr. Phys. 65,
1700062 (2017).

[18] M. Ihl, D. Robbins, and T. Wrase, Toroidal orientifolds in
ITA with general NS-NS fluxes, J. High Energy Phys. 08
(2007) 043.

[19] B. de Carlos, A. Guarino, and J. M. Moreno, Complete
classification of Minkowski vacua in generalised flux
models, J. High Energy Phys. 02 (2010) 076.

[20] U. H. Danielsson, S.S. Haque, G. Shiu, and T. Van Riet,
Towards classical de Sitter solutions in string theory, J. High
Energy Phys. 09 (2009) 114.

[21] J. Blabdck, U. H. Danielsson, G. Dibitetto, and S. C. Vargas,
Universal dS vacua in STU-models, J. High Energy Phys.
10 (2015) 069.

[22] G. Dibitetto, A. Guarino, and D. Roest, Vacua analysis in
extended supersymmetry compactifications, Fortschr. Phys.
60, 987 (2012).

[23] C. Damian and O. Loaiza-Brito, Two-field axion inflation
and the swampland constraint in the flux-scaling scenario,
Fortschr. Phys. 67, 1800072 (2019).

[24] N. Cabo Bizet, C. Damian, O. Loaiza-Brito, and D. M.
Pefia, Leaving the swampland: Non-geometric fluxes
and the distance conjecture, J. High Energy Phys. 09
(2019) 123.

[25] E. Plauschinn, Non-geometric backgrounds in string theory,
Phys. Rep. 798, 1 (2019).

[26] C.Damian and O. Loaiza-Brito, Galois groups of uplifted de
Sitter vacua, arXiv:2307.08468.

[27] J. Shelton, W. Taylor, and B. Wecht, Nongeometric flux
compactifications, J. High Energy Phys. 10 (2005) 085.

[28] G. Aldazabal, P. G. Camara, A. Font, and L. Ibanez, More
dual fluxes and moduli fixing, J. High Energy Phys. 05
(2006) 070.

[29] A. Font, A. Guarino, and J. M. Moreno, Algebras and non-
geometric flux vacua, J. High Energy Phys. 12 (2008) 050.

[30] A. Guarino and G. J. Weatherill, Non-geometric flux vacua,
S-duality and algebraic geometry, J. High Energy Phys. 02
(2009) 042.

[31] C. Hull, A geometry for non-geometric string backgrounds,
J. High Energy Phys. 10 (2005) 065.

[32] G. Aldazabal, P. G. Camara, and J. Rosabal, Flux algebra,
Bianchi identities and Freed-Witten anomalies in F-theory
compactifications, Nucl. Phys. B814, 21 (2009).

[33] A. Kumar and C. Vafa, U manifolds, Phys. Lett. B 396, 85
(1997).

[34] C.M. Hull and A. Catal-Ozer, Compactifications with S
duality twists, J. High Energy Phys. 10 (2003) 034.

126020-28


https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1088/1126-6708/2005/03/007
https://doi.org/10.1016/j.physrep.2005.10.008
https://doi.org/10.1016/j.physrep.2007.04.003
https://doi.org/10.1103/RevModPhys.79.733
https://doi.org/10.1103/RevModPhys.79.733
https://doi.org/10.4310/ATMP.2005.v9.n6.a1
https://doi.org/10.1088/1126-6708/2008/01/058
https://doi.org/10.1088/1126-6708/1999/08/023
https://doi.org/10.1016/S0550-3213(00)00373-4
https://doi.org/10.1016/S0550-3213(01)00289-9
https://doi.org/10.1016/j.nuclphysb.2005.02.038
https://doi.org/10.1007/JHEP04(2012)020
https://doi.org/10.1002/prop.201200078
https://doi.org/10.1002/prop.201200078
https://doi.org/10.1007/JHEP03(2013)018
https://doi.org/10.1007/JHEP08(2013)054
https://doi.org/10.1007/JHEP08(2013)054
https://doi.org/10.1007/JHEP06(2013)109
https://doi.org/10.1103/PhysRevD.88.046008
https://doi.org/10.1103/PhysRevD.88.046008
https://doi.org/10.1002/prop.201700062
https://doi.org/10.1002/prop.201700062
https://doi.org/10.1088/1126-6708/2007/08/043
https://doi.org/10.1088/1126-6708/2007/08/043
https://doi.org/10.1007/JHEP02(2010)076
https://doi.org/10.1088/1126-6708/2009/09/114
https://doi.org/10.1088/1126-6708/2009/09/114
https://doi.org/10.1007/JHEP10(2015)069
https://doi.org/10.1007/JHEP10(2015)069
https://doi.org/10.1002/prop.201200004
https://doi.org/10.1002/prop.201200004
https://doi.org/10.1002/prop.201800072
https://doi.org/10.1007/JHEP09(2019)123
https://doi.org/10.1007/JHEP09(2019)123
https://doi.org/10.1016/j.physrep.2018.12.002
https://arXiv.org/abs/2307.08468
https://doi.org/10.1088/1126-6708/2005/10/085
https://doi.org/10.1088/1126-6708/2006/05/070
https://doi.org/10.1088/1126-6708/2006/05/070
https://doi.org/10.1088/1126-6708/2008/12/050
https://doi.org/10.1088/1126-6708/2009/02/042
https://doi.org/10.1088/1126-6708/2009/02/042
https://doi.org/10.1088/1126-6708/2005/10/065
https://doi.org/10.1016/j.nuclphysb.2009.01.006
https://doi.org/10.1016/S0370-2693(97)00108-1
https://doi.org/10.1016/S0370-2693(97)00108-1
https://doi.org/10.1088/1126-6708/2003/10/034

TAXONOMY OF SCALAR POTENTIAL WITH U-DUAL FLUXES

PHYS. REV. D 108, 126020 (2023)

[35] D. M. Lombardo, F. Riccioni, and S. Risoli, P fluxes and
exotic branes, J. High Energy Phys. 12 (2016) 114.

[36] D. M. Lombardo, F. Riccioni, and S. Risoli, Non-geometric
fluxes & tadpole conditions for exotic branes, J. High
Energy Phys. 10 (2017) 134.

[37] R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, and
E. Plauschinn, Towards axionic starobinsky-like inflation in
string theory, Phys. Lett. B 746, 217 (2015).

[38] R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, E.
Plauschinn, Y. Sekiguchi, and F. Wolf, A flux-scaling
scenario for high-scale moduli stabilization in string theory,
Nucl. Phys. B897, 500 (2015).

[39] R. Blumenhagen, A. Font, M. Fuchs, D. Herschmann, and
E. Plauschinn, Large field inflation and string moduli
stabilization, Proc. Sci. PLANCK2015 (2015) 021.

[40] R. Blumenhagen, C. Damian, A. Font, D. Herschmann, and
R. Sun, The flux-scaling scenario: De Sitter uplift and axion
inflation, Fortschr. Phys. 64, 536 (2016).

[41] T.Li,Z.Li, and D. V. Nanopoulos, Helical phase inflation via
non-geometric flux compactifications: From natural to Star-
obinsky-like inflation, J. High Energy Phys. 10 (2015) 138.

[42] P. Shukla, Revisiting the two formulations of Bianchi
identities and their implications on moduli stabilization,
J. High Energy Phys. 08 (2016) 146.

[43] P. Shukla, On stable type IIA de-Sitter vacua with geometric
flux, Eur. Phys. J. C 83, 196 (2023).

[44] E. Marchesano, D. Prieto, J. Quirant, and P. Shukla,
Systematics of Type IIA moduli stabilisation, J. High
Energy Phys. 11 (2020) 113.

[45] F. Marchesano, D. Prieto, and M. Wiesner, F-theory flux
vacua at large complex structure, J. High Energy Phys. 08
(2021) 077.

[46] J.-P. Derendinger, C. Kounnas, P. Petropoulos, and F.
Zwirner, Fluxes and gaugings: N = 1 effective superpoten-
tials, Fortschr. Phys. 53, 926 (2005).

[47] G. Dall’Agata, G. Villadoro, and F. Zwirner, Type-IIA flux
compactifications and N = 4 gauged supergravities, J. High
Energy Phys. 08 (2009) 018.

[48] G. Aldazabal, D. Marques, C. Nunez, and J. A. Rosabal, On
Type IIB moduli stabilization and N = 4, 8 supergravities,
Nucl. Phys. B849, 80 (2011).

[49] G. Aldazabal, W. Baron, D. Marques, and C. Nunez, The
effective action of double field theory, J. High Energy Phys.
11 (2011) 052.

[50] D. Geissbuhler, Double field theory and N =4 gauged
supergravity, J. High Energy Phys. 11 (2011) 116.

[51] G. Villadoro and F. Zwirner, N = 1 effective potential
from dual type-IIA D6/0O6 orientifolds with general fluxes,
J. High Energy Phys. 06 (2005) 047.

[52] R. Blumenhagen, X. Gao, D. Herschmann, and P. Shukla,
Dimensional oxidation of non-geometric fluxes in Type II
orientifolds, J. High Energy Phys. 10 (2013) 201.

[53] D. Robbins and T. Wrase, D-terms from generalized NS-NS
fluxes in type II, J. High Energy Phys. 12 (2007) 058.

[54] X. Gao and P. Shukla, Dimensional oxidation and modular
completion of non-geometric type IIB action, J. High
Energy Phys. 05 (2015) 018.

[55] E. Plauschinn, The tadpole conjecture at large complex-
structure, J. High Energy Phys. 02 (2022) 206.

[56] D. Andriot and A. Betz, -supergravity: A ten-dimensional
theory with non-geometric fluxes, and its geometric frame-
work, J. High Energy Phys. 12 (2013) 083.

[57] D. Andriot, M. Larfors, D. Lust, and P. Patalong, A ten-
dimensional action for non-geometric fluxes, J. High
Energy Phys. 09 (2011) 134.

[58] R. Blumenhagen, A. Font, and E. Plauschinn, Relating
double field theory to the scalar potential of N = 2 gauged
supergravity, J. High Energy Phys. 12 (2015) 122.

[59] P. Shukla, On modular completion of generalized flux
orbits, J. High Energy Phys. 11 (2015) 075.

[60] P. Shukla, Implementing odd-axions in dimensional oxida-
tion of 4D non-geometric type IIB scalar potential, Nucl.
Phys. B902, 458 (2016).

[61] D. Andriot, O. Hohm, M. Larfors, D. Lust, and P. Patalong,
A geometric action for non-geometric fluxes, Phys. Rev.
Lett. 108, 261602 (2012).

[62] D. Andriot, O. Hohm, M. Larfors, D. Lust, and P. Patalong,
Non-geometric fluxes in supergravity and double field
theory, Fortschr. Phys. 60, 1150 (2012).

[63] D. Andriot and A. Betz, Supersymmetry with non-
geometric fluxes, or a p-twist in generalized geometry
and Dirac operator, J. High Energy Phys. 04 (2015) 006.

[64] C.D.A. Blair and E. Malek, Geometry and fluxes of
SL(5) exceptional field theory, J. High Energy Phys. 03
(2015) 144.

[65] P. Shukla, A symplectic rearrangement of the four dimen-
sional non-geometric scalar potential, J. High Energy Phys.
11 (2015) 162.

[66] T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and
partial supersymmetry breaking, Phys. Lett. B 474, 130
(2000).

[67] R. Blumenhagen, D. Lust, and T. R. Taylor, Moduli stabi-
lization in chiral type IIB orientifold models with fluxes,
Nucl. Phys. B663, 319 (2003).

[68] P. Shukla, Reading off the nongeometric scalar potentials
via the topological data of the compactifying Calabi-Yau
manifolds, Phys. Rev. D 94, 086003 (2016).

[69] P. Shukla, Dictionary for the type II nongeometric flux
compactifications, Phys. Rev. D 103, 086009 (2021).

[70] P. Shukla, T-dualizing de Sitter no-go scenarios, Phys. Rev.
D 102, 026014 (2020).

[71] P. Shukla, Rigid nongeometric orientifolds and the swamp-
land, Phys. Rev. D 103, 086010 (2021).

[72] X. Gao, P. Shukla, and R. Sun, Symplectic formulation of
the type IIA nongeometric scalar potential, Phys. Rev. D 98,
046009 (2018).

[73] G. Aldazabal, E. Andres, P.G. Camara, and M. Grana,
U-dual fluxes and generalized geometry, J. High Energy
Phys. 11 (2010) 083.

[74] M. Cicoli, J.P. Conlon, and F. Quevedo, Systematics of
string loop corrections in Type IIB Calabi-Yau flux com-
pactifications, J. High Energy Phys. 01 (2008) 052.

[75] M. Cicoli, I. Garcia-Etxebarria, C. Mayrhofer, F. Quevedo,
P. Shukla, and R. Valandro, Global orientifolded quivers
with inflation, J. High Energy Phys. 11 (2017) 134.

[76] S. AbdusSalam, S. Abel, M. Cicoli, F. Quevedo, and P.
Shukla, A systematic approach to Kéhler moduli stabilisa-
tion, J. High Energy Phys. 08 (2020) 047.

126020-29


https://doi.org/10.1007/JHEP12(2016)114
https://doi.org/10.1007/JHEP10(2017)134
https://doi.org/10.1007/JHEP10(2017)134
https://doi.org/10.1016/j.physletb.2015.05.001
https://doi.org/10.1016/j.nuclphysb.2015.06.003
https://doi.org/10.1002/prop.201600030
https://doi.org/10.1007/JHEP10(2015)138
https://doi.org/10.1007/JHEP08(2016)146
https://doi.org/10.1140/epjc/s10052-023-11361-w
https://doi.org/10.1007/JHEP11(2020)113
https://doi.org/10.1007/JHEP11(2020)113
https://doi.org/10.1007/JHEP08(2021)077
https://doi.org/10.1007/JHEP08(2021)077
https://doi.org/10.1002/prop.200410242
https://doi.org/10.1088/1126-6708/2009/08/018
https://doi.org/10.1088/1126-6708/2009/08/018
https://doi.org/10.1016/j.nuclphysb.2011.03.016
https://doi.org/10.1007/JHEP11(2011)052
https://doi.org/10.1007/JHEP11(2011)052
https://doi.org/10.1007/JHEP11(2011)116
https://doi.org/10.1088/1126-6708/2005/06/047
https://doi.org/10.1007/JHEP10(2013)201
https://doi.org/10.1088/1126-6708/2007/12/058
https://doi.org/10.1007/JHEP05(2015)018
https://doi.org/10.1007/JHEP05(2015)018
https://doi.org/10.1007/JHEP02(2022)206
https://doi.org/10.1007/JHEP12(2013)083
https://doi.org/10.1007/JHEP09(2011)134
https://doi.org/10.1007/JHEP09(2011)134
https://doi.org/10.1007/JHEP12(2015)122
https://doi.org/10.1007/JHEP11(2015)075
https://doi.org/10.1016/j.nuclphysb.2015.11.020
https://doi.org/10.1016/j.nuclphysb.2015.11.020
https://doi.org/10.1103/PhysRevLett.108.261602
https://doi.org/10.1103/PhysRevLett.108.261602
https://doi.org/10.1002/prop.201200085
https://doi.org/10.1007/JHEP04(2015)006
https://doi.org/10.1007/JHEP03(2015)144
https://doi.org/10.1007/JHEP03(2015)144
https://doi.org/10.1007/JHEP11(2015)162
https://doi.org/10.1007/JHEP11(2015)162
https://doi.org/10.1016/S0370-2693(00)00005-8
https://doi.org/10.1016/S0370-2693(00)00005-8
https://doi.org/10.1016/S0550-3213(03)00392-4
https://doi.org/10.1103/PhysRevD.94.086003
https://doi.org/10.1103/PhysRevD.103.086009
https://doi.org/10.1103/PhysRevD.102.026014
https://doi.org/10.1103/PhysRevD.102.026014
https://doi.org/10.1103/PhysRevD.103.086010
https://doi.org/10.1103/PhysRevD.98.046009
https://doi.org/10.1103/PhysRevD.98.046009
https://doi.org/10.1007/JHEP11(2010)083
https://doi.org/10.1007/JHEP11(2010)083
https://doi.org/10.1088/1126-6708/2008/01/052
https://doi.org/10.1007/JHEP11(2017)134
https://doi.org/10.1007/JHEP08(2020)047

GEORGE K. LEONTARIS and PRAMOD SHUKLA

PHYS. REV. D 108, 126020 (2023)

[77] M. Cicoli, I. n. G. Etxebarria, F. Quevedo, A. Schachner, P.
Shukla, and R. Valandro, The standard model quiver in de
Sitter string compactifications, J. High Energy Phys. 08
(2021) 109.

[78] M. Cicoli, A. Schachner, and P. Shukla, Systematics of type
IIB moduli stabilisation with odd axions, J. High Energy
Phys. 04 (2022) 003.

[79] G. K. Leontaris and P. Shukla, Stabilising all Kihler moduli
in perturbative LVS, J. High Energy Phys. 07 (2022) 047.

[80] G. K. Leontaris and P. Shukla, Symplectic formulation of the
type IIB scalar potential with U-dual fluxes, arXiv:2309.
08664.

[81] X.Gao and P. Shukla, On classifying the divisor involutions in
Calabi-Yau threefolds, J. High Energy Phys. 11 (2013) 170.

[82] F. Carta, J. Moritz, and A. Westphal, A landscape of
orientifold vacua, J. High Energy Phys. 05 (2020) 107.

[83] R. Altman, J. Carifio, X. Gao, and B. D. Nelson, Orientifold
Calabi-Yau threefolds with divisor involutions and string
landscape, J. High Energy Phys. 03 (2022) 087.

[84] F. Carta, A. Mininno, and P. Shukla, Divisor topologies of
CICY 3-folds and their applications to phenomenology,
J. High Energy Phys. 05 (2022) 101.

[85] C. Crino, F. Quevedo, A. Schachner, and R. Valandro, A
database of Calabi-Yau orientifolds and the size of
D3-tadpoles, J. High Energy Phys. 08 (2022) 050.

[86] P. Shukla, Classifying divisor topologies for string
phenomenology, J. High Energy Phys. 12 (2022) 055.

[87] T. W. Grimm, Non-perturbative corrections and modularity
in N = 1 Type IIB compactifications, J. High Energy Phys.
10 (2007) 004.

[88] A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, Strong—
weak coupling duality and nonperturbative effects in string
theory, Phys. Lett. B 249, 35 (1990).

[89] M. Cvetic, A. Font, L. E. Ibanez, D. Lust, and F. Quevedo,
Target space duality, supersymmetry breaking and the
stability of classical string vacua, Nucl. Phys. B361, 194
(1991).

[90] G.J. Weatherill, The generalised geometry of Type II non-
geometric fluxes under T and S dualities, J. High Energy
Phys. 02 (2010) 086.

[91] F. Carta, F. Marchesano, W. Staessens, and G. Zoccarato,
Open string multi-branched and Kihler potentials, J. High
Energy Phys. 09 (2016) 062.

[92] A. Herraez, L. E. Ibanez, F. Marchesano, and G. Zoccarato,
The Type IIA flux potential, 4-forms and Freed-Witten
anomalies, J. High Energy Phys. 09 (2018) 018.

[93] D. Escobar, F. Marchesano, and W. Staessens, Type IIA
flux vacua and o'-corrections, J. High Energy Phys. 06
(2019) 129.

[94] F. Marchesano and J. Quirant, A landscape of AdS flux
vacua, J. High Energy Phys. 12 (2019) 110.

[95] X. Gao, P. Shukla, and R. Sun, On missing Bianchi
identities in cohomology formulation, Eur. Phys. J. C 79,
781 (2019).

126020-30


https://doi.org/10.1007/JHEP08(2021)109
https://doi.org/10.1007/JHEP08(2021)109
https://doi.org/10.1007/JHEP04(2022)003
https://doi.org/10.1007/JHEP04(2022)003
https://doi.org/10.1007/JHEP07(2022)047
https://arXiv.org/abs/2309.08664
https://arXiv.org/abs/2309.08664
https://doi.org/10.1007/JHEP11(2013)170
https://doi.org/10.1007/JHEP05(2020)107
https://doi.org/10.1007/JHEP03(2022)087
https://doi.org/10.1007/JHEP05(2022)101
https://doi.org/10.1007/JHEP08(2022)050
https://doi.org/10.1007/JHEP12(2022)055
https://doi.org/10.1088/1126-6708/2007/10/004
https://doi.org/10.1088/1126-6708/2007/10/004
https://doi.org/10.1016/0370-2693(90)90523-9
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1007/JHEP02(2010)086
https://doi.org/10.1007/JHEP02(2010)086
https://doi.org/10.1007/JHEP09(2016)062
https://doi.org/10.1007/JHEP09(2016)062
https://doi.org/10.1007/JHEP09(2018)018
https://doi.org/10.1007/JHEP06(2019)129
https://doi.org/10.1007/JHEP06(2019)129
https://doi.org/10.1007/JHEP12(2019)110
https://doi.org/10.1140/epjc/s10052-019-7291-5
https://doi.org/10.1140/epjc/s10052-019-7291-5

