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In the context of N ¼ 1 four-dimensional type-IIB supergravity theories, the U-dual completion
arguments suggest including four S-dual pairs of fluxes in the holomorphic superpotential, namely the so-
called ðF;HÞ; ðQ;PÞ; ðP0; Q0Þ, and ðH0; F0Þ. These can generically induce cubic polynomials for the
complex-structure moduli as well as the Kähler moduli in the flux superpotential. In this article, we explore
the insights of the four-dimensional nongeometric scalar potential in the presence of such generalized
U-dual fluxes by considering an explicit type-IIB toroidal compactification model based on an orientifold
of T6=ðZ2 × Z2Þ orbifold. First, we observe that the flux superpotential induces a huge scalar potential
having a total of 76,276 terms involving 128 flux parameters and 14 real scalars. Subsequently, we invoke a
new set of (the so-called) “axionic fluxes” comprising of combinations of the standard fluxes and the RR
axions, and it turns out that these axionic fluxes can be very useful in rewriting the scalar potential in a
relatively compact form. In this regard, using the metric of the compactifying toroidal sixfold, we present a
new formulation of the effective scalar potential, which might be useful for understanding the higher-
dimensional origin of the various pieces via the so-called “dimensional-oxidation” process. We also discuss
the generalized Bianchi identities and the tadpole cancellation conditions, which can be important while
seeking the physical anti–de Sitter/de Sitter vacua in such models.
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I. INTRODUCTION

Flux compactifications in string theory have been exten-
sively studied for making attempts in constructing realistic
four-dimensional (de Sitter) vacua. The study of flux vacua
resulting from the four-dimensional effective potentials in
type-IIB supergravity theory, in particular, have received a lot
of attention in the last two decades [1–7]. Initial investigations
were focused on considering the scalar potential induced via
theS-dual pair ofRR andNS-NS three-form fluxes denotes as
ðF3; H3Þ [8,9]. Although such fluxes can generically stabilize
many of themoduli (especially the complex-structure moduli
and axio-dilaton modulus), it was soon realized that they fall
short in stabilizing a large set of (volume) moduli due to the
so-called “no-scale structure” in the type-IIB based models.
From this point of view, the subsequent consideration of
nongeometric fluxes which can generically induce the super-
potential couplings for the Kähler moduli as well, has

emerged as an important ingredient in the area of moduli
stabilization and model building in general [10–26].
Nongeometric fluxes are associated with duality transforma-
tions and generalized background fields, as opposed to
standard/geometric ones which are related to the curvature
metric of the compactification manifold.
Dualities are fundamental in connecting different limits

of string theories, providing supplemental interpretations,
and new perspectives. In this spirit, an interesting picture
emerges when we consider the T-duality between the two
kinds of type-II string theories in the presence of back-
ground fluxes. For example, implementing T-duality
on a type-IIB string theory on a Calabi-Yau (CY) manifold
in the presence of a three form flux H3 ¼ dB2 a type-IIA
mirror geometry is generated while a similar picture occurs
if one starts from type IIA supplemented with NS fluxes; in
such cases however, the T-dual analog cannot be described
by a CY manifold. Since T-duality is considered to
be a fundamental string theory symmetry, it has been
suggested that a new kind of (nongeometric) fluxes must be
incorporated into the theory, in order that the super-
potentials on both sides of type-II theories preserve the
symmetry of T-duality. More specifically, considering
the case of compactification on a T 6 ∼ T2

1 × T2
2 × T 2

3

torus, the Hmnp 3-form flux (where the indices m, n, p
take values in the compact dimensions), is mapped to a
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“geometric” flux ωnp
m which induces a twist of the form

ðdxm − ωnp
mxndxpÞ2 on the internal metric. Furthermore, a

second T-duality can be performed along the direction xn

followed by a third one associated with the coordinate xp.
These latter two cases, however, require the inclusion of
two nongeometric fluxes denoted with Qp

mn and Rmnp,
respectively, since now, only local descriptions are possible
for the dual torus [27]. The chain of successive dualities
described above are summarized in the following equation:

Hmnp ⟶
Tm

ωnp
m ⟶

Tn Qp
mn ⟶

Tp
Rmnp: ð1:1Þ

Furthermore, in order to achieve modular completion of
type-IIB superstring compactifications, S-duality transfor-
mations must be applied on top of the T-dualities given
in (1.1). Consequently, a new kind of non-geometric
P-flux, being S-dual to the nongeometric Q-flux, must
be introduced [28–34]. The implementation of the S-duality
imposes consistency constraints on Q and P fluxes derived
from the Bianchi identities that must be imposed
[28,32,35,36]. Taking these restrictions into consideration,
and using standard supergravity formulae, we can compute
the four-dimensional effective scalar potential. In general
the latter depends on all the aforementioned flux para-
meters and in principle it is expected to possess a rich
number of string vacua.
In such an ample flux compactification background

it is then possible to single out cases where a suitable
vacuum exists with all the moduli fields stabilized at their
minima [10–22]. Putting it in another way, the importance
of this nongeometric flux approach is that one can in
principle stabilize all types of moduli fields without
invoking nonperturbative contributions in the superpoten-
tial, or utilizing any corrections of the Kähler potential. It
should be emphasized that this method of stabilization
includes also the Kähler moduli fields which, in conven-
tional flux compactifications, are protected by the under-
lying no-scale structure. It should be noted however, that,
while the introduction of the new (nongeometric) fluxes
greatly facilitates the investigation for finding new flux
vacua, the apparent complexity due to the huge number of
flux-induced terms in the scalar potential, poses inevitably
hard challenges in phenomenological explorations. Indeed,
it has been observed in concrete examples—and in par-
ticular in the context of type IIB on T 6=ðZ2 × Z2Þ
orientifold—that the resulting four-dimensional scalar
potential is very often so huge that it gets hard to
analytically solve the extremization conditions. Thus,
one has to look either for a simplified ansatz by switching
off certain flux components at a time, or else one has to opt
for an involved numerical analysis; for phenomenological
model building attempts with (non)geometric fluxes see
[13,15–17,29,30,32,37–40,40–45]. On top of solving the
extremization conditions, another obstacle comes with
imposing a huge amount of quadratic flux constraints

coming from a set of Bianchi identities and tadpole
cancellation conditions. Nevertheless, the possibility of
stabilizing all moduli at tree level still makes the non-
geometric flux compactification scenarios quite attractive,
and so is the relevant framework for future investigations.
Apart from the direct model building motivations, the

interesting relations among the ingredients of superstring
flux-compactifications and those of the gauged supergrav-
ities have significant relevance in understanding both
sectors as fluxes in one setting are related to the gauging
in the other one [10–12,27,28,46–51]. In the conventional
approach of studying four-dimensional (4D) type-II effec-
tive theories in a nongeometric flux-compactification
framework, most of the studies have been centered around
toroidal examples and in particular with a T 6=ðZ2 × Z2Þ
orientifold. A simple justification for this specific choice
lies in its relatively simpler structure to perform explicit
computations, which led toroidal setups to serve as prom-
ising toolkits in studying concrete examples. Exploiting
this property of simplicity of toroidal setting, in this article,
we plan to study a more generalized version of the flux
superpotential which can have cubic couplings for both
types of (the complex-structure and the Kähler) moduli via
inclusion of more exotic fluxes based on T/S dual com-
pletions. The basic idea is the fact that one can enforce/
implement the T/S duality arguments to seek for allowed
couplings of the moduli and fluxes in the holomorphic
superpotential from a 4D point of view and subsequently
study the effective scalar potential pieces induced by the
flux superpotential. On that line, the current work can be
considered as a natural generalization in the series of
iterative steps taken in the literature so far, and in order
to motivate the plan now we recall a couple of those stories.

A. Brief summary of the iterative steps

Here we briefly recall the iterative steps taken in the
literature to understand the insights of the (generalized)
flux superpotential. In the context of nongeometric flux
compactifications, the initial model building studies have
been performed by considering the 4D effective potential
derived by merely knowing the Kähler and superpotentials
[13–16,18,51–55], and without having a complete under-
standing of their ten-dimensional origin. However, in recent
years, a significant amount of interest has been devoted
towards exploring the form of nongeometric 10D action,
especially via two approaches; the first one being through
the double field theory (DFT) [56–58] and the second
approach being based on the study of the underlying
supergravity theories [51,52,54,59–65]. Some of the time-
lines about exploring the 10D origin of the 4D effective
potential can be recalled as

Step-0: In the context of standard type-IIB flux com-
pactification with the usual NS-NS and RR fluxes, H3

and F3, the four-dimensional scalar potential induced
via the so-called Gukov-Vafa-Witten (GVW) flux
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superpotential [9] has been compactly derived through
the dimensional reduction of the 10D kinetic
pieces [66,67].

Step-1: Motivated by the study of 4D effective scalar
potential in a type-IIA flux compactification setup
with geometric flux [51], a rearrangement of the scalar
potential induced via a generalized flux superpotential
with nongeometric Q-fluxes on top of having the
standard H3=F3 within a type-IIB nongeometric
framework, was presented in [52]. This “rearranged”
scalar potential has a “suitable” form which helps in
anticipating the 10D origin of the 4D pieces, a process
called as “dimensional oxidation” of the nongeometric
flux superpotential [52].

Step-2: In order to restore the S-duality invariance
broken by including the nongeometric Q-flux in the
type-IIB T6=ðZ2 × Z2Þ-orientifold setup, the proposal
of [52] was further generalized in [54] via the
inclusion of the so-called P-flux which is S-dual to
the Q-flux. In the meantime the prescription was
further extended for the odd axion models within
a type-IIB compactification on T 6=Z4 orientifold
in [59,60].

Step-3: Let us mention that the studies presented in
[52,54,59] used the explicit knowledge of the internal
toroidal metric, and the extension for models based on
Calabi-Yau orientifolds were made in [58,65,68–71]
for the type-IIB case, and in [44,69,72] for the type-
IIA case. These beyond toroidal formulations are valid
for an arbitrary number of complex structure moduli
as well as Kähler moduli, and do not need the
knowledge of internal background metric.

In the steps mentioned so far, the effective scalar potentials
studied in the respective models are induced by a flux
superpotential having at most two pairs of S-dual fluxes,
namely ðF;HÞ and ðQ;PÞ. Such a superpotential has a
linear dependence on the axio-dilaton modulus (S) and the
complexified Kähler moduli (Tα) while a cubic dependence
in the complex-structure moduli (Ui). Therefore, one can
extend the S=T-dual completion arguments to arrive at a
more general flux superpotential which provides cubic
polynomial couplings for both the (Ui and Tα) moduli.
However, this generalization is accompanied by the need of
including two more S-dual pairs of fluxes, denoted as
ðP0; Q0Þ and ðH0; F0Þ [28,32,35,36,73]. Such a U-dual
completed version of the flux superpotential has been
explicitly known in the literature for quite some time,
and for the toroidal type-IIB T6=ðZ2 × Z2Þ orientifold-
based model it has a total of 128 flux parameters and seven
complexified variables. However, its insights (or any
phenomenological application in model building) have
not been explored much, possibly because of the huge
size of the scalar potential which we find to have a total of
76,276 terms. In the current work we explore the internal
structure of the effective scalar potential by performing a

systematic taxonomy of its pieces, which is not only useful
in understanding their higher-dimensional origin but also in
applications towards phenomenological model building.
The article is organized as follows: In Sec. II, we start by

collecting the relevant ingredients about the toroidal setup
along with the previous iterative steps taken towards
understanding the scalar potentials in different simplified
scenarios, classified on the basis of the inclusion of only a
subset of fluxes at a time. Section III is devoted for
invoking the so-called “axionic flux” combinations which
turn out to be extremely useful for rewriting the scalar
potential in a relatively compact form. In Sec. IV, we
present a systematic taxonomy of the various scalar
potential pieces by rewriting them using the internal
toroidal metric and the axionic fluxes. In Sec. V we discuss
the Bianchi identities and the tadpole contributions. Finally,
we summarize the results in Sec. VI and present the explicit
form of the genericU-dual completed flux superpotential in
the Appendix.

II. DIMENSIONAL OXIDATION
OF THE FLUX SUPERPOTENTIAL

The F-term scalar potential governing the dynamics of
the N ¼ 1 low-energy effective supergravity can be com-
puted from the Kähler potential, and the flux superpotential
via the following well-known relation,

V ¼ eKðKIJ̄DIWDJ̄W̄ − 3jWj2Þ; ð2:1Þ

where the covariant derivatives are defined with respect to
all the chiral variables on which the Kähler potential (K)
and the holomorphic superpotential (W) generically depend
on. We use this general N ¼ 1 expression to develop a set
of generic ansatz for the Kähler and the superpotentials;
several “master formulas” for the scalar potential have been
presented in a series of papers [44,65,68,69,72,74–80].
For the sake of completion and making the overall

content self-sufficient for readers, in this section, we briefly
review the previous attempts for rewriting the scalar
potentials arising from the flux superpotential. This has
been found to be crucial for invoking the higher-
dimensional origin of the various terms in the scalar
potential, especially when the generalized fluxes are
present. Let us note that the inclusion of nongeometric
fluxes have been motivated purely on the basis of T=S
duality arguments and for generic cases it is not fully
understood how such flux superpotential-induced terms can
be recast/recovered in the sense of the dimensional reduc-
tion of a higher-dimensional action. Subsequently, this
process of reformulating the scalar potential in a “suitable”
form needed to invoke their 10D origin is what is known as
the “dimensional oxidation” of the superpotential.
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A. Type-IIB model using a T 6=ðZ2 × Z2Þ orientifold
Let us start by briefly revisiting the relevant features of a

concrete setup in the framework of the type-IIB orientifold
compactification using the well-studied T 6=ðZ2 × Z2Þ
orbifold, where the two Z2 actions are defined as

θ∶ ðz1; z2; z3Þ → ð−z1;−z2; z3Þ;
θ̄∶ ðz1; z2; z3Þ → ðz1;−z2;−z3Þ: ð2:2Þ

Next, the orientifold action is defined viaO≡ΩpI6ð−1ÞFL

where Ωp is the world sheet parity, FL is left-
fermion number and I6 denotes the holomorphic involution
defined as

I6∶ ðz1; z2; z3Þ → ð−z1;−z2;−z3Þ; ð2:3Þ

which subsequently results in a setup of O3=O7 type. The
complexified coordinates (zi) on the six-torus T6 ¼ T 2 ×
T2 × T 2 are defined as

z1¼x1þU1x2; z2¼x3þU2x4; z3¼x5þU3x6; ð2:4Þ

where the three complex structure moduli Ui’s can be
written as Ui ¼ vi − iui, i ¼ 1, 2, 3. Now, the holomorphic
three-form Ω3 ¼ dz1 ∧ dz2 ∧ dz3 can be expanded as

Ω3¼α0þU1α1þU2α2þU3α3

þU1U2U3β0−U2U3β1−U1U3β2−U1U2β3; ð2:5Þ

where we have chosen the following basis of the closed
three-forms:

α0 ¼ 1 ∧ 3 ∧ 5; α1 ¼ 2 ∧ 3 ∧ 5; α2 ¼ 1 ∧ 4 ∧ 5; α3 ¼ 1 ∧ 3 ∧ 6;

β0 ¼ 2 ∧ 4 ∧ 6; β1 ¼ −1 ∧ 4 ∧ 6; β2 ¼ −2 ∧ 3 ∧ 6; β3 ¼ −2 ∧ 4 ∧ 5: ð2:6Þ

In the above we use the shorthand notations such
as 1 ∧ 3 ∧ 5 ¼ dx1 ∧ dx3 ∧ dx5 etc. along with the
normalization

R
αΛ ∧ βΔ ¼ −δΛΔ. Using these ingredients,

the holomorphic three-form can also be expressed
in terms of the symplectic period vectors ðXΛ;FΛÞ as
Ω3 ≡ XΛαΛ − FΛβ

Λ, where the complex structure moduli-
dependent prepotential F is given as

F ¼ X1X2X 3

X0
¼ U1U2U3 ð2:7Þ

which results in the following period vectors:

X0¼1; X1¼U1; X2¼U2; X3¼U3;

F 0¼−U1U2U3; F 1¼U2U3; F 2¼U3U1; F 3¼U1U2:

ð2:8Þ

Now, using the same shorthand notations we choose the
following bases for the orientifold even two-forms μα, and
their dual four-forms μ̃α,

μ1¼1∧2; μ2¼3∧4; μ3¼5∧6;

μ̃1¼3∧4∧5∧6; μ̃2¼1∧2∧5∧6; μ̃3¼1∧2∧3∧4;

ð2:9Þ

The massless states in the 4D effective theory are in one-to-
one correspondence with harmonic forms which are either
even or odd under the action of an isometric, holomorphic
involution (σ) acting on the internal compactifying six-
fold X, and generate the equivariant cohomology groups

Hp;q
� ðXÞ. Let us mention that for this toroidal-orientifold

construction there are no two-forms which are anti-invari-
ant under the orientifold projection, i.e., h1;1− ðXÞ ¼ 0, and
similarly there dual four-forms are also trivial, and there-
fore no B2 and C2 moduli as well as no geometric-flux
components will be present in this model; for the con-
struction of concrete type-IIB orientifold models with odd
moduli, e.g., see [78,81–86].
The other chiral variables are the so-called axio-dilaton S

and the complexified Kähler moduli which are defined as

S ¼ C0 þ ie−ϕ J ¼ Cð4Þ −
i
2
J ∧ J ≡ Tαμ̃

α; ð2:10Þ

where J ¼ tαμα is the Kähler form involving the
(Einstein-frame) two-cycle volume moduli tα while

moduli Tα ¼ ρα − iτα consists of RR axions Cð4Þ
ijkl and

the four-cycle volume moduli τijkl which in terms of six-
dimensional components are given as follows:

T1 ¼ Cð4Þ
3456 − iτ3456; T2 ¼ Cð4Þ

1256 − iτ1256;

T3 ¼ Cð4Þ
1234 − iτ1234; ð2:11Þ

where τ1 ¼ t2t3; τ2 ¼ t3t1; τ3 ¼ t1t2 are expressed in the
Einstein frame. The overall volume (V) of the sixfold (in
the Einstein-frame) can be given as

V ¼ t1t2t3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
τ1τ2τ3

p
; τα ¼

∂V
∂tα

; ð2:12Þ

where a useful relation between the two-cycle volumes tα

and the four-cycles volumes τα can be given as
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t1 ¼
ffiffiffiffiffiffiffiffi
τ2τ3
τ1

r
; t2 ¼

ffiffiffiffiffiffiffiffi
τ1τ3
τ2

r
; t3 ¼

ffiffiffiffiffiffiffiffi
τ1τ2
τ3

r
: ð2:13Þ

Another crucially relevant ingredient in our current study is the information about the internal metric of the toroidal sixfold.
It turns out that the internal metric gij is block diagonal and has the following nonvanishing components:

g11 ¼
t1

u1
; g12 ¼

t1v1

u1
¼ g21; g22 ¼

t1ððu1Þ2 þ ðv1Þ2Þ
u1

;

g33 ¼
t2

u2
; g34 ¼

t2v2

u2
¼ g43; g44 ¼

t2ððu2Þ2 þ ðv2Þ2Þ
u2

;

g55 ¼
t3

u3
; g56 ¼

t3v3

u3
¼ g65; g66 ¼

t3ððu3Þ2 þ ðv3Þ2Þ
u3

: ð2:14Þ

These internal metric components can be written out in a more suitable form, to be utilized later, by using the four-cycle
volumes τi’s and the same is given as

g11 ¼
ffiffiffiffi
τ2

p ffiffiffiffi
τ3

p
u1

ffiffiffiffi
τ1

p ; g12 ¼
v1

ffiffiffiffi
τ2

p ffiffiffiffi
τ3

p
u1

ffiffiffiffi
τ1

p ¼ g21; g22 ¼
ððu1Þ2 þ ðv1Þ2Þ ffiffiffiffi

τ2
p ffiffiffiffi

τ3
p

u1
ffiffiffiffi
τ1

p ;

g33 ¼
ffiffiffiffi
τ1

p ffiffiffiffi
τ3

p
u2

ffiffiffiffi
τ2

p ; g34 ¼
v2

ffiffiffiffi
τ1

p ffiffiffiffi
τ3

p
u2

ffiffiffiffi
τ2

p ¼ g43; g44 ¼
ððu2Þ2 þ ðv2Þ2Þ ffiffiffiffi

τ1
p ffiffiffiffi

τ3
p

u2
ffiffiffiffi
τ2

p ;

g55 ¼
ffiffiffiffi
τ1

p ffiffiffiffi
τ2

p
u3

ffiffiffiffi
τ3

p ; g56 ¼
v3

ffiffiffiffi
τ1

p ffiffiffiffi
τ2

p
u3

ffiffiffiffi
τ3

p ¼ g65; g66 ¼
ððu3Þ2 þ ðv3Þ2Þ ffiffiffiffi

τ1
p ffiffiffiffi

τ2
p

u3
ffiffiffiffi
τ3

p : ð2:15Þ

1. Kähler potential, Superpotential, and modularity

For the current toroidal setup, the (tree-level) Kähler
potential takes the following form in terms of the S, T and
U moduli:

K ¼ − ln ð−iðS − S̄ÞÞ −
X3
j¼1

ln ðiðUj − ŪjÞÞ

−
X3
α¼1

ln

�
iðTα − T̄αÞ

2

�
: ð2:16Þ

Let us recall the fact that the four-dimensional effective
scalar potential generically has an S-duality invariance
following from the underlying ten-dimensional type-IIB
supergravity. This corresponds to the following SLð2;ZÞ
transformation:

S→
aSþb
cSþd

wheread−bc¼1; a; b; c; d∈Z: ð2:17Þ

Under this SLð2;ZÞ transformation, the complex-structure
moduli (Ui) and the Einstein-frame internal volume (V) are
invariant. Moreover, the Einstein-frame chiral coordinate
Tα is S-duality invariant, without orientifold odd axions,
i.e., h11− ðX6=OÞ ¼ 0 [87]. Subsequently, it turns out that the
tree-level Kähler potential given in Eq. (2.16) transforms as

eK → jCSþ dj2eK: ð2:18Þ
This subsequently implies that the S-duality invariance
of the physical quantities (such as gravitino mass-square
m2

3=2 ∝ eKjWj2) suggests that the holomorphic super-
potential,W should have a modularity of weight −1, which
means the following [87–89]:

W →
W

CSþ d
: ð2:19Þ

As we will discuss in the upcoming sections, a generic
holomorphic superpotential, respecting the modular weight
being −1, can have four S-dual pairs of fluxes denoted
as ðF;HÞ; ðQ;PÞ; ðP0; Q0Þ, and ðH0; F0Þ [28,32,35,36,73].
This set of eight fluxes transforms in the following manner
under the SLð2;ZÞ transformations:

�
F

H

�
→

�
a b

c d

��
F

H

�
;

�
Q

P

�
→

�
a b

c d

��
Q

P

�
;

�
H0

F0

�
→

�
a b

c d

��
H0

F0

�
;

�
P0

Q0

�
→

�
a b

c d

��
P0

Q0

�
:

ð2:20Þ

Under the SLð2;ZÞ transformations, the various fluxes can
readjust themselves to respect the modularity condition
(2.19) in the following two ways [28]:
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ðiÞ: S → Sþ 1; ðiiÞ: S → −
1

S
: ð2:21Þ

Note that the first case simply corresponds to a shift in the
universal axion C0 → C0 þ 1 which amounts to have a
constant rescaling of the Kähler potential as eK → jdj2eK ,
and the superpotential as W → W=d. This follows from
Eqs. (2.18) and (2.19) due to the fact that S → Sþ 1 simply
corresponds to c ¼ 0 case in the SLð2;ZÞ transformation
(2.17). The second case is quite peculiar in the sense that it
corresponds to the following transformation of the univer-
sal axions and the dilaton:

C0 → −
C0

s2 þ C2
0

; s →
s

s2 þ C2
0

; ð2:22Þ

which takes gs → g−1s and hence is known as strong-weak
duality or S-duality. This relation (2.22) shows that C0=s
flips sign under S-duality, something which will be useful
in understanding the modular completion of the scalar
potential later on. From now onwards we will focus only on
the second case, i.e., on strong/weak duality. This means
that under the SLð2;ZÞ transformation of the second type
which simply takes the axio-dilaton S → −1=S, the fluxes
can be considered to transform as

H→F; F→−H; Q→−P; P→Q;

F0→H0; H0→−F0; P0→−Q0; Q0→P0: ð2:23Þ

In fact, the most generic (tree-level) flux-induced super-
potential can be classified in a series of the iterative steps
via making the T=S-dual completion arguments which we
will consider in the upcoming subsections.

B. Superpotential with ðF;HÞ fluxes
The standard three-form fluxes F3 and H3 induce the

following so-called Gukov-Vafa-Witten superpotential [9]:

W0 ¼
Z
X
ðF − SHÞ ∧ Ω3; ð2:24Þ

where the explicit form of the nowhere vanishing holo-
morphic three-form Ω3 is given in Eq. (2.5), while the only
invariant components of the F3 and H3 fluxes surviving
under the orientifold action are summarized as follows:

H∶ H135; H146; H236; H245; H246; H235; H145; H136;

F∶ F135; F146; F236; F245; F246; F235; F145; F136: ð2:25Þ

These constitute eight flux components for each of the F
and the H flux.
Using the GVW flux superpotential induced by the

standard three-form ðF3; H3Þ fluxes as given in Eq. (2.24),
one gets the N ¼ 1 four-dimensional scalar potential

with 361 terms which can be rewritten in the following
form [66,67]:

VGVW ¼ V1 þ V2 þ V3; ð2:26Þ

where the three pieces are given as

V1 ¼
1

4sV

�
1

3!
F ijkF i0j0k0gii

0
gjj

0
gkk

0
�
;

V2 ¼
1

4sV

�
1

3!
ðs2ÞHijkHi0j0k0gii

0
gjj

0
gkk

0
�
;

V3 ¼
1

4sV

�
ðþ2sÞ ×

�
1

3!
×

1

3!
HijkEijklmnF lmn

��
: ð2:27Þ

Here, we use the following redefinitions of fluxes in
Eq. (2.27),

F ijk ¼ Fijk − C0Hijk; Hijk ¼ Hijk; ð2:28Þ
alongwith the following definition of the Levi-Civita tensor,

Eijklmn ¼ ϵijklmn=
ffiffiffiffiffi
gij

p ¼ ϵijklmn=V; ð2:29Þ

where ϵijklmn denotes the antisymmetric Levi-Civita symbol.
The splitting of the 361 terms in the scalar potential arising
from the GVW flux superpotential can be appreciated by
noting the number of terms in each of the three pieces which
turn out to be the following:

#ðV1Þ ¼ 277; #ðV2Þ ¼ 76; #ðV3Þ ¼ 8: ð2:30Þ

Observe that the axionic flux combination for F ijk involves
the universal (RR) axion C0 as well as the H3 flux. Such
combinations of (generalized) fluxes and RR axions
will be heavily utilized for rewriting the scalar potential
later on.
Finally let us note that after knowing the new formu-

lation of the scalar potential it is easy to anticipate that such
a piece can arise from the dimensional reduction of the
kinetic pieces in the 10D type-IIB supergravity action,

S≡SkinþSCS¼
1

2

Z
d10x

ffiffiffiffiffiffi
−g

p ðLFF þLHHÞþSCS; ð2:31Þ

where the 10D kinetic pieces ðSkinÞ and the Chern-Simons
term ðSCSÞ are given as

LFF ¼ −
1

2

�
1

3!
F ijkF i0j0k0gii

0
gjj

0
gkk

0
�
;

LHH ¼ −
e−2ϕ

2

�
1

3!
HijkHi0j0k0gii

0
gjj

0
gkk

0
�
;

SCS ≃ −
Z

d10xCð4Þ ∧ F ∧ H: ð2:32Þ
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We note that the Chern-Simons term is generically relevant
for the tadpole contributions which are to be compensated
by introducing local sources such as D-brane and O-planes
with a given specific choice of involution. Now, one has to
follow the dimensional-reduction prescription in order to
recover the four-dimensional scalar potential from the
proposed 10D action. For that let us note the fact that
the nonvanishing components of the 10D metric in the
string frame can be understood as

gMN ¼ blockdiag

�
e
ϕ
2ffiffiffiffiffiffiffiffiffiffiffiffi

τ1τ2τ3
p g̃μν; gstrij

�
; ð2:33Þ

where the string-frame internal metric gstrij is related to its
Einstein-frame version, as given in Eq. (2.15), by the
relation gij ¼

ffiffiffi
s

p
gstrij . Subsequently, assuming that the

flux components are constant parameters, one has the
following:

Z
d10x

ffiffiffiffiffiffi
−g

p ð…:Þ ≃
Z

d4x
ffiffiffiffiffiffiffiffiffiffi−gμν

p �
1

s4V2
s

�

×

�Z
d6x

ffiffiffiffiffiffiffiffiffiffiffi
−gstrmn

p �
× ð………:Þ

≃
Z

d4x
ffiffiffiffiffiffiffiffiffiffi−gμν

p
×

�
1

s4Vs

�
× ð………:Þ;

ð2:34Þ

as
R
d6x

ffiffiffiffiffiffiffiffiffiffiffi
−gstrmn

p ≡ Vs gives the string-frame 6D volume.
However, given the fact that the S-duality invariance
manifests itself more directly in the Einstein-frame,
it is better to work in the Einstein-frame by taking
appropriate care of dilaton factors in the metric as well
as the two/four cycle volumes, e.g., V ¼ s3=2Vs; gij ¼
gstrij

ffiffiffi
s

p
and gij ¼ gijstr=

ffiffiffi
s

p
. This simply means that if we

consider the internal metric components in the Einstein-
frame, the relevant overall factor depending on the
Einstein-frame volume ðVÞ and the dilaton (s) to appear
in the scalar potential pieces is given as

�
1

s4V2
s

�
×

�Z
d6x

ffiffiffiffiffiffiffiffiffiffiffi
−gstrmn

p �
→

�
1

sV2

�
×

�Z
d6x

ffiffiffiffiffiffiffiffiffiffiffi
−gmn

p �

¼
�

1

sV

�
: ð2:35Þ

For the reasons elaborated as above, the process of invoking
the higher-dimensional origin of the scalar potential pieces
induced from a holomorphic flux superpotential is called

dimensional oxidation. This has been proven to be useful
especially for the scenarios where nongeometric fluxes are
involved as a priori a 10D origin of the same was not clear,
unlike the current simple case of ðF3; H3Þ fluxes which has
been well-studied from the dimensional reduction point of
view [52,54,60].

C. Superpotential with ðF;H;QÞ fluxes
Using the T-duality arguments along with a specific

choice of orientifold action resulting in h1;1− ðXÞ ¼ 0 ¼
h2;1þ ðXÞ, it turns out that the GVW flux superpotential
(2.24) can be generalized by including the so-called non-
geometric Q-flux leading to a superpotential of the follow-
ing form [28]:

W1 ¼
Z
X
½ðF − SHÞ þQ⊳J � ∧ Ω3; ð2:36Þ

where the flux action for the nongeometric Q flux is such
that it takes a p-form to a (p − 1)-form, in particular a
4-form J to a 3-form defined as

ðQ⊳J Þp1p2p3
¼ 3

2
Qmn

½p1
J p2 p3�mn: ð2:37Þ

In addition to the 16 flux components mentioned in (2.25),
one has the following 24 non-vanishing components for the
Qi

jk flux,

Qi
jk∶ Q1

35; Q2
45; Q1

46; Q2
36; Q5

13; Q6
23;

Q5
24; Q6

14; Q3
51; Q4

61; Q3
62; Q4

52;

Q2
35; Q5

23; Q3
52; Q2

46; Q4
51; Q1

45;

Q5
14; Q4

62; Q6
13; Q3

61; Q1
36; Q6

24: ð2:38Þ

Note that inclusion of nongeometricQ-flux can generically
induce the superpotential coupling for the Tα moduli, and
hence can help in breaking the so-called “no-scale
structure”.
In this nongeometric setting, one gets the N ¼ 1 four-

dimensional scalar potential with 2422 terms which (sub-
ject to satisfying a set of Bianchi identities for the two
NS-NS fluxes H and Q) can be rewritten in the following
form [52]:

V ¼ V1 þ V2 þ V3 þ V4 þ V5 þ V6 þ…; ð2:39Þ

where… denotes some terms to be nullified by the Bianchi
identities while the six pieces are explicitly given as
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V1 ¼
1

4sV

�
1

3!
F ijkF i0j0k0gii

0
gjj

0
gkk

0
�
;

V2 ¼
s
4V

�
1

3!
HijkHi0j0k0gii

0
gjj

0
gkk

0
�
;

V3 ¼
1

4sV

�
3 ×

�
1

3!
Qk

ijQk0
i0j0gii0gjj0gkk

0
�
þ 2 ×

�
1

2!
Qm

niQn
mi0gii0

��
;

V4 ¼
1

4V

�
ð−2Þ ×

�
1

2!
HmniQi0

mngii
0
��

;

V5 ¼
1

4V

�
ðþ2Þ ×

�
1

3!
×

1

3!
HijkEijklmnF lmn

��
;

V6 ¼
1

4sV

�
ðþ2Þ ×

�
1

2!
×

1

2!
Qi

j0k0F j0k0jτklmnEijklmn

��
: ð2:40Þ

Now, unlike the GVW case in (2.28), we have a more
complicated generalization of the axionic-flux combination
given as [52]

F ijk ¼ Fijk þ
3

2
Q½ilmρlmjk� − C0Hijk; Hijk ¼ Hijk;

Qij
k ¼ Qij

k : ð2:41Þ

It might be worth mentioning that there are two contribu-
tions VFH and VFQ corresponding to the 3-brane tadpoles
and the 7-brane tadpoles respectively, and these are to be
compensated for by introducing local sources such as
D3=D7 and O3=O7 planes.
The splitting of 2422 terms in the scalar potential

arising from the (nongeometric) flux superpotential
(2.36) can be appreciated by noting the fact that the six
pieces in Eq. (2.40) capture a total of 2086 terms with
counting as

#ðV1Þ¼1630; #ðV2Þ¼76; #ðV3Þ¼288; #ðV4Þ¼60;

#ðV5Þ¼8; #ðV6Þ¼24; ð2:42Þ

while the remaining 336 terms which are not captured by
the collection in Eq. (2.40) are nullified via the following
two classes of Bianchi identities which result in 48
quadratic flux constraints,

Qk
½ī j̄Qn

l̄�k ¼ 0; Q½k̄ijHl̄ m̄�j ¼ 0; ð2:43Þ

where in our convention throughout this article, the over-
lined indices are antisymmetrized with appropriate nor-
malization factor.
As we have discussed for the simple GVW case with

ðF;HÞ fluxes, after having this so-called “suitable” refor-
mulation of the (nongeometric) scalar potential one can
anticipate the higher-dimensional origin of such terms. It
has been shown in [52,58,65] that this scalar potential can

arise from the dimensional reduction of the double field
theory action, and most of the terms descend from kinetic
pieces similar to the case of GVW superpotential. Since we
have already collected the scalar potential pieces in
Eq. (2.40) we do not find it necessary to repeat writing
the analogous dimensional-oxidation terms which can be
understood along the lines of the previous GVW case
which have been discussed in detail.

D. Superpotential with ðF; HÞ and ðQ; PÞ fluxes
After the inclusion of nongeometric Q-fluxes, the under-

lying S-duality of the type-IIB supergravity is no longer a
symmetry of the effective scalar potential, and in order to
restore it one needs to include the S-dual of the Q-flux,
which is known as P-flux. For example, as one can easily
see that the scalar potential (2.39) is not invariant under the
S-duality transformations mentioned in Eq. (2.23), the flux
superpotential is further generalized and now consists of
two S-dual pairs of fluxes, namely (F, H) and ðQ;PÞ
resulting in a form given as [28,32]

W2 ¼
Z
X
½ðF − SHÞ þ ðQ − SPÞ⊳J � ∧ Ω3; ð2:44Þ

where the action for the P-flux on a four-form denoted as
ðP⊳J Þ is defined similar to the Q-flux in Eq. (2.37).
Moreover, 24 components of P flux are defined in a similar
way to those of Q flux as given in Eq. (2.38).
This setup has a total of 64 flux parameters; 8 each for

the S-dual pair ðF;HÞ and 24 each for the S-dual pair
ðQ;PÞ. Explicit computations show that the scalar potential
induced by these four types of fluxes results in a total
of 9661 terms which can be reformulated in the following
way [54]:

V ¼ V1 þ V2 þ V3 þ V4 þ V5 þ V6 þ V7

þ V8 þ V9 þ V10 þ…; ð2:45Þ
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where … denotes some terms to be nullified by the Bianchi identities while the ten pieces are explicitly given as

V1 ¼
1

4sV

�
1

3!
F ijkF i0j0k0gii

0
gjj

0
gkk

0
�
;

V2 ¼
s
4V

�
1

3!
HijkHi0j0k0gii

0
gjj

0
gkk

0
�
;

V3 ¼
1

4sV

�
3 ×

�
1

3!
Qk

ijQk0
i0j0gii0gjj0gkk

0
�
þ 2 ×

�
1

2!
Qm

niQn
mi0gii0

��
;

V4 ¼
s
4V

�
3 ×

�
1

3!
Pk

ijPk0
i0j0gii0gjj0gkk

0
�
þ 2 ×

�
1

2!
Pm

niPn
mi0gii0

��
;

V5 ¼
1

4V

�
ð−2Þ ×

�
1

2!
HmniQi0

mngii
0
��

;

V6 ¼
1

4V

�
ðþ2Þ ×

�
1

2!
FmniPi0

mngii
0
��

;

V7 ¼
1

4V

�
ðþ2Þ ×

�
1

2!
ðPk0

ijgk
0kÞ
�
Eijklmn

�
1

2!
ðQn0

lmgn
0nÞ
��

;

V8 ¼
1

4V

�
ðþ2Þ ×

�
1

3!
×

1

3!
HijkEijklmnF lmn

��
;

V9 ¼
1

4sV

�
ðþ2Þ ×

�
1

2!
×

1

2!
Qi

j0k0F j0k0jτklmnEijklmn

��
;

V10 ¼
1

4sV

�
ð−2Þ ×

�
1

2!
×

1

2!
Pi

j0k0Hj0k0jτklmnEijklmn

��
: ð2:46Þ

Now the axionic-flux combinations are further generalized
as compared to those presented in Eqs. (2.28) and (2.41).
These are given as [54]

F ijk ¼
�
Fijk þ

3

2
Q½ilmρlmjk�

�
− C0Hijk;

Hijk ¼
�
Hijk þ

3

2
P½ilmρlmjk�

�
;

Qij
k ¼ Qij

k − C0P
ij
k ;

Pij
k ¼ Pij

k : ð2:47Þ
Subsequently, let us also emphasize that although some of the
expressions in the collection of scalar potential pieces appears
to be the same, they are not identical; for example although
VFF takes the same form in Eqs. (2.27) and (2.40) aswell as in

Eq. (2.46), they include different amount of terms as the
axionic-flux combinations F [as respectively defined in
(2.28), (2.41), and (2.47)] and are different for all the cases.
Moreover, it is worth observing that the S-dual pairs of fluxes
ðF;HÞ and (Q, P) are such that the axionic flux F and Q
consists of C0 times their respective generalized partners,
namelyH andP. On these lines, it iswell-anticipated that after
including more fluxes motivated by the T=S duality argu-
ments these axionic fluxes will be further generalized to have
quadratic and cubic pieces in terms of theC4 axions. We will
discuss this in the upcoming section regarding insights of the
U-dual completions of the scalar potential.
The splitting of 9661 terms in the scalar potential is quite

tricky for this case. It turns out that the pieces mentioned in
the collection (2.46) capture a total of 8233 terms having
the following explicit counting [54],

#ðV1Þ ¼ 4108; #ðV2Þ ¼ 1054; #ðV3Þ ¼ 450; #ðV4Þ ¼ 450;

#ðV5Þ ¼ 1071; #ðV6Þ ¼ 288; #ðV7Þ ¼ 324;

#ðV8Þ ¼ 128; #ðV9Þ ¼ 288; #ðV10Þ ¼ 72; ð2:48Þ

while the remaining 1428 terms, which are not captured by the collection of pieces in Eq. (2.46), are nullified via the
following set of Bianchi identities [32],
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Qk
½ī j̄Qn

l̄�k ¼ 0; Pk
½ī j̄Pn

l̄�k ¼ 0; Q½k̄ijHl̄ m̄�j ¼ P½k̄ijFl̄ m̄�j;

Qk
½ī j̄Pn

l̄�k ¼ 0; Pk
½ī j̄Qn

l̄�k ¼ 0; Qp
abPm

pc ¼ Pp
abQm

pc: ð2:49Þ

Finally let us mention that our statement about 8233 terms
being captured by the pieces in the collection (2.46) and the
remaining 1428 terms being nullified by Bianchi identities
should not be confused as if those 8233 terms are not
subject to satisfying Bianchi identities. The separation is
only to demonstrate that we have invoked the terms in
Eq. (2.46) based on contraction of indices and taking an
educated guess from the iterative process of including more
and more fluxes in a stepwise approach.

III. SCALAR POTENTIAL INDUCED
BY THE U-DUAL FLUXES

In this section, first we discuss the U-dual completion of
the flux superpotential and subsequently we will invoke the
so-called axionic-flux polynomials which are useful for
rewriting the scalar potential in a relatively simpler form.

A. Superpotential with ðF; HÞ ðQ; PÞ, ðP0; Q0Þ,
and ðH0; F0Þ fluxes

So far we have considered a superpotential induced by
two S-dual pairs of fluxes, namely the ðF;HÞ pair and the
ðQ;PÞ pair. However, as one can notice from Eq. (2.44)
such a superpotential is only linear in Tα moduli
while cubic in Ui moduli, and it turns out that following
the T=S-dual completion arguments one can facilitate the
presence of cubic couplings for Tα moduli as well. In this
process, one ends up in the need of including two more
S-dual pairs of fluxes denoted as ðP0; Q0Þ and ðH0; F0Þ
[28,32,35,36,73]. Let us mention that the complete set of
fluxes, including the so-called prime fluxes P0; Q0; H0, and
F0 which are some mixed-tensor quantities, have the
following index structure,

Fijk; Hijk; Qi
jk; Pi

jk;

P0i;jklm; Q0i;jklm; H0ijk;lmnpqr; F0ijk;lmnpqr: ð3:1Þ

Subsequently, one can understand ðP0; Q0Þ flux as a (1, 4)
tensor such that only the last four-indices are antisymme-
trized, while ðH0; F0Þ flux can be considered as a (3, 6)
tensor where first three indices and last six indices are
separately antisymmetrized. These can also be understood
as the following:

P0
ij
k¼ 1

4!
ϵijlmnpP0k;lmnp; Q0

ij
k¼ 1

4!
ϵijlmnpQ0k;lmnp;

H0ijk¼ 1

6!
ϵlmnpqrH0ijk;lmnpqr; F0ijk¼ 1

6!
ϵlmnpqrF0ijk;lmnpqr:

ð3:2Þ

In fact we observe from our numerical computation of
scalar potential pieces that using this version (3.2) of prime
fluxes makes the computations efficient. Otherwise, it takes
huge amount of time while using their respective (1,4) or
(3,6) index versions. Moreover, this way of representing the
primed fluxes ðP0

ij
k; Q0

ij
kÞ look similar to the geometric flux

ωij
k while the primed fluxes ðH0ijk; F0ijkÞ look similar to

the nongeometric flux Rijk in the sense of lower/upper
antisymmetrized indices. It is a bit easier to anticipate in
this formulation that number of flux parameters consistent
with our toroidal orientifold for ðP0; Q0Þ are 24 each while
those of ðH0; F0Þ are 8 each. Subsequently, one has a total of
8þ 8þ 24þ 24þ 24þ 24þ 8þ 8 ¼ 128 flux parame-
ters allowed by the orientifold action, however these flux
parameters are not all independent, and are subjected to
satisfying the Bianchi identities and tadpole cancellation
conditions. Further details about the mixed-tensorial nature
of such prime fluxes can be found in [36]. Let us note that
the antisymmetric Levi-Civita symbol ϵijklmn contracted
with the internal metric satisfies the following identity
which turns out to be useful in switching between the two
notations (3.1) and (3.2) of the prime fluxes as we do many
times later on:

ϵijklmngii0gjj0gkk0gll0gmm0gnn0 ¼ det½gij�ϵi0j0k0l0m0n0

¼ V2ϵi0j0k0l0m0n0 : ð3:3Þ

Using generalized geometry motivated through toroidal
constructions, it has been argued that the type-IIB super-
potential governing the dynamics of the four-dimensional
effective theory which respects the invariance under
SLð2;ZÞ7 symmetry can be given as [28,32,35,36,73]

W3 ¼
Z
X3

ðfþ − Sf−Þ · eJ ∧ Ω3; ð3:4Þ

where J denotes the complexified four-form defined in
Eq. (2.10), and one has the following expansions for the
quantities f�,

fþ · eJ ¼ F þQ⊳J þ P0 ⋄J 2 þH0 ⊙ J 3;

f− · eJ ¼ H þ P⊳J þQ0 ⋄J 2 þ F0 ⊙ J 3: ð3:5Þ

Here, the various flux-actions on the J ijkl four-form
polynomial pieces resulting in three-forms are defined as
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ðQ⊳J Þa1a2a3 ¼
3

2
Qb1b2

½a1 J a2 a3�b1b2 ;

ðP⊳J Þa1a2a3 ¼
3

2
Pb1b2
½a1 J a2 a3�b1b2 ;

ðP0 ⋄J 2Þa1a2a3 ¼
1

4
P0c;b1b2b3b4J ½a1 a2 jcb1jJ a3�b2b3b4 ;

ðQ0 ⋄J 2Þa1a2a3 ¼
1

4
Q0c;b1b2b3b4J ½a1 a2 jcb1jJ a3�b2b3b4 ;

ðH0 ⊙ J 3Þa1a2a3 ¼
1

192
H0c1c2c3;b1b2b3b4b5b6J ½a1 a2 jc1c2jJ a3�c3b1b2J b3b4b5b6 ;

ðF0 ⊙ J 3Þa1a2a3 ¼
1

192
F0c1c2c3;b1b2b3b4b5b6J ½a1 a2 jc1c2jJ a3�c3b1b2J b3b4b5b6 : ð3:6Þ

Here, let us alsomention that it has been suggested (e.g., in [90]) to express the superpotential (3.4) by introducing a set of two
“generalized twisted” operators as

W3 ¼
Z
X3

ðD · eJ − SD0 · eJ Þ ∧ Ω3; ð3:7Þ

where

D ¼ dþ F ∧ :þQ⊳ :þ P0 ⋄ :þH0 ⊙;

D0 ¼ dþH ∧ :þ P⊳ :þQ0 ⋄ :þ F0 ⊙ : ð3:8Þ

Subsequently one finds an explicit and expanded version of the generalized flux superpotential W3 with 128 terms each
having one of the 128 flux parameters such that they are coupled with the complexified moduli resulting in cubic polynomial
in Tα as well asUi moduli while being linear in the axio-dilaton S. The explicit form of generalized flux superpotentialW3 is
given in (A.1) of Appendix.

B. Invoking the axionic-flux combinations

From the iterative models studied/revisited so far, one has the educated guess to invoke the following set of so-called
axionic-flux combinations which will turn out to be extremely useful for rearranging the scalar potential pieces into a compact
form,

F ijk¼
�
Fijkþ

3

2
Qb1b2

½i ρjk�b1b2þ
1

4
P0c;b1b2b3b4ρ½ijjcb1jρk�b2b3b4þ

1

192
H0c1c2c3;b1b2b3b4b5b6ρ½ijjc1c2jρk�c3b1b2ρb3b4b5b6

�
−C0Hijk;

Hijk¼
�
Hijkþ

3

2
Pb1b2
½i ρjk�b1b2þ

1

4
Q0c;b1b2b3b4ρ½ijjcb1jρk�b2b3b4þ

1

192
F0c1c2c3;b1b2b3b4b5b6ρ½ijjc1c2jρk�c3b1b2ρb3b4b5b6

�
;

Qi
jk¼

�
Qi

jk−
1

2
P0c;jkb1b2ρicb1b2þ

1

48
H0jkc; b1b2b3b4b5b6ρicb1b2ρb3b4b5b6

�
−C0Pi

jk;

Pi
jk¼

�
Pi

jk−
1

2
Q0c;jkb1b2ρicb1b2þ

1

48
F0jkc;b1b2b3b4b5b6ρicb1b2ρb3b4b5b6

�
;

P0i;jklm¼
�
P0i;jklmþ1

4
H0ij0k0;l0m0jklmρj0k0l0m0

�
−C0Q0i;jklm;

Q0i;jklm¼
�
Q0i;jklmþ1

4
F0ij0k0;l0m0jklmρj0k0l0m0

�
;

H0ijk;lmnpqr¼H0ijk;lmnpqr−C0F 0ijk;lmnpqr;

F 0ijk;lmnpqr¼F0ijk;lmnpqr: ð3:9Þ
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Using Eq. (3.9) one can observe that for our toroidal
construction, there are 128 axionic fluxes corresponding to
128 standard fluxes, and one can solve this set of linear
relations to determine one set of fluxes from the other,

fF;H;Q; P; P0; Q0; H0; F0g ⇔ fF ;H;Q;P;P0;Q0;H0; F 0g:
ð3:10Þ

In our detailed analysis of rewriting the scalar potential pieces
we find that using the set of axionic fluxes reduces the number
of scalar potential terms quite significantly. This subsequently
helps us in understanding the insights within each terms
towards seeking a compact and concise formulation of the full
scalar potential. For an immediate illustration of this point let
us mention that the most generic scalar potential with all the
128U-dual flux parameters being included results in a total of
76,276 terms when represented in terms of standard fluxes
fF;H;Q; P; P0; Q0; H0; F0g. However, this number reduces
to 10,888 if we use the axionic-flux components
fF ;H;Q;P;P0;Q0;H0; F 0g.
Another point worth mentioning here is the fact that all

the axionic dependences are encoded in the axionic fluxes
and the scalar potential does not have an explicit depend-
ence on any of the RR axions after being written in terms of
the axionic fluxes. For this reason, our formulation can be
understood as the so-called bilinear formulation of the
scalar potential presented in [44,45,91–94] and hence a
generalization of these works with the inclusion of prime
fluxes. However, unlike the standard bilinear formulation
which is a symplectic formulation, we rewrite the scalar
potential terms using the metric of the internal toroidal
background.
We will elaborate more on the use of axionic fluxes via a

detailed taxonomy of the scalar potential terms by taking a
couple of interesting scenarios in our discussion later on.
This will help the readers to understand/appreciate the
method of invoking a concise formulation of the scalar
potential out of such a huge and useless looking output of
76,276 terms arising from the F-term computations using
the flux superpotential.

C. Taxonomy of the scalar potential pieces

In this subsection we demonstrate the utility of axion-
flux combinations in rewriting the scalar potential. Through
a detailed taxonomy of the various types of scalar potential
terms allowed in different scenarios having a (sub)set of
fluxes being turned on at a time, we find that the scalar
potential takes a relatively simpler and useful form, with
significantly fewer number of terms. We present this
observation under the following cases:

Scenario 1: The GVW superpotential W0 defined in
Eq. (2.24) leads to F-term scalar potential having a
total of 361 terms when written in terms of standard
conventional fluxes Fijk and Hijk, however the same

scalar potential can be expressed in terms of only 160
terms when written in terms of axionic fluxes F ijk and
Hijk. In order to appreciate the counting we present the
splitting of the number of terms in the three types of
quadratic-flux pieces in Table I.

Scenario 2: The flux superpotential in the presence of
non-geometric Q flux leads to a form W1 defined in
Eq. (2.36). This results in a F-term scalar potential
having a total of 2422 terms when written in terms of
standard conventional fluxes Fijk, Hijk, and Qi

jk as
observed in [52]. However we find that the same scalar
potential can be expressed in terms of only 772 terms
when written in terms of axionic fluxes F ijk, Hijk, and
Qi

jk. In order to appreciate the counting we present
the splitting of various terms in the six types of
quadratic-flux pieces in Table II.

Scenario 3: Now, the S-dual completion of the flux
superpotential in the presence of nongeometric ðQ;PÞ
flux pair leads to a formW2 defined in Eq. (2.44). This
results in a F-term scalar potential having a total of
9661 terms when written in terms of standard conven-
tional fluxes ðFijk; HijkÞ and ðQi

jk; Pi
jkÞ as observed

in [54,68]. However, now we find that the same scalar
potential can be expressed with only 2356 terms when
written in terms of axionic-flux pairs ðF ijk;HijkÞ and
ðQi

jk;Pi
jkÞ. In order to appreciate the counting we

present the splitting of terms in the ten types of
quadratic-flux pieces in Table III.

Scenario 4: Finally, we consider the T=S-dual comple-
tion of the flux superpotential in the presence
ðF;H;Q;P; P0; Q0; H0; F0Þ fluxes which lead to a
superpotential of the form W3 defined in Eq. (3.4).
In the current work, first we observe that this super-
potential results in a F-term scalar potential having a
total of 76,276 terms when written in terms of
standard conventional fluxes, and can be compactly
reformulated in only 10,888 terms via using the
axionic fluxes. In order to appreciate the counting
we present the splitting of various terms in all the 36
types of quadratic-flux pieces in Table IV.

So far, we have simply computed the F-term scalar
potential from the flux superpotential and have some
classification so that we could make some educated guess
to rewrite those pieces using the metric of the internal
toroidal orbifold. As a byproduct of this detailed analysis
and as a consistency check, we have rederived the previous

TABLE I. Counting of scalar potential terms with standard flux
and axionic flux in Scenario 1.

Flux type
Type of quadratic

flux terms
Number of

terms Total #ðVÞ
Standard flux fFF;HH; FHg f76; 152; 133g 361
Axionic flux fFF ;HH; FHg f76; 76; 8g 160
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results claimed in a series of iterative works
[52,60,65,68,69]. While doing so we observe in this
work that using the axionic fluxes instead of the standard
fluxes can reduce the size of scalar potential very
significantly. Moreover, working with axionic-flux combi-
nations helps in simply discarding the C0- and C4-axion’s
explicit presence in the game, and this subsequently
also helps in reducing the number of terms to deal
with while working on some explicit construction. In this
way it will make it relatively easier to handle the scalar
potential for any application purposes, such as doing any
phenomenology, e.g., flux vacua analysis and de Sitter
search.

IV. REWRITING THE SCALAR POTENTIAL

In this section we present a systematic taxonomy of the
four-dimensional (effective) scalar potential induced by the
generalized fluxes respecting the U-dual completion argu-
ments for the flux superpotential. Being bilinear in eight
class of fluxes, the full scalar potential can be expressed in
“36 types” of terms which we collect in the following three
categories,

V ¼ Vdiag þ Vcross1 þ Vcross2; ð4:1Þ

where

Vdiag ¼ VFF þ VHH þ VQQ þ VPP þ VP0P0 þ VQ0Q0 þ VH0H0 þ VF 0F 0 ;

Vcross1 ¼ VFP þ VFP0 þ VFF 0 þ VHQ þ VHQ0 þ VHH0 þ VQQ0 þ VQH0 þ VPP0 þ VPF 0 þ VP0F 0 þ VQ0H0 ;

Vcross2 ¼ VFH þ VFQ þ VFQ0 þ VFH0 þ VHP þ VHP0 þ VHF 0 þ VQP þ VQP0 þ VQF 0

þ VPQ0 þ VPH0 þ VP0Q0 þ VP0H0 þ VQ0F 0 þ VH0F 0 : ð4:2Þ

Let us mention that the first collection Vdiag in (4.2) has eight terms of diagonal type while the terms collected in Vcross1

correspond to the cross-term which do not include tadpole contributions (as we will see later), while the collection Vcross2

TABLE IV. Counting of scalar potential terms with standard flux and axionic flux in Scenario 4.

Type of flux Type of quadratic flux terms Number of terms Total #ðVÞ
Standard flux fFF;HH;QQ; PP; P0P0; Q0Q0; H0H0;

F0F0; FH; FQ; FP; FP0; FQ0; FH0; FF0;
HQ;HP;HP0; HQ0; HH0; HF0; QP;QP0; QQ0;

QH0; QF0; PP0; PQ0; PH0; PF0;
P0Q0; P0H0; P0F0; Q0H0; Q0F0; H0F0g

f76; 152; 1059; 2118; 2118; 4236; 608; 1216;
133; 399; 603; 603; 1461; 487; 1334;

603; 798; 1461; 1206; 1334; 974; 3720; 3057;
6414; 1206; 2922; 6414; 6114; 2922; 2412; 7440;

1596; 2412; 2412; 3192; 1064g

76,276

Axionic flux fFF ;HH;QQ;PP;P0P0;Q0Q0;H0H0; F 0F 0;
FH; FQ; FP; FP0; FQ0; FH0; FF 0;HQ;HP;

HP0;HQ0;HH0;HF 0;QP;QP0;QQ0;QH0;QF 0;
PP0;PQ0;PH0;PF 0;P0Q0;P0H0;P0F 0;

Q0H0;Q0F 0;H0F 0g

f76; 76; 408; 408; 408; 408; 76; 76; 8; 24; 180; 180;
474; 158; 185; 180; 24; 474; 180; 185; 158;
972; 522; 474; 180; 972; 24; 180; 180; 24; 8g

10,888

TABLE III. Counting of scalar potential terms with standard flux and axionic flux in Scenario 3.

Type of flux Type of quadratic flux terms Number of terms Total #ðVÞ
Standard flux fFF;HH;QQ; PP;HQ; FP;QP; FH; FQ;HPg f76; 152; 1059; 2118; 603; 603; 3720; 133; 399; 798g 9661
Axionic flux fFF ;HH;QQ;PP;HQ; FP;QP; FH; FQ;HPg f76; 76; 408; 408; 180; 180; 972; 8; 24; 24g 2356

TABLE II. Counting of scalar potential terms with standard flux and axionic flux in Scenario 2.

Type of flux Type of quadratic flux terms Number of terms Total #ðVÞ
Standard flux fFF;HH;QQ;HQ; FH; FQg f76; 152; 1059; 603; 133; 399g 2422
Axionic flux fFF ;HH;QQ;HQ; FH; FQg f76; 76; 408; 180; 8; 24g 772
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also includes the topological terms besides having some internal metric dependent pieces. We define the following
shorthand notations using the flux actions in Eq. (3.6) which will be used whenever needed,

ðQτÞa1a2a3 ¼
3

2
Qb1b2

½a1 τa2 a3�b1b2 ; ðPτÞa1a2a3 ¼
3

2
Pb1b2
½a1 τa2 a3�b1b2 ;

ðP0ττÞa1a2a3 ¼
1

4
P0c;b1b2b3b4τ½a1 a2 jcb1jτa3�b2b3b4 ;

ðQ0ττÞa1a2a3 ¼
1

4
Q0c;b1b2b3b4τ½a1 a2 jcb1jτa3�b2b3b4 ;

ðH0τττÞa1a2a3 ¼
1

192
H0c1c2c3;b1b2b3b4b5b6τ½a1 a2 jc1c2jτa3�c3b1b2τb3b4b5b6 ;

ðF 0τττÞa1a2a3 ¼
1

192
F 0c1c2c3;b1b2b3b4b5b6τ½a1 a2 jc1c2jτa3�c3b1b2τb3b4b5b6 ; ð4:3Þ

and

ðϵτÞij ¼ 1

4!
ϵijklmnτklmn;

ðϵττÞij ¼
1

2
·
1

2!
·
1

4!
ϵklmnpqτklmnτpqij;

ðϵϵττÞijkl ¼ 1

2!
ϵijklmnðϵττÞmn

¼ 1

8
·
1

4!
ϵijklrsϵk

0l0m0n0pqτk0l0m0n0τpqrs: ð4:4Þ

For the toroidal model, this results in the following simple
cases:

ðϵτÞij ¼

0
BBBBBBBBBB@

0 τ1 0 0 0 0

−τ1 0 0 0 0 0

0 0 0 τ2 0 0

0 0 −τ2 0 0 0

0 0 0 0 0 τ3

0 0 0 0 −τ3 0

1
CCCCCCCCCCA
;

ðϵττÞij ¼

0
BBBBBBBBBB@

0 τ2τ3 0 0 0 0

−τ2τ3 0 0 0 0 0

0 0 0 τ1τ3 0 0

0 0 −τ1τ3 0 0 0

0 0 0 0 0 τ1τ2

0 0 0 0 −τ1τ2 0

1
CCCCCCCCCCA
:

ð4:5Þ

In addition, the antisymmetric 4-rank tensor ðϵϵττÞijkl has
only three independent nontrivial components, ðϵϵττÞ1234 ¼
τ1τ2; ðϵϵττÞ3456 ¼ τ2τ3; ðϵϵττÞ1256 ¼ τ1τ3, and this also
gives the following relation:

ðϵϵτττÞ¼ 1

4!
ðϵϵττÞijklτijkl¼

1

2! ·4!
ϵijklmnτijklðϵττÞmn¼3V2:

ð4:6Þ

Now we present the explicit forms of all the 36 scalar
potential pieces in detail.

A. Diagonal terms

In this class, there are eight types of terms which we
consider one-by-one.

1. FF type

Such terms can be rewritten in the following piece:

VFF ¼ 1

4sV

�
1

3!
F ijkF i0j0k0gii

0
gjj

0
gkk

0
�
: ð4:7Þ

2. HH type

Such terms can be rewritten in the following piece:

VHH ¼ s
4V

�
1

3!
HijkHi0j0k0gii

0
gjj

0
gkk

0
�
: ð4:8Þ

Although the qualitative form of the above mentioned two
pieces,VFF andVHH, look identical as compared to previous
simpler cases, e.g., theGVWscalar potential given in (2.27).
Let us emphasize here the fact that the internal structure is
vastly difference because of the definitions of the general-
ized axionic-flux combinations (3.9).

3. QQ type

Such terms can be rewitten in the following three pieces:

VQQ ¼ Vð1Þ
QQ þ Vð2Þ

QQ þ Vð3Þ
QQ; ð4:9Þ

where
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Vð1Þ
QQ ¼ 1

4sV

�
3 ·

�
1

3!
Qk

ijQk0
i0j0gii0gjj0gkk

0
��

;

Vð2Þ
QQ ¼ 1

4sV

�
2 ·

�
1

2!
Qm

niQn
mi0gii0

��
;

Vð3Þ
QQ ¼ 1

4sV

�
1

4!
Qm

½ī j̄Qn
k̄mgnl̄�τijkl

�
: ð4:10Þ

As we have earlier explained, although the first two terms
look similar to those of (2.40) further generalization of the
axionic flux combinations in (3.9) makes it much compli-
cated having large number of terms. Moreover, the last

piece is Vð3Þ
QQ is a new piece which has not been reported in

the earlier approaches of dimensional oxidation [52,54,60],
as these terms are nullified by the Bianchi identities.
However for the sake of completely rewriting the full
scalar potential arising from the F-term superpotential we
have invoked this term as well.

4. PP type

Such terms can be rewritten in the following three pieces:

VPP ¼ Vð1Þ
PP þ Vð2Þ

PP þ Vð3Þ
PP; ð4:11Þ

where

Vð1Þ
PP ¼ s

4V

�
3 ·

�
1

3!
Pk

ijPk0
i0j0gii0gjj0gkk

0
��

;

Vð2Þ
PP ¼ s

4V

�
2 ·

�
1

2!
Pm

niPn
mi0gii0

��
;

Vð3Þ
PP ¼ s

4V

�
1

4!
Pm

½ī j̄Pn
k̄mgnl̄�τijkl

�
: ð4:12Þ

Similar arguments which have been made for the QQ-type
hold for this case as well. In that regard, we mention that the

last piece is Vð3Þ
PP is a new piece which has not been reported

in the earlier approaches of dimensional oxidation [54], as
these terms are nullified by the Bianchi identities. We will
discuss the aspect of Bianchi identities later in the upcom-
ing section.

5. P0P0 type

Such terms can be rewritten in the following three pieces:

VP0P0 ¼ Vð1Þ
P0P0 þ Vð2Þ

P0P0 þ Vð3Þ
P0P0 ; ð4:13Þ

where

Vð1Þ
P0P0 ¼ 1

4sV
det½gij�

�
3 ·

�
1

3!
P0

ij
kP0

i0j0
k0gii

0
gjj

0
gkk0

��
;

Vð2Þ
P0P0 ¼ 1

4sV
det½gij�

�
2 ·

�
1

2!
P0

ni
mP0

mi0
ngii

0
��

;

Vð3Þ
P0P0 ¼ 1

4sV

�
1

4!
P0½ī j̄mP0

k̄m
ngl̄�nðϵϵττÞijkl

�
: ð4:14Þ

Notice that there is an additional overall factor det½gij� in
the first two pieces, as compared to the pieces with
unprimed fluxes. This can be understood from the defi-
nition (3.2) and the identity (3.3). The third piece has two
pieces of the antisymmetric Levi-Civita symbol (corre-
sponding to each of the two P0 fluxes which are) encoded in
ðϵϵττÞijkl, and therefore the overall factor det½gij� does not
appear in this case.

6. Q0Q0 type

Such terms can be rewritten in the following three pieces:

VQ0Q0 ¼ Vð1Þ
Q0Q0 þ Vð2Þ

Q0Q0 þ Vð3Þ
Q0Q0 ; ð4:15Þ

where

Vð1Þ
Q0Q0 ¼ s

4V
det½gij�

�
3 ·

�
1

3!
Q0

ij
kQ0

i0j0
k0gii

0
gjj

0
gkk0

��
;

Vð2Þ
Q0Q0 ¼ s

4V
det½gij�

�
2 ·

�
1

2!
Q0

ni
mQ0

mi0
ngii

0
��

;

Vð3Þ
Q0Q0 ¼ s

4V

�
1

4!
Q0½ī j̄mQ0

k̄m
ngl̄�nðϵϵττÞijkl

�
: ð4:16Þ

All the arguments which have been made for the P0P0-type
hold for this case well.

7. H0H0 type

Such terms can be rewritten in the following single piece:

VH0H0 ¼ 1

4sV
det½gij�

�
1

3!
H0ijkH0i0j0k0gii0gjj0gkk0

�
: ð4:17Þ

Moreover, using the shorthand notations in Eq. (4.3) this
piece can also be written as

VH0H0 ¼ 1

4sV

�
1

3!
· ðH0τττÞijkðH0τττÞi0j0k0gii0gjj0gkk0

�
;

while the identity in Eq. (3.3) ends up reexpressing the
same term as

VH0H0 ¼ 1

4sV

�
1

3!
·
1

6!
H0ijk;lmnpqrH0i0j0k0;l0m0n0p0q0r0

× gii0gjj0gkk0gll0gmm0gnn0gpp0gqq0grr0
�
: ð4:18Þ
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8. F 0F 0 type

Such terms can be rewritten in the following single piece:

VF 0F 0 ¼
s
4V

det½gij�
�
1

3!
F 0ijkF 0i0j0k0gii0gjj0gkk0

�
: ð4:19Þ

Similar to the H0H0 type piece, using the shorthand
notations in Eq. (4.3) we have

VF 0F 0 ¼
s
4V

�
1

3!
· ðF 0τττÞijkðF 0τττÞi0j0k0gii0gjj0gkk0

�
;

while the identity in Eq. (3.3) ends up reexpressing the
same term as

VF 0F 0 ¼
s
4V

�
1

3!
·
1

6!
F 0ijk;lmnpqrF 0i0j0k0;l0m0n0p0q0r0

× gii0gjj0gkk0gll0gmm0gnn0gpp0gqq0grr0
�
: ð4:20Þ

This shows that there can be multiple ways of rewriting
the same expression and one has to invoke additional
insights for anticipating the higher-dimensional origin of
such terms.

B. Cross-terms of the first type

We classify the remaining 28 pieces into two categories
of cross-terms. The first type includes 12 terms while the
remaining 16 terms are those which involve topological
terms. We will summarize all these terms now.

1. FP type

Such terms can be rewritten in the following two
pieces:

VFP ¼ Vð1Þ
FP þ Vð2Þ

FP; ð4:21Þ

where

Vð1Þ
FP¼

1

4V

�
ð2Þ ·

�
1

2!
F imnPi0

mngii
0
��

;

Vð2Þ
FP¼

1

4V
det½gij�

�
ð2Þ ·ð−12Þ · 1

4!

�
P½īmnFmj̄k̄gnl̄�ðϵϵττÞijkl

��
:

ð4:22Þ

2. HQ type

Such terms can be rewritten in the following two
pieces:

VHQ ¼ Vð1Þ
HQ þ Vð2Þ

HQ; ð4:23Þ

where

Vð1Þ
HQ ¼ 1

4V

�
ð−2Þ ×

�
1

2!
HimnQi0

mngii
0
��

;

Vð2Þ
HQ ¼ 1

4V
det½gij�

�
ð−2Þ · ð−12Þ

·
1

4!

�
Q½īmnHmj̄ k̄gnl̄�ðϵϵττÞijkl

��
: ð4:24Þ

3. FP0 type

Such terms can be rewritten in the following two
pieces:

VFP0 ¼ Vð1Þ
FP0 þ Vð2Þ

FP0 ; ð4:25Þ

where

Vð1Þ
FP0 ¼ 1

4sV

�
ð2Þ ·

�
1

3!
FmnpP0i;mnpi0gii0

��
;

Vð2Þ
FP0 ¼ 1

4sV

�
ð2Þ ·ð−4Þ · 1

4!

�
P0m;½ī j̄ k̄nFmpngpl̄�τijkl

��
: ð4:26Þ

4. HQ0 type

Such terms can be rewritten in the following two pieces:

VHQ0 ¼ Vð1Þ
HQ0 þ Vð2Þ

HQ0 ; ð4:27Þ

where

Vð1Þ
HQ0 ¼ s

4V

�
ð2Þ ·

�
1

3!
HmnpQ0i;mnpi0gii0

��
;

Vð2Þ
HQ0 ¼ s

4V

�
ð2Þ ·ð−4Þ · 1

4!

�
Q0m;½ī j̄k̄nHmpngpl̄�τijkl

��
: ð4:28Þ

5. PF 0 type

Such terms can be rewritten in the following two
pieces:

VPF 0 ¼ Vð1Þ
PF 0 þ Vð2Þ

PF 0 ; ð4:29Þ

where defining ðF 0τττÞijk ¼ ðF 0 ⊙ τττÞ we have

Vð1Þ
PF 0 ¼

s
4V

�
ð−2Þ ·

�
1

2!
Pi

jkðF 0τττÞi0jkgii0
��

;

Vð2Þ
PF 0 ¼

s
4V

�
ð2Þ · ð4Þ ·

�
1

2! · 2!
Pm

i½j̄F 0mi0 j̄0�gii0 ðϵττÞjj0
��

:

ð4:30Þ
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Let us note that the first piece can also be expressed as

Vð1Þ
PF 0 ¼

s
4V

�
ð2Þ ·ð12Þ ·

�
1

2! ·4!
F 0p½ī j̄ðPgÞk̄ l̄�qðϵττÞpqτijkl

��
;

ð4:31Þ

where we define ðPgÞijk ¼ 1
3!
Pm

½ī j̄gmk̄�.

6. QH0 type

Such terms can be rewritten in the following two pieces:

VQH0 ¼ Vð1Þ
QH0 þ Vð2Þ

QH0 ; ð4:32Þ

where defining ðH0τττÞijk ¼ ðH0 ⊙ τττÞ we have

Vð1Þ
QH0 ¼ 1

4sV

�
ð−2Þ ·

�
1

2!
Qi

jkðH0τττÞi0jkgii0 Þ
�
;

Vð2Þ
QH0 ¼ 1

4sV

�
ð2Þ · ð4Þ ·

�
1

2! · 2!
Qm

i½j̄H0mi0 j̄0�gii0 ðϵττÞjj0
��

:

ð4:33Þ

Let us note that the first piece can also be expressed as

Vð1Þ
QH0 ¼ 1

4sV

�
ð2Þ ·ð12Þ ·

�
1

2! ·4!
H0p½ī j̄ðQgÞk̄ l̄�qðϵττÞpqτijkl

��
;

ð4:34Þ

where we define ðQgÞijk ¼ 1
3!
Qm

½ī j̄gmk̄�.

7. P0F 0 type

Such terms can be rewritten in the following two pieces:

VP0F 0 ¼ Vð1Þ
P0F 0 þ Vð2Þ

P0F 0 ; ð4:35Þ

where

Vð1Þ
P0F 0 ¼

1

4V

�
ð2Þ ·det½gij� ·

�
1

2!
P0

mn
iF 0mni0gii0

��
;

Vð2Þ
P0F 0 ¼

1

4V

�
ð2Þ ·det½gij� ·ð−12Þ ·

�
1

4!
F 0½ī j̄mP0

mn
k̄gnl̄�τijkl

��
:

ð4:36Þ

Let us note that the first piece can also be expressed
as a piece in which the det½gij� factor does not explicitly
appear,

Vð1Þ
P0F 0 ¼

1

4V

�
ð2Þ ·

�
1

3!
P0i;jlmnðF 0τττÞlmngij

��
: ð4:37Þ

Moreover, although we have separated this piece VP0F 0 into
two terms keeping in mind the separation of the pieces to be
nullified by the Bianchi identities, it is possible to express
all the terms of VP0F 0 in a single piece as

VP0F 0 ¼
1

4V

�
ð2Þ ·

�
1

2 · 2 · 2
P0m;npijgnrF 0rklτijklðϵττÞmp

��
:

ð4:38Þ

8. Q0H0 type

Such terms can be rewritten in the following two pieces:

VQ0H0 ¼ Vð1Þ
Q0H0 þ Vð2Þ

Q0H0 ; ð4:39Þ

where

Vð1Þ
Q0H0 ¼ 1

4V

�
ð−2Þ · det½gij� ·

�
1

2!
Q0

mn
iH0mni0gii0

��
;

Vð2Þ
Q0H0 ¼ 1

4V

�
ð−2Þ · det½gij� · ð−12Þ

·

�
1

4!
H0½ī j̄ mQ0

mn
k̄gnl̄�τijkl

��
: ð4:40Þ

Let us note that the first piece can also be expressed as a
piece in which the det½gij� factor does not explicitly appear,

Vð1Þ
Q0H0 ¼ 1

4V

�
ð−2Þ ·

�
1

3!
Q0i;jlmnðH0τττÞlmngij

��
: ð4:41Þ

Moreover, although we have separated this piece VQ0H0 into
two terms keeping in mind the separation of the pieces to be
nullified by the Bianchi identities, it is possible to express
all the terms of VQ0H0 in a single piece as

VQ0H0 ¼ 1

4V

�
ð−2Þ ·

�
1

2 ·2 ·2
Q0m;npijgnrH0rklτijklðϵττÞmp

��
:

ð4:42Þ

9. FF 0 type

Such terms can be rewritten in the following two
pieces:

VFF 0 ¼ Vð1Þ
FF 0 þ Vð2Þ

FF 0 ; ð4:43Þ

where

Vð1Þ
FF 0 ¼

1

4V

�
ð−2Þ ·

�
1

3! ·3!
F lmnF 0ijk;lmni0j0k0gii0gjj0gkk0

��
;

Vð2Þ
FF 0 ¼

1

4V

�
ð−2Þ ·ð4Þ ·

�
1

2 ·2 ·4!
F 0rmn;pqijklF ½p̄mngq̄�rτijkl

��
:

ð4:44Þ
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Here the first piece can also be expressed as

Vð1Þ
FF 0 ¼

1

4V

�
ð2Þ ·

�
1

3!
F lmnðF 0τττÞijkgii0gjj0gkk0

��
: ð4:45Þ

10. HH0 type

Such terms can be rewritten in the following two pieces:

VHH0 ¼ Vð1Þ
HH0 þ Vð2Þ

HH0 ; ð4:46Þ

where

Vð1Þ
HH0 ¼ 1

4V

�
ð2Þ ·

�
1

3! ·3!
HlmnH0ijk;lmni0j0k0gii0gjj0gkk0

��
;

Vð2Þ
HH0 ¼ 1

4V

�
ð2Þ ·ð4Þ ·

�
1

2 ·2 ·4!
H0rmn;pqijklH½p̄mngq̄�rτijkl

��
:

ð4:47Þ

Here the first piece can also be expressed as

Vð1Þ
HH0 ¼ 1

4V

�
ð−2Þ ·

�
1

3!
HlmnðH0τττÞijkgii0gjj0gkk0

��
: ð4:48Þ

11. QQ0 type

Such terms can be rewritten in the following five
pieces:

VQQ0 ¼ Vð1Þ
QQ0 þ Vð2Þ

QQ0 þ Vð3Þ
QQ0 þ Vð4Þ

QQ0 þ Vð5Þ
QQ0 ; ð4:49Þ

where

Vð1Þ
QQ0 ¼ 1

4V

�
ð2Þ ·

�
3 ·

1

3!
Qm

½ī j̄Q0k̄�;mi0j0k0gii0gjj0gkk0
��

;

Vð2Þ
QQ0 ¼ 1

4V

�
ð2Þ · ð8Þ ·

�
1

2! · 4!
Qm

½īnQ0p;mj̄ k̄ l̄�gnpτijkl

��
;

Vð3Þ
QQ0 ¼ 1

4V

�
ð2Þ · ð−16Þ ·

�
1

2! · 4!
Qm

½īnQ0m;pj̄ k̄ l̄�gnpτijkl

��
;

Vð4Þ
QQ0 ¼ 1

4V

�
ð2Þ · 3 · 1

3! · 2! · 2!
· ðgimQm

npτnpjkÞ
�
Q0l0;m0n0jkτl0m0n0i

��
;

Vð5Þ
QQ0 ¼ 1

4V

�
ð2Þ · ð2Þ ·

�
1

2!
Q½īlmQ0

lm
pgpj̄�ðϵτÞij

��
: ð4:50Þ

12. PP0 type

Similar to the previous case, such terms can be rewritten in the following five pieces:

VPP0 ¼ Vð1Þ
PP0 þ Vð2Þ

PP0 þ Vð3Þ
PP0 þ Vð4Þ

PP0 þ Vð5Þ
PP0 ; ð4:51Þ

where

Vð1Þ
PP0 ¼ 1

4V

�
ð−2Þ ·

�
3 ·

1

3!
Pm

½ī j̄P0k̄�;mi0j0k0gii0gjj0gkk0
��

;

Vð2Þ
PP0 ¼ 1

4V

�
ð−2Þ · ð8Þ ·

�
1

2! · 4!
Pm

½īnP0p;mj̄ k̄ l̄�gnpτijkl

��
;

Vð3Þ
PP0 ¼ 1

4V

�
ð−2Þ · ð−16Þ ·

�
1

2! · 4!
Pm

½īnP0m;pj̄ k̄ l̄�gnpτijkl

��
;

Vð4Þ
PP0 ¼ 1

4V

�
ð−2Þ · 3 · 1

3! · 2! · 2!
· ðgimPm

npτnpjkÞ
�
P0l0;m0n0jkτl0m0n0i

��
;

Vð5Þ
PP0 ¼ 1

4V

�
ð−2Þ · ð2Þ ·

�
1

2!
P½īlmP0

lm
pgpj̄�ðϵτÞij

��
: ð4:52Þ
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C. Cross-terms of the second type

In this section we present the cross-terms which may also
involve the tadpole contributions, which are to be com-
pensated by introducing the local sources such asD-branes,
O-planes or other exotic branes.

1. FH type

These terms are generalized version of the F ∧ H term in
the GVW scenario, which correlates with the D3-brane
tadpole contributions. These are given as

VFH ¼ 1

4V2

�
ð2Þ ·

�
1

3! · 3!
F ijkHlmnϵ

ijklmn

��
: ð4:53Þ

Notice the fact that the explicit overall volume factor
is now V2 rather than V and the dilaton dependence is not
there. Subsequently, this piece turns out to be self-dual under
the S-duality transformations. Moreover, this term does not
involve the metric of the toroidal sixfold, and therefore one
can anticipate that these are topological contributions.

2. FQ type

This term corresponds to the D7-brane tadpole contri-
butions and can be given as

VFQ ¼ 1

4sV2

�
ð2Þ ·

�
1

2!
F ½īmnQj̄�mnðϵτÞij

��
: ð4:54Þ

Notice again the absence of metric in this pieces which is
due to its topological nature. This piece can also be
expressed using the shorthand notations of three-forms
defined in (4.3), and can be given as

VFQ ¼ 1

4sV2

�
ð−2Þ ·

�
1

3! · 3!
F ijkðQτÞlmnϵ

ijklmn

��
: ð4:55Þ

3. HP type

Due to S-dual completion, there is a piece analogous
to the D7-brane tadpole contributions, which is also

known as I7-brane contributions. This can be
given as

VHP ¼ s
4V2

�
ð2Þ ·

�
1

2!
H½īmnPj̄�mnðϵτÞij

��
: ð4:56Þ

Notice again the absence of metric in this pieces which is
due to its topological nature. Similar to the previous case
with VFQ piece, this piece can also be expressed using the
shorthand notations of three-forms defined in (4.3), and be
given as

VHP ¼ s
4V2

�
ð−2Þ ·

�
1

3! · 3!
HijkðPτÞlmnϵ

ijklmn

��
: ð4:57Þ

4. QP type

Such terms can be rewritten in the following three pieces:

VQP ¼ Vð1Þ
QP þ Vð2Þ

QP þ Vð3Þ
QP; ð4:58Þ

where

Vð1Þ
QP¼

1

4

�
ð2Þ ·

�
3 ·

1

3!
·3 ·

1

3!

�
Qp

½ī j̄gp;k̄�
��

Pq
½l̄m̄gq;n̄�

�
ϵijklmn

��
;

Vð2Þ
QP¼

1

4V2

h
ð2Þ ·

�
Pm

knQ½īmlgnj̄�−Qm
knP½īmlgnj̄�

�
gklðϵτÞij

i
;

Vð3Þ
QP¼

1

4V2
½ð2Þ ·

�
Pm

n½īQn
mj̄�−Qm

n½īPn
mj̄�

�
ðϵττÞij

i
:

ð4:59Þ

5. P0Q0 type

Such terms can be rewritten in the following three pieces:

VP0Q0 ¼ Vð1Þ
P0Q0 þ Vð2Þ

P0Q0 þ Vð3Þ
P0Q0 ; ð4:60Þ

where

Vð1Þ
P0Q0 ¼ 1

4

�
ð2Þ ·

�
3 ·

1

3!
· 3 ·

1

3!

�
P0½ī j̄pgp;k̄�

��
Q0½l̄ m̄qgq;n̄�

�
ϵijklmn

��
;

Vð2Þ
P0Q0 ¼ 1

4

h
ð2Þ ·

�
P0

kn
mQ0

ml
½īgnj̄� −Q0

kn
mP0

ml
½īgnj̄�

�
gklðϵττÞij

i
;

Vð3Þ
P0Q0 ¼ 1

4

h
ð2Þ ·

�
P0½īnmQ0

mj̄�n −Q0½īnmP0
mj̄�n

�
ðϵτÞij

i
: ð4:61Þ
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6. FQ0 type

Such terms can be rewritten in the following three pieces:

VFQ0 ¼ Vð1Þ
FQ0 þ Vð2Þ

FQ0 þ Vð3Þ
FQ0 ; ð4:62Þ

where

Vð1Þ
FQ0 ¼ 1

4

�
ð2Þ ·

�
1

2! · 3!
F ijmQ0

i0j0
mgii

0
gjj

0
��

;

Vð2Þ
FQ0 ¼ 1

4V2

�
ð−2Þ ·

�
1

2!
Fklmgk½īQ0p;j̄�lmngpn

�
ðϵττÞij

�
;

Vð3Þ
FQ0 ¼ 1

4V2

�
ð2Þ ·

�
1

2! · 2!
F ijmQ0

kl
m

�
ðϵϵττÞijkl

�
: ð4:63Þ

7. HP0 type

Such terms can be rewritten in the following three pieces:

VHP0 ¼ Vð1Þ
HP0 þ Vð2Þ

HP0 þ Vð3Þ
HP0 ; ð4:64Þ

where

Vð1Þ
HP0 ¼1

4

�
ð−2Þ ·

�
1

2! ·3!
HijmP0

i0j0
mgii

0
gjj

0
��

;

Vð2Þ
HP0 ¼ 1

4V2

�
ð2Þ ·

�
1

2!
Hklmgk½īP0p;j̄�lmngpn

�
ðϵττÞij

�
;

Vð3Þ
HP0 ¼ 1

4V2

�
ð−2Þ ·

�
1

2! ·2!
HijmP0

kl
m

�
ðϵϵττÞijkl

�
: ð4:65Þ

8. FH0 type

Such terms can be rewritten in the following two pieces:

VFH0 ¼ Vð1Þ
FH0 þ Vð2Þ

FH0 ; ð4:66Þ

where

Vð1Þ
FH0 ¼ 1

4sV2

�
ð2Þ ·ð6Þ ·

�
1

4!
F ½ī j̄mgnk̄gpl̄�H0mnp

�
ðϵϵττÞijkl

�
;

Vð2Þ
FH0 ¼ 1

4s

�
ð2Þ ·ð2Þ ·

�
1

3!
F ijkH0ijk

��
: ð4:67Þ

9. HF 0 type

Such terms can be rewritten in the following two pieces:

VHF 0 ¼ Vð1Þ
HF 0 þ Vð2Þ

HF 0 ; ð4:68Þ

where

Vð1Þ
HF 0 ¼

s
4V2

�
ð2Þ · ð6Þ ·

�
1

4!
H½ī j̄ mgnk̄gpl̄�F 0mnp

�
ðϵϵττÞijkl

�
;

Vð2Þ
HF 0 ¼

s
4

�
ð2Þ · ð2Þ ·

�
1

3!
HijkF 0ijk

��
: ð4:69Þ

10. QF 0 type

Such terms can be rewritten in the following three pieces:

VQF 0 ¼ Vð1Þ
QF 0 þ Vð2Þ

QF 0 þ Vð2Þ
QF 0 ; ð4:70Þ

where

Vð1Þ
QF 0 ¼

1

4

�
ð2Þ ·

�
1

3! · 2!
F 0ijmQm

i0j0gii0gjj0
��

;

Vð2Þ
QF 0 ¼

1

4

�
ð2Þ · ð12Þ ·

�
1

4!
g½īmQm

j̄nF 0pk̄ l̄�gnpτijkl

��
;

Vð3Þ
QF 0 ¼

1

4

�
ð2Þ · ð2Þ ·

�
1

2! · 2!
F 0ijmQm

klτijkl

��
: ð4:71Þ

11. PH0 type

Such terms can be rewritten in the following three pieces:

VPH0 ¼ Vð1Þ
PH0 þ Vð2Þ

PH0 þ Vð2Þ
PH0 ; ð4:72Þ

where

Vð1Þ
PH0 ¼ 1

4

�
ð−2Þ ·

�
1

3! · 2!
H0ijmPm

i0j0gii0gjj0
��

;

Vð2Þ
PH0 ¼ 1

4

�
ð−2Þ · ð12Þ ·

�
1

4!
g½īmPm

j̄nH0pk̄ l̄�gnpτijkl

��
;

Vð3Þ
PH0 ¼ 1

4

�
ð−2Þ · ð2Þ ·

�
1

2! · 2!
H0ijmPm

klτijkl

��
: ð4:73Þ

12. QP0 type

Such terms can be rewritten in the following three pieces:

VQP0 ¼ Vð1Þ
QP0 þ Vð2Þ

QP0 þ Vð2Þ
QP0 ; ð4:74Þ

where

Vð1Þ
QP0 ¼ 1

4sV2

�
ð−2Þ ·

�
1

2! ·2!
Qm

npgn½īgpj̄�P0m;ijklðϵττÞkl
��

;

Vð2Þ
QP0 ¼ 1

4sV2

�
ð−2Þ ·ð24Þ ·

�
1

4!
Q½īmngmj̄P

0
nk̄

pgpl̄�ðϵϵττÞijkl
��

;

Vð3Þ
QP0 ¼ 1

4s

�
ð−2Þ ·ð2Þ ·

�
1

2!
Qi

jkP0
jk
i

��
: ð4:75Þ
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13. PQ0 type

Such terms can be rewritten in the following three pieces:

VPQ0 ¼ Vð1Þ
PP0 þ Vð2Þ

PQ0 þ Vð2Þ
PQ0 ; ð4:76Þ

where

Vð1Þ
PQ0 ¼ s

4V2

�
ð−2Þ ·

�
1

2! ·2!
Pm

npgn½īgpj̄�Q0m;ijklðϵττÞkl
��

;

Vð2Þ
PQ0 ¼ s

4V2

�
ð−2Þ ·ð24Þ ·

�
1

4!
P½īmngmj̄Q

0
nk̄

pgpl̄�ðϵϵττÞijkl
��

;

Vð3Þ
PQ0 ¼ s

4

�
ð−2Þ ·ð2Þ ·

�
1

2!
Pi

jkQ0
jk
i

��
: ð4:77Þ

14. P0H0 type

This piece can be given as

VP0H0 ¼ 1

4s

�
ð2Þ · 1

3! ·3!
·

�
1

2!
P0½ī;pqj̄k̄�ðϵττÞpqH0lmnϵijklmn

��
;

ð4:78Þ

or equivalently one has

VP0H0 ¼ 1

4sV2

�
ð−2Þ ·

�
1

3! ·3!
ðP0ττÞijkðH0τττÞlmnϵ

ijklmn

��
:

ð4:79Þ

15. Q0F 0 type

This piece can be given as

VQ0F 0 ¼
s
4

�
ð2Þ · 1

3! · 3!
·

�
1

2!
Q0½ī;pqj̄ k̄�ðϵττÞpqF 0lmnϵijklmn

��
;

ð4:80Þ

or equivalently one has

VQ0F 0 ¼
s

4V2

�
ð−2Þ ·

�
1

3! · 3!
ðQ0ττÞijkðF 0τττÞlmnϵ

ijklmn

��
:

ð4:81Þ

16. H0F 0 type

Finally, the last term can be expressed as

VH0F 0 ¼
V2

4

�
ð2Þ ·

�
1

3! · 3!
H0ijkF 0lmnϵijklmn

��
; ð4:82Þ

or, one can equivalently express this in the following
different ways,

VH0F 0 ¼
1

4

�
ð2Þ ·

�
1

3! · 3!
H0ijkF 0lmnEijklmn

��
; ð4:83Þ

and

VH0F 0 ¼
1

4V2

�
ð2Þ ·

�
1

3! · 3!
ðH0τττÞijkðF 0τττÞlmnϵ

ijklmn

��
:

ð4:84Þ

Now, let us mention a couple of insights about this
generic collection of pieces:

(i) In the absence of prime fluxes 26 pieces of the
scalar potential are trivial and there remains only
ten pieces as studied in [54,68]. This includes
four pieces of diagonal type (VFF ; VHH; VQQ; VPP),
two pieces of cross-terms of the first type
(VHQ; VFP) and four pieces of cross-terms of second
type (VFH; VFQ; VHP; VPQ).

1

(ii) Recalling the four pairs of S-dual fluxes, the scalar
potential can also be clubbed into various collections
which remain invariant under the S-duality. For
example, we have the following S-dual invariant
pieces among the overall 36 pieces of the scalar
potential in which there are some pieces which are
self S-dual as well,

ðVFF þ VHHÞ; ðVQQ þ VPPÞ; ðVP0P0 þ VQ0Q0 Þ; ðVH0H0 þ VF 0F 0 Þ; ð4:85Þ

ðVFP þ VHQÞ; ðVFP0 þ VHQ0 Þ; ðVQH0 þ VPF 0 Þ; ðVP0F 0 þ VQ0H0 Þ;
ðVFQ þ VHPÞ; ðVFQ0 þ VHP0 Þ; ðVQF 0 þ VPH0 Þ; ðVP0H0 þ VQ0F 0 Þ;
ðVQQ0 þ VPP0 Þ; ðVFF 0 þ VHH0 Þ; ðVFH0 þ VHF 0 Þ; ðVQP0 þ VPQ0 Þ;
ðVFHÞ; ðVQPÞ; ðVP0Q0 Þ; ðVH0F 0 Þ: ð4:86Þ

1Recall that the axionic-flux combinations involved in these ten term generically depend on prime indexed fluxes as well and
therefore explicit expressions of these axionic flux combinations will simplify in their absence. So, it should not be naively assumed that
the internal structure of these ten pieces remain the same in the absence of prime fluxes.
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Given that complex-structure moduli as well as the Einstein-frame volume moduli do not transform under the
S-duality, one can easily verify the above-mentioned claims by using the transformations (2.22)–(2.23) and the
axionic fluxes defined in Eq. (3.9). Let us quickly demonstrate it for one simple case of GVW scenario using the
following transformations:

s →
s

s2 þ C2
0

; C0 → −
C0

s2 þ C2
0

; ui → ui; vi → vi;

τα → τα; ρα → ρα; V → V; gij → gij F → H; H → −F: ð4:87Þ

Subsequently one can understand the S-dual transformation of the ðVFF þ VHHÞ piece in the following way:

VFF þ VHH ¼ gii
0
gjj

0
gkk

0

3! · 4 · V

�
1

s
F ijkF i0jk0 þ sHijkHi0jk0

�

¼ gii
0
gjj

0
gkk

0

3! · 4 · V

�
1

s
FijkFi0jk0 þ

s2 þ C2
0

s
HijkHi0jk0 − 2

C0

s
FijkHi0jk0

�
: ð4:88Þ

Therefore, the first two pieces are exchanged under
S-duality while the third piece is self-dual as
C0=s → −C0=s under S-duality.

(iii) The new scalar potential formulation presented in
this work is a direct generalization of a series of
previous works which include only a subset of fluxes
considered in the present work. Moreover this
formulation of the scalar potential is manifestly
S-duality invariant.

V. CONSTRAINTS ON THE FLUXES

In order to address phenomenological issues (such as
moduli stabilization, flux vacua, etc.) one has to find the
genuine nontrivial scalar potential. This is crucially impor-
tant in the sense that many of the 76,276 terms in the full
scalar potential may get nullified due to possible constraints
on the flux parameters. Although it is always quite tricky to
know/claim an exhaustive set of constraints which can be
present in a given construction (e.g., see [18,42,53,95]),
there are two main sources of constraints which arise form
the so-called Bianchi identities and the tadpole cancellation
conditions. In this section, we plan to discuss these aspects
in the current toroidal model.

A. Bianchi identities

In the presence of generalized fluxes beyond the conven-
tional ðF;HÞ S-dual pair, there are quadratic flux constraints
arising from the nilpotency of the twisted differential
operator [18,27,28,53]. Such an operator gets further gen-
eralizedwith the inclusion ofmore andmore fluxes based on
the T=S duality arguments as we have considered in (3.8),
and the choice of orientifold setting which restrict some of
the flux parameters in a nontrivial fashion.
In the absence of prime fluxes, such identities

have been studied in good detail at various occasions
[18,27,28,30,32,53]. Generically, there are two formulations

of Bianchi identities, one in which fluxes are represented in
terms of the real six-dimensional indices (e.g.,Fijk; Hijk etc.)
like the current work, and the second formulation involves
fluxes represented with cohomology indices. However, it has
been also found that the set of constraints arising from the two
formulations are not always identical [18,42,53,95].
In the interest of the current model, the Bianchi identities

have been studied in good detail in [35,36]. We would like
to understand those constraints and their relevance for the
newly formulated scalar potential pieces presented in
the previous section. Collecting the pieces of information
from [18,27,28,30,32,35,36,53] we classify the Bianchi
identities into seven classes involving a total of 14 types of
pieces. First we present a list of such identities relevant for
current setup where H1;1

− ðXÞ is trivial. Taking an educated
guess from the set of Bianchi identities known in different
formulations in [28,32,35,36], we invoke various additional
flux constraints after looking at the scalar potential pieces
in our collection. These are collected in Table V where we
also mention which collection of terms are (partially)
nullified by the respective identities.
In this analysis we find that the most complicated set of

Bianchi identities turns out to be the so-called ðQQ0 − PP0Þ
type giving a total of 180 constraints which we have
expressed in terms of two identities as also pointed out
in [36]. We find them to take a form as given in BI4. A
subset of such constraints can be also expressed in a
relatively simpler form, for example each of the following
identities results in 12 flux constraints,

P½īkmP0
kj̄�

m ¼ Q½īkmQ0
kj̄�

m; m not summed over:

Pm
k½īP0

km
j̄� ¼ Qm

k½īQ0
km

j̄�;

P0m;½ī;j̄;k̄;nPn
l̄�;m ¼ Q0m;½ī;j̄;k̄;nQn

l̄�;m;

P0m;½ī;j̄;k̄;nPn
l̄�;m ¼ Q0m;½ī;j̄;k̄;nQn

l̄�;m: ð5:1Þ
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Finally let us mention that the flux constraints continue to
hold after being promoted to the axionic flux combinations
instead of using the standard notation as argued in
[42,69,95]. By this we mean that considering the full set
of flux constraints is equivalent to having the analogous
identities in terms of axionic fluxes, i.e., one can haveBI1’
which takes the form,

Q½īlmHj̄ k̄�m ¼ P½īlmF j̄ k̄�m; ð5:2Þ

where all the extra terms induced due to using the
definitions (3.9) are nullified by other set of identities.
Given that there are a total of 20 terms which are part of
“diagonal” and “cross-terms of first kind” in our scalar
potential formulation, and out of these 20 pieces, there are
six type of pieces which do not have any terms to be
directly nullified by the Bianchi identity.2 The remaining
14 types form seven pairs of terms as collected in
(BI1-BI17). Many of these identities result in the same
set of constraints given in [35,36]. However, for our case
these identities are more compactly written along with
having a proper contraction of indices.
Finally, we also note that the flux constraints represented

by C1-C2 in Table VI have been proposed in [32] based on

antisymmetry of commutators of the generalized flux
algebra, and using the symmetry arguments in this setup
it is anticipated to conjecture the analogous constraints for
prime fluxes, as given in C3-C4 which we think should
also exist as manifested from the scalar potential pieces
VQ;P and VP0;Q0 which have a total of 972 terms each, out of
the total number of 10,888 terms present in the full scalar
potential. It turns out that 600 terms out of each of these
collection with 972 are cancelled by the constraints C1 and
C3 in their respective pieces.

B. Tadpole contributions

In our explicit collection of various scalar potential
pieces, we find that there are 512 terms3 out of 10888
which can be expressed without using the internal
toroidal metric, and a priori look like being some topo-
logical terms. For explicitness of this statement we express
such 512 terms using the shorthand notation defined in
Eq. (4.3) which ends up in having the following collection
of pieces:

TABLE VI. Additional flux constraints of QP and P0Q0 type.

Bianchi identity #(BIs) Pieces in V to be reduced #(V) to be reduced

C1 Qp
ijPm

pk ¼ Pp
ijQm

pk 120 Vð2Þ
QP

> 600

C2 Ql
½ī j̄Pn

k̄�l ¼ 0 ¼ Pl
½ī j̄Qn

k̄�l 48
C3 Q0

ij
pP0

pk
m ¼ P0

ij
pQ0

pk
m 120 Vð2Þ

P0Q0 > 600

C4 Q0
½ī j̄

lP0̄
k�l

n ¼ 0 ¼ P0
½ī j̄

lQ0̄
k�l

n 48

TABLE V. List of Bianchi identities and their impact on some of scalar potential pieces.

Bianchi identity #(BIs) Pieces in V to be reduced #(V) to be reduced

BI1 Q½ī lmHj̄ k̄�m ¼ P½ī lmFj̄ k̄�m 24 Vð2Þ
HQ þ Vð2Þ

FP
240

BI2 3Qp
½ī j̄Qn

k̄�p ¼ P0m;ijkpFmnp 24 Vð3Þ
QQ þ Vð2Þ

FP0 240

BI3 3Pp
½ī j̄Pn

k̄�p ¼ Q0m;ijkpHmnp 24 Vð3Þ
PP þ Vð2Þ

HQ0 240

BI4 P0m;½ī;j̄;k̄;nPn
l̄�;m ¼ Q0m;½ī;j̄;k̄;nQn

l̄�;m 12þ 168 Vð2Þ
PP0 þ Vð2Þ

QQ0

Pl
m½īP0n;j̄nmk̄� þ Pl

n½īP0m;j̄mnk̄� VðaÞ
PP0 þ VðaÞ

QQ0 > 720

¼ Ql
m½īQ0n;j̄nmk̄� þQl

n½īQ0m;j̄mnk̄� a; b ¼ f1; 3; 4g
BI5 P0m;nijkP0

nm
l ¼ 3Qm

½ī j̄H0mk̄�l 24 Vð3Þ
P0P0 þ Vð2Þ

QH0 240

BI6 Q0m;nijkQ0
nm

l ¼ 3Pm
½ī j̄F0mk̄�l 24 Vð3Þ

Q0Q0 þ Vð2Þ
PF 0

240

BI7 F0½ī j̄ mP0
mn

k̄� ¼ H0½ī j̄ mQ0
mn

k̄� 24 Vð2Þ
H0Q0 þ Vð2Þ

F 0P0 240

2While stating this we mean a direct nullification by exploiting
the constraints without looking at their solutions which, in
addition, may kill several more terms.

3This number is 4880 in the collection of 76,276 terms
expressed using the standard fluxes. However, the additional
terms appearing with the RR axions (C0 and C4 ≡ ρα) through
the axionic-flux combinations are canceled by the Bianchi
identities to ensure that there is no mismatch between the two
descriptions.
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V tad ¼
1

2sV2

�
1

3! · 3!
fsF ijkHlmn − F ijkðQτÞlmn − s2HijkðPτÞlmn þ sðQτÞijkðPτÞlmn

− ðP0ττÞijkðH0τττÞlmn − s2ðQ0ττÞijkðF 0τττÞlmn þ sðH0τττÞijkðF 0τττÞlmn

þ sðP0ττÞijkðQ0ττÞlmn − ðQτÞijkðP0ττÞlmn − s2ðPτÞijkðQ0ττÞlmn

þ 2sðPτÞijkðH0τττÞlmn − 2sðQτÞijkðF 0τττÞlmn þ 2sHijkðP0ττÞlmn

− 2sF ijkðQ0ττÞlmn þ 2s2HijkðF 0τττÞlmn þ 2F ijkðH0τττÞlmngϵijklmn

þ
	
−sQm

n½īPn
mj̄�ðϵττÞij þ

1

2
Qp

qrP0
qr

pϵijklmnτijklðϵττÞmn

− sP0
m½īnQ0

nj̄�mðϵτÞij þ
1

2
s2Pp

qrQ0
qr

pϵijklmnτijklðϵττÞmn


�
: ð5:3Þ

It is worth noting the following points about this collection
(5.3):

(i) It does not involve the presence of complex-structure
moduli, and that has been the reason to facilitatewriting
itwithout using the internalmetric gij and/or its inverse.

(ii) Moreover, we observe that these terms belong to the
16 type of pieces which we have collected under
the class “cross-terms of second type” because of the
same reason that the “cross-terms of the first type”
do not have any term which is independent of the
complex-structure saxion ui.

(iii) The overall volume factor in this tadpole piece (5.3)
is V−2 which hints towards the possible origin of

various terms via a set of respective Chern-Simons
terms in the higher dimensions. Notice that, similar
to the oxidized form of the GVW scenario in
Eqs. (2.31)–(2.34), which does not have the

ffiffiffiffiffiffi−gp
factor in integration measure, and this is the under-
lying reason for having an overall factor V−2

instead of V−1 as has been the case of pieces which
could possibly be descending from some (higher-
dimensional) kinetic pieces.

(iv) In the absence of prime fluxes, the tadpole piece
(5.3) reduces to the following simple form recover-
ing the results of [54],

VF;H;Q;P
tad ¼ 1

2sV2

�
1

3! ·3!
fsF ijkHlmn−F ijkðQτÞlmn−s2HijkðPτÞlmnþsðQτÞijkðPτÞlmngϵijklmn−sQm

n½īPn
mj̄�ðϵττÞij

�
:x ð5:4Þ

(v) The number of (tadpole) terms within each of the explicit pieces of (5.3) is given as

#ðV tad
FHÞ ¼ 8; #ðV tad

FQÞ ¼ 24; #ðV tad
HPÞ ¼ 24; #ðV tad

HF 0 Þ ¼ 8;

#ðV tad
H0F 0 Þ ¼ 8; #ðV tad

P0H0 Þ ¼ 24; #ðV tad
Q0F 0 Þ ¼ 24; #ðV tad

FH0 Þ ¼ 8;

#ðV tad
QPÞ ¼ 72; #ðV tad

P0Q0 Þ ¼ 72; #ðV tad
QP0 Þ ¼ 72; #ðV tad

PQ0 Þ ¼ 72;

#ðV tad
FQ0 Þ ¼ 24; #ðV tad

HP0 Þ ¼ 24; #ðV tad
QF 0 Þ ¼ 24; #ðV tad

PH0 Þ ¼ 24: ð5:5Þ

(vi) We find that there are six types of terms which are purely topological in nature summarized as

V tad
FH ¼ VFH; V tad

FQ ¼ VFQ; V tad
HP ¼ VHP;

V tad
H0F 0 ¼ VH0F 0 ; V tad

P0H0 ¼ VP0H0 ; V tad
Q0F 0 ¼ VQ0F 0 ; ð5:6Þ

while the remaining ten types of terms also have metric dependent pieces beyond the collection (5.3).
In order to connect these observations and findings on the tadpole corrections from a different perspective, we consider

the mixed-symmetry potentials as studied in [35,36] and subsequently we correlate the two approaches. The so-called
mixed-tensor potentials couple to the various (standard as well as exotic) branes leading to the tadpole contributions in this
model can be generically of the following 12 types,
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C4; C8; E8; E8;4; E9;2;1; E10;4;2; G10;4;2;

G10;5;4;1; G10;6;2;2; G10;6;6;2; I10;6;6;2; I10;6;6;6: ð5:7Þ

In fact one can classify all the mixed-symmetry potentials
relating to branes in lower dimensions via a nonpositive
integer α correlating the tension of the corresponding
brane with respect to string coupling gs. Moreover
T-duality relates different potentials with same value of
α; e.g. the RR potential Cp have α ¼ −1. Similarly α ¼ −2

are usually denoted by symbols Da;b;… while α ¼ −3 are
denoted via Ea;b;… Also, it is conventional to denote a
p-brane with α ¼ −n and having m orthogonal isometries
as pn

m. We refer the readers to [35,36] for more details
about it.
For example, the RR four-form potential C4 which is

invariant under S-duality induces theD3-brane tadpoles via
a 10DChern-Simons term leading to the following 4D scalar
potential term after performing the dimensional reduction,

Td1∶
Z

C4 ∧ F ∧ H ⇒ VTd1 ¼
1

2V2

��
1

3! · 3!
FijkHlmnϵ

ijklmn

��
; ð5:8Þ

where VFH ¼ VFH up to satisfying the Bianchi identities which holds true for the other tadpole terms as well. Similarly the
S-dual pair of the eight-form potential ðC8; E8Þ induce the D7=I7-brane tadpoles as [28–30,32],

Td2∶
Z

C8 ∧ ðQ⊳FÞ2 ⇒ VTd2 ¼
1

2sV2

��
1

2!
F½īmnQj̄�mnðϵτÞij

��
;

Td3∶
Z

E8 ∧ ðP⊳HÞ2 ⇒ VTd3 ¼
s

2V2

��
1

2!
H½īmnPj̄�mnðϵτÞij

��
: ð5:9Þ

Here subscript “2” in ðQ⊳FÞ2 and ðP⊳HÞ2 is explicitly mentioned to remind that this quantity is a two-form, given that
the Q=P flux actions on a p-form takes it to a (p − 1)-form.
Now, the tadpole contributions arising from the potential E8;4 and E9;2;1 potentials consists of three types of pieces of the

form ðP ·Qþ P0 ·H −Q0 · FÞ, and this contribution can be collectively given as

Td4∶
Z

E8;4 ∧ ðP ·Qþ P0 ·H −Q0 · FÞ42 þ E9;2;1 ∧ ðP ·Qþ P0 ·H −Q0 · FÞ2;11 ⇒

VTd4 ¼ −
1

2V2

�
1

4! · 2!
·
�
12P½m̄½ī j̄Qn̄�k̄ l̄� þ P0p;ijklHpmn −Q0p;ijklFpmn

�
τijklðϵτÞmn

�

þ 1

4V2

�
4Qk

½īlPl
kj̄� −HklmP0k;lmij þ FklmQ0k;lmij

�
ðϵττÞij: ð5:10Þ

Next, the tadpole term induced via E10;4;2 has the following form:

Td5∶
Z

E10;4;2∧ ðQ ·P0 þF ·H0Þ4;2⇒

VTd5¼−
1

2sV2

�
1

2! ·4!
·
�
12Qp

ijP0p;klmn−2FpqrH0pij;klmnqr
�
τijklðϵττÞmnþ

1

2! ·2!
·4 ·Q½īm½k̄P0

mj̄�
l̄�ðϵτÞijðϵττÞkl

�
: ð5:11Þ

The S-dual of the tadpole term induced via E10;4;2 corresponds to the so-called G10;4;2 potential which results in the
following piece:

Td6∶
Z

G10;4;2 ∧ ðP ·Q0 þH · F0Þ4;2 ⇒

VTd6 ¼ −
s

2V2

�
1

2 · 4!
·
�
12Pp

ijQ0p;klmn − 2HpqrF0pij;klmnqr
�
τijklðϵττÞmn þ

1

2! · 2!
· 4 · P½īm½k̄Q0

mj̄�
l̄�ðϵτÞijðϵττÞkl

�
: ð5:12Þ

The tadpole piece generated through potentials G10;5;4;1 and G10;6;2;2 potentials consists of three types of pieces of the form
ðP0 ·Q0 þ P ·H0 −Q · F0Þ, and this contribution can be collectively given as
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Td7∶
Z

G10;5;4;1 ∧ ðP0 ·Q0 þ P ·H0 −Q · F0Þ5;4;1 þ G10;6;2;2 ∧ ðP0 ·Q0 þ P ·H0 −Q · F0Þ6;2;2 ⇒ ð5:13Þ

VTd7 ¼
1

4

h�
Qm

ijF0mkl;i0j0k0l0m0n0 − Pm
ijH0mkl;i0j0k0l0m0n0

�
ðτi0j0k0l0 ÞðϵττÞm0n0τijkl

þ 4P0
½īm

nQ0
nj̄�

mðϵτÞij
�
þ 1

2V2

h
P0½m̄;iji0j0Q0n̄�;klk0l0 ðϵττÞmnτijkl

i
: ð5:14Þ

Now, the tadpole pieces generated via the potential G10;6;6;2
can be given as

Td8∶
Z

G10;6;6;2∧ ðP0 ·H0Þ6;6;2⇒

VTd8¼−
1

2sV2

�
1

3! ·3!
ðP0ττÞijkðH0τττÞlmnϵ

ijklmn

�
; ð5:15Þ

’while the S-dual counterpart of the above which is
generated via the potential I10;6;6;2 is encoded in the
following piece:

Td9∶
Z

I10;6;6;2 ∧ ðQ0 · F0Þ6;2;2 ⇒

VTd9 ¼ −
s

2V2

�
1

3! · 3!
ðQ0ττÞijkðF0τττÞlmnϵ

ijklmn

�
: ð5:16Þ

Finally, the self S-dual piece generated via G10;6;6;;6

potential can be given as

Td10∶
Z

I10;6;6;6 ∧ ðH0 · F0Þ6;6;6 ⇒

VTd10 ¼
1

2V2

�
1

3! · 3!
ðH0τττÞijkðF0τττÞlmnϵ

ijklmn

�
; ð5:17Þ

which is similar to the F ∧ H term corresponding to the
D3=O3-tadpole contributions in the simple GVW scenario.
A detailed summary of the tadpole contributions in con-
nection with the approach of [35,36] using the mixed-
tensor potential is presented in Table VII.

VI. SUMMARY AND CONCLUSIONS

In this article, we have presented a reformulation of the
four-dimensional scalar potential which arises from a gener-
alized flux superpotential having a cubic polynomial in
complex-structure moduli ðUiÞ as well as the Kähler moduli
(Tα). The underlying setup is a type-IIB superstring com-
pactification model based on a toroidal T 6=ðZ2 × Z2Þ
orientifold. We, subsequently, introduce the T/S dual com-
pletion arguments in the minimal Gukov-Vafa-Witten flux
superpotential induced by the standard three-form (F3, H3)
fluxes, which leads to incorporating a total of four pairs of
S-dual fluxes denoted as ðF;HÞ; ðQ;PÞ; ðP0; Q0Þ, and
ðH0; F0Þ. This gives a superpotential with 128 terms in seven
complexified coordinates, which has been available in the
literature since more than a decade [28]. However, theN ¼ 1

four-dimensional scalar potential arising from the “F-terms”
of this superpotential has not been explored much, possibly
because of having a huge size with a total of 76,276 terms as
we observe in our current analysis. In this regard, we find it to
be useful to explore the underlying insights from the scalar
potential point of view, so that to possibly understand the
higher dimensional origin of such terms. Having this broader
goal in mind along the lines of the so-called dimensional
oxidation process [52,54], we have rewritten the scalar
potential using the internal metric of the toroidal sixfold.
To begin with, such a huge scalar potential where there is

no prescription like LVS [2] to discard certain terms enabling
one to consider only a few terms at the leading order, it is
almost impractical to make use of it for any phenomenologi-
cal purposes. Themainmotivation and the results of thiswork
can be summarized along the following lines:

(i) We have explored the deeper insights of the four-
dimensional scalar potential by studying each type
of terms, and reformulating those in some “suitable”
form using the internal metric of the toroidal sixfold.
This could be useful for tracing the higher-
dimensional origin of such terms, a la the so-called
“dimensional oxidation” as proposed in [52] and has
been found to be useful in the context of realizing
scalar potential terms from the dimensional reduc-
tion of the kinetic terms in the DFT. On these lines,
the current work is an extension of the iterative series
of works presented in [52,54,58,60,65,69] (some of)
which we have recollected in a concise and self-
contained fashion in the review section.

TABLE VII. Detailed summary of the tadpole terms.

(Mixed-)form
potential

Type of pieces
involved

Number of terms
(in 10,888)

1 C4 FH 8
2 C8 FQ 24
3 E8 HP 24
4 E8;4 þ E9;2;1 QP, HP0, FQ0 120
5 E10;4;2 QP0, FH0 80
6 G10;4;2 PQ0, HF 0 80
7 G10;5;4;1 þ G10;6;2;;2 PH0, P0Q0, QF 0 120
8 G10;6;6;2 P0H0 24
9 I10;6;6;;2 Q0F 0 24
10 I10;6;6;6 H0F 0 8
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(ii) It is important to point out that as a first step we have
managed to express 76,276 terms of the scalar
potential in 10,888 terms via invoking a set of
axionic flux combinations which make all the RR
axionic dependences being encoded in these combi-
nations and making their explicit dependence go
away from the scalar potential. Such a rearrange-
ment in which the scalar potential pieces are ex-
pressed using saxionic ingredients along with these
so-called axionic flux combinations has been also
called as “bilinear formulation” of the scalar poten-
tial as proposed in the type-IIA/IIB case in
[44,91,93,94], and the F-theory case in [45]. How-
ever, the main difference in the bilinear formulation
of the scalar potential and the current one is the fact
that it uses the metric of the internal sixfold like
[51,52,54] while the other approach uses the sym-
plectic ingredients as in [58,65,68,69].

(iii) We discussed the flux constraints arising from the
Bianchi identities and the tadpole cancellation con-
ditions. In performing this analysis we have ex-
plored the implications of the tadpole and Bianchi
identities from the scalar potential point of view in
correlation with [35,36]. We find that there are more
than 3000 terms (out of 10,888) which can be
trivialized through the Bianchi identities, and hence
should be discarded before the study of moduli
stabilization and flux vauca related aspects.

Some of the very natural next steps to follow from thiswork is
to promote this formulation using the symplectic ingredients,

given that the current formulation dependson themetric of the
internal toroidal orientifold and therefore cannot be directly
used for more general compactifications beyond the toroidal
cases, e.g., in models based on the Calabi-Yau orientifold.
Also, with the detailed taxonomy of scalar potential terms at
hand it is very likely to seek for higher dimensional origin of
such terms in more generic frameworks such as S-dual
completion of the double field theory. We hope to address
some of these issues in a companion paper [80].
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APPENDIX: EXPLICIT FORM OF
GENERALIZED FLUX SUPERPOTENTIAL

The generalized flux superpotential (3.4) has 128 terms
such that each of the 128 fluxes are coupled to a set of
complex variables fS;Ui; Tαg resulting in cubic polyno-
mials in Ui and Tα moduli while having a linear depend-
ence on the axio-dilaton (S) modulus. The explicit form of
W3 is presented as

W3 ¼ −ðF246 − F146U1 − F236U2 − F245U3 þ F136U1U2 þ F235U2U3 þ F145U1U3

− F135U1U2U3Þ þ SðH246 −H146U1 −H236U2 −H245U3 þH136U1U2 þH235U2U3

þH145U1U3 −H135U1U2U3Þ þ T1ðQ2
35 −Q1

35U1 þQ2
45U2 þQ2

36U3 −Q1
45U1U2

þQ2
46U2U3 −Q1

36U1U3 −Q1
46U1U2U3Þ − ST1ðP2

35 − P1
35U1 þ P2

45U2 þ P2
36U3

− P1
45U1U2 þ P2

46U2U3 − P1
36U1U3 − P1

46U1U2U3Þ þ T2ðQ4
51 þQ4

52U1 −Q3
51U2

þQ4
61U3 −Q3

52U1U2 −Q3
61U2U3 þQ4

62U1U3 −Q3
62U1U2U3Þ − ST2ðP4

51 þ P4
52U1

− P3
51U2 þ P4

61U3 − P3
52U1U2 − P3

61U2U3 þ P4
62U1U3 − P3

62U1U2U3Þ þ T3ðQ6
13

þQ6
23U1 þQ6

14U2 −Q5
13U3 þQ6

24U1U2 −Q5
14U2U3 −Q5

23U1U3 −Q5
24U1U2U3Þ

− ST3ðP6
13 þ P6

23U1 þ P6
14U2 − P5

13U3 þ P6
24U1U2 − P5

14U2U3 − P5
23U1U3

− P5
24U1U2U3Þ þ T1T2ðP0

24
5 − P0

14
5U1 − P0

23
5U2 þ P0

24
6U3 þ P0

13
5U1U2 − P0

23
6U2U3

− P0
14

6U1U3 þ P0
13

6U1U2U3Þ − ST1T2ðQ0
24

5 −Q0
14

5U1 −Q0
23

5U2 þQ0
24

6U3 þQ0
13

5U1U2

−Q0
23

6U2U3 −Q0
14

6U1U3 þQ0
13

6U1U2U3Þ þ T2T3ðP0
46

1 þ P0
46

2U1 − P0
36

1U2 − P0
45

1U3

− P0
36

2U1U2 þ P0
35

1U2U3 − P0
45

2U1U3 þ P0
35

2U1U2U3Þ − ST2T3ðQ0
46

1 þQ0
46

2U1 −Q0
36

1U2

−Q0
45

1U3 −Q0
36

2U1U2 þQ0
35

1U2U3 −Q0
45

2U1U3 þQ0
35

2U1U2U3Þ þ T1T3ðP0
62

3 − P0
61

3U1

þ P0
62

4U2 − P0
52

3U3 − P0
61

4U1U2 − P0
52

4U2U3 þ P0
51

3U1U3 þ P0
51

4U1U2U3Þ − ST1T3ðQ0
62

3
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−Q0
61

3U1 þQ0
62

4U2 −Q0
52

3U3 −Q0
61

4U1U2 −Q0
52

4U2U3 þQ0
51

3U1U3 þQ0
51

4U1U2U3Þ
− T1T2T3ðH0135 þH0235U1 þH0145U2 þH0136U3 þH0245U1U2 þH0146U2U3 þH0236U1U3

þH0246U1U2U3Þ þ ST1T2T3ðF0135 þ F0235U1 þ F0145U2 þ F0136U3 þ F0245U1U2

þ F0146U2U3 þ F0236U1U3 þ F0246U1U2U3Þ:

Here we used the redefinitions (3.2) for the prime fluxes.
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