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The fluid-gravity correspondence is a duality between anti–de Sitter Einstein gravity and a relativistic
fluid living at the conformal boundary. We show that one can accommodate the causal first-order viscous
hydrodynamics recently developed by Bemfica, Disconzi, Noronha, and Kovtun in this framework, by
requiring a set of natural conditions for the geometric data at the horizon. The latter hosts an induced
Carrollian fluid, whose equations of motion are shown to be tightly tied to the ones describing the fluid at
the boundary. Functional expressions for the transport coefficients are found—with those associated to
viscosity and heat flux uniquely determined—satisfying a set of known causality requirements for the
underlying equations of motion.
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I. INTRODUCTION

In a series of works by Bemfica, Disconzi, Noronha,
and Kovtun (BDNK), a formulation for viscous, relativistic
hydrodynamics has been introduced where dissipative
corrections are accounted for via first-order derivatives
of the energy density and flow velocity [1–3], see
also [4–6], and where causality of the resulting equations
of motion is achieved when choosing transport coefficients
within particular bounds. Such a formulation, at first sight,
is in tension with standard results where at least second-
order corrections are required to account for viscous
relativistic hydrodynamics [7–11]. A key observation is
that such results require a strictly non-negative entropy
change, while the first-order formulation does so up to
higher order in gradients. Arguably, this is not necessarily a
significant shortcoming as such higher order terms should
be subleading in the effective field theory regime where
such theory can be written. Further, another key aspect of
BDNK is formulating such theory in a more general frame
than the typical Landau or Eckart frames where causality is
violated in the first order formulation.
The Landau frame [12] was introduced requiring that

the heat current vanishes, such that the fluid velocity is an
eigenvector of the energy-momentum tensor. On the other
hand, in the Eckart frame [13] the fluid velocity is aligned

with the particle number flux, such that the equations are
similar to those of nonrelativistic hydrodynamics. As
pointed out by BDNK, the frame discussed above should
not be chosen driven by aesthetics, but instead requiring
that the resulting hydrodynamic equations lead to well-
posed problems, thus the equations of motions should be
hyperbolic and causal.
In a parallel development, the celebrated fluid-gravity

correspondence [14–19] has linked the behavior of per-
turbed black holes (with asymptotically anti-de Sitter
boundary conditions) to viscous relativistic hydrodynamics
in one lower dimension. This remarkable correspondence,
was fully developed to second order in gradients, but
specialized in the Landau frame by judicious choices made
when solving Einstein equations for a perturbed black
brane. Under restricted assumptions on the bulk duals, the
Landau frame was abandoned in [20–22], where the heat
current was considered in the fluid-gravity correspondence.
In the current work, with the aim of shedding light on the

connection between the fluid-gravity correspondence and
the BDNK first order, viscous relativistic hydrodynamics,
we first show that the fluid-gravity correspondence is well-
suited to accommodate the full first order hydrodynamic
frame spectrum. This freedom was already present in [14],
but the correspondence was fully developed in the Landau
frame. Given this freedom, are there reasonable choices–in
particular, from a gravity perspective–leading to BDNK?
To answer this question, we study the properties of the bulk
projected on the horizon, which is a null hypersurface.
It is known since the original “membrane paradigm”

[23,24] that the Einstein equations projected to the horizon
are conservation equations of a fluid, which has been
recently understood to be a Carrollian fluid [25–31]. We
show that the Carrollian equations of motion, at first order,
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are equal to those of perfect fluid conservation for a
conformal fluid.1 We also observe that requiring the null
vector generating the horizon to be aligned with the fluid
velocity at first order in the derivative expansion selects
exactly the BDNK form of the heat current. Similarly,
the energy density at first order is the one used by BDNK if
it is proportional to the horizon expansion. Under these
assumptions we derive the values induced by Einstein
gravity of most transport coefficients and a condition on a
remaining one for a conformal equation of state. We find
that the transport coefficients than can be fully fixed this
way are within the causality and stability bounds. These
observations may open the door to unraveling a deeper
connection between the horizon Carrollian fluid and
relativistic conformal fluids.
The rest of the manuscript is organized as follows. In

Sec. II we review the construction of the fluid-gravity
correspondence of [14], and extrapolate the boundary
energy-momentum tensor using the holographic prescrip-
tion [32,33]. In Sec. III we discuss the horizon geometry
using the framework of [34], and study it at zeroth and
first order derivative expansion. We then make our
geometrical choices, that we show in Sec. IV lead to
BDNK for the boundary fluid. We conclude with final
remarks in Sec. V.

II. SETUP

Following the presentation in [14], we consider a
boosted black brane in 4þ 1 dimensions with asymptoti-
cally anti–de Sitter boundary conditions. In the stationary
case—zeroth order in the gradient expansion—the space-
time metric is given by

ds2 ¼ −2uadxadrþ r2ðPab − fðbrÞuaubÞdxadxb; ð1Þ

with fðrÞ ¼ 1 − r−4, uaubηab ¼ −1 and Pab ¼ ηab þ uaub
the projector orthogonal to ua, uaPab ¼ 0. The vector ua is
constant and defines the boost, while the function fðbrÞ
describes a black brane with radius rH ¼ b−1. Perturbed
solutions, in terms of a gradient expansion (also known as
derivative expansion) can be obtained by considering
ðb; uaÞ as slowly varying functions of xa,2 inserting into
Einstein equations and solving for nontrivial functions
of r (see [14]).
As opposed to the treatment in that work, we refrain from

adopting the specific choice of vanishing “zero-modes” (as
also considered in [6]). In other terms, we allow for small
coordinate changes in the xa sector, which we capture in
terms of a scalar function χðxaÞ and a vector qaðxbÞ

transverse to ua, uaqa ¼ 0. The resulting solution, at first
order in the gradient expansion is3

ds2 ¼ −2uadxadrþ r2ðPab − fðbrÞuaubÞdxadxb

−
2

b4r2
uðaqbÞdxadxb þ

χ

b4r2
uaubdxadxb

þ 2r2bFðbrÞσabdxadxb þ
2

3
rθuaubdxadxb

− 2ruðaabÞdxadxb; ð2Þ

where, asymptotically,4 FðbrÞ ¼ 1
br −

1
4b4r4, and we intro-

duced the shear, expansion, and acceleration of ua,

σab ¼ Pcða
∂cubÞ −

1

3
Pab

∂cuc ð3Þ

aa ¼ ub∂bua; θ ¼ ∂aua; ð4Þ
satisfying uaσab ¼ 0, σaa ¼ 0 (ηabPab ¼ 3), uaaa ¼ 0.
Armed with this solution, we can now obtain the stress

tensor induced at the timelike asymptotic boundary. To do
so, we follow the holographic prescription discussed
in [32,33], of which we now recap the salient ingredients.
Given a bulk metric gμν, we introduce a hypersurface at
fixed r and its projector hμν. Using the normalized normal
form N ¼ Nμdxμ ¼ dr

ffiffiffiffi

grr
p , the projector reads

hμν ¼ gμν − NμNν hμνNν ¼ 0: ð5Þ
The extrinsic curvature (second fundamental form) is
defined as

Kab ¼ haμhbν
1

2
£Ngμν ð6Þ

¼ haμhbν
1

2
ð∇μNν þ∇νNμÞ; ð7Þ

where ∇ is the bulk Levi-Civita connection. The induced
inverse metric is

ḡab ¼ hμahνbgμν; ð8Þ
which can be used to define the trace on the hypersurface

K ¼ ḡabKab: ð9Þ

The traceless part of the extrinsic curvature defines the
boundary stress tensor

Ta
b ¼ −2 lim

r→∞
r4
�

Ka
b −

K
4
δab

�

; ð10Þ
1In particular, in agreement with the boundary fluid equations

of motion for the perfect fluid.
2We use bulk coordinates xμ ¼ ðr; xaÞ, such that xa are

coordinates of fixed-r hypersurfaces, and in particular of the
boundary.

3Using the convention AðabÞ ¼ 1
2
ðAab þ AbaÞ.4FðrÞ is given by a transcendental expression, see Eq. (4.20)

in [14] for details.
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where the r pre-factor comes from the holographic dic-
tionary and ensures its finiteness approaching the boundary.
Applying this procedure to our line element (2), the final

result is

Tab¼3
1þχ

b4
uaubþ

1þχ

b4
Pab−

2

b3
σab−

8

b4
uðaqbÞ: ð11Þ

This is the stress tensor of a conformal viscous fluid with
fluid velocity ua, which accounts for heat-flux through qa,
and a correction to the perfect fluid energy density through
χ. Since a generic stress tensor is decomposed as

Tab ¼ Euaub þ PPab − 2ησab þ uaQb þQaub; ð12Þ

one has,

E ¼ 3
1þ χ

b4
; P ¼ 1þ χ

b4

η ¼ 1

b3
; Qa ¼ −

4

b4
qa: ð13Þ

We note that E ¼ 3P is the conformal equation of state
implied by the asymptotic conformal symmetry, streaming
from the vanishing of the stress tensor trace. Notice that at
equilibrium the temperature is given by T ¼ 1

b.
From here, one could straightforwardly identify con-

ditions for ðχ; qaÞ to recover BDNK. This would amount to
using a particular formulation of viscous-relativistic hydro-
dynamics to fix conditions on the gravitational sector.
However, our goal is to go in the opposite way, namely
to consider arguably natural choices on the gravitational
sector—specifically at the horizon—and explore what they
correspond to in the hydrodynamic side.

III. CHOICES

To consistently deal with a degenerate metric at the
null hypersurface describing the horizon, we adopt the null
Rigging formalism described in [34]. The horizon is
generically located at r ¼ rHðxÞ, and thus the one-form
normal to the horizon is

n ¼ α̃dðr − rHðxÞÞ; ð14Þ

and we adopt α̃ ¼ 1 in the following. Next, we introduce
the vector k ¼ ∂r with the defining properties

nðkÞ ¼ 1; kðkÞ ¼ 0: ð15Þ

This vector is called the null Rigging vector. We can then
define the Rigging projector as

Πμ
ν ¼ δνμ − nμkν; ð16Þ

such that

Πμ
νnν ¼ 0 kνΠν

μ ¼ 0: ð17Þ

The Rigging projector projects to the null hypersurface,
since indeed the form n and the vector k are normal to it.
The bulk metric duals n and k ¼ −uadxa satisfy

Πμ
νkν ¼ kμ lμ ¼ nνΠν

μ: ð18Þ

Furthermore, the projected metric is given by

qμν ¼ Πμ
ρΠν

σgρσ ¼ gμν − nμkν − kμnν: ð19Þ

The components intrinsic to the hypersurface, ðka;la; qabÞ,
form the ruled Carrollian structure discussed in [31] (with
the same conventions). In particular, la is the Carrollian
vector field, ka is the Ehresmann connection, and qab is the
degenerate Carrollian metric satisfying

laqab ¼ 0 ð20Þ

at the horizon.
The other relevant quantities for the horizon physics are

the surface gravity, expansion, Hájiček connection, and
acceleration. They are defined in the bulk by,
(1) Surface gravity5:

lμ∇μlν ¼ κlν; kνlμ∇μlν ¼ κ; ð21Þ

(2) Expansion:

Θ ¼ qνμ∇μnν; ð22Þ

(3) Hájiček connection:

πμ ¼ qμνkρ∇νnρ; ð23Þ

(4) Acceleration:

φμ ¼ nν∇½μkν�: ð24Þ

We now proceed to compute these quantities, for clarity
we do so first in the stationary solution (zeroth order), and
then in the first order perturbed case.

5This quantity should be called inaffinity, but for nonexpand-
ing horizons these two concepts coincide. Here, by construction
at zeroth order and as a consequence of the equations of motion at
first order, the horizon expansion vanishes so we are in this
framework.
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A. Zeroth order

At this order, the location of the horizon, and associated
normal form and vector are

rH ¼ 1

b
; n ¼ dr; k ¼ ∂r: ð25Þ

The bulk metric duals are

n ¼ r2fðbrÞ∂r þ ua∂a; k ¼ −uadxa ð26Þ

and thus the Carrollian vector is exactly given by the
boundary fluid congruence (which is constant at zeroth
order)

lμ ¼ nνΠν
μ ¼ uaδμa: ð27Þ

This implies

lμkμ ¼ −uaua ¼ 1: ð28Þ

The degenerate metric on the null surface is

qμν¼
�

0 0

0 r2ðPab−fðbrÞuaubÞ

�

⟶
r¼rH

�

0 0

0 Pab
b2

�

ð29Þ

which indeed satisfies at the horizon

lμqμν ¼ uaqabδbν ⟶
r¼rH ua

Pab

b2
¼ 0: ð30Þ

With the above quantities, it is straightforward to obtain:

κ ¼ 2

b
; Θ ¼ 0; πμ ¼ 0; φμ ¼ 0: ð31Þ

Exactly like the relativistic conformal fluid at the boundary,
the Carrollian fluid at the horizon is a perfect fluid at zeroth
order. Delving into the properties of the Carrollian fluid on
the horizon and its connection to the boundary fluid would
bring us too afield from the subject of this manuscript. We
leave this exploration to a future work.

B. First order

We now perturb the stationary solution using the first
order gradient expansion. Details on how to establish the
location of the perturbed horizon are in [15] (in particular
subsection II. 3), so we just report the result here. At first
order, the horizon and associated normal form are

rH ¼ 1

b
þ θ

6
þ χ

4b
−
ua∂ab
2b

; n ¼ drþ db
b2

; ð32Þ

where θ, χ, and db are first order quantities.

Following the steps described above, we gather

k ¼ −uadxa; ð33Þ

la ¼ ua − baa − qa þ Pab
∂bb; lr ¼ −ua

∂ab
b2

; ð34Þ

where the indices of the various quantities (aa, qa, and Pab)
are raised using ηab, and we note that lr is nonvanishing
due to the fact that the horizon position is now a function
of xa.
With the above, through a direct, but naturally more

involved calculation, one obtains:

κ ¼ 2

b
−
2θ

3
þ χ

2b
þ ua∂ab

b
ð35Þ

Θ ¼ θ − 3
ua∂ab
b

ð36Þ

πa ¼ 2
qa
b
−
Pa

b
∂bb
b

ð37Þ

φa ¼ aa: ð38Þ

With these, we are now ready to argue for some particular
choices. First, one could demand that at first order, the
component of the null vector lμ orthogonal to r should be
aligned with ua (just as in the zeroth order case). This
allows one to still identify the Carrollian vector with the
boundary fluid velocity, even at first order. Such a choice
implies

qa ¼ −baa þ Pab
∂bb: ð39Þ

This, as we shall discuss below, is precisely in line with the
hydrodynamic choice in BDNK.
Before such discussion, we must address the choice of χ.

First, note that rH can be reexpressed as,

rH ¼ 1

b
þ 1

6
Θþ χ

4b
: ð40Þ

We shall now show that, to first order, Θ ¼ 0 as a
consequence of the Einstein equations projected on the
horizon, specifically the Raychaudhuri equation. Thus, the
choice χ ∝ Θ, conveniently keeps rH ¼ 1=b on-shell.
Note that, with this choice, κ receives nontrivial first-order
corrections. We discuss the consequences of choosing it to
remain unchanged in Appendix VA. Since κ depends on
the generators’ parameterization, we regard keeping rH
unchanged as the more natural choice.
To see that Θ ¼ 0 to first order, let us recall that

Raychaudhuri’s and Damour’s equations in vacuum are,

ð£l þ ΘÞ½Θ� ¼ μΘ − σa
bσb

a; ð41Þ

qabð£l þ ΘÞ½πb� þ Θφa ¼ ðD̄b þ φbÞðμqab − σa
bÞ ð42Þ
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where £l is the Lie-derivative along l, D̄a the (Carrollian)
covariant derivative associated to qab, μ ¼ Θ=2þ κ and we
used the conventions of [31]. Since here we will be
interested only in the first order expression, where most
terms in these equations vanish, we refer to this reference
for an explanation of all the quantities involved in general.
Notice κ has an order 0 contribution, so, Eq. (41) implies
that at first order Θ ¼ 0. A similar analysis of Eq. (42)
implies qab∂bκ þ φaκ ¼ 0, where qab is the projector
orthogonal to la at the horizon, which at zeroth order is
simply Pa

b, and thus [using (38)] this equation is equal
to aa ¼ Pa

b ∂bb
b .

These observations have several consequences. First,
since to the order we work, Θ ¼ 0, the choice stated above
for χ indeed implies rH ¼ 1=b to this order. Further, and
importantly, they indicate that at first order Raychaudhuri’s
and Damour’s equations are exactly equal to the conserva-
tion of the boundary perfect fluid stress tensor. Indeed,
one can easily show that ∂aTa

b ¼ 0, using (11) and the
relationships (35), (36), and (38), gives exactly the
Raychuadhuri’s and Damour’s equations, once projected
on ua and Pa

b, respectively. This is ultimately tied to the
fact that these equations all come from the bulk Einstein
equations and their particular hierarchical structure arising
from the characteristic treatment along a timelike-null
foliation of the spacetime.
To summarize then, examining the resulting structure at

the horizon, our choices are:

la ¼ ua ⇔ qa ¼ −baa þ Pab
∂bb ð43Þ

rH ¼ 1

b
þ ð2þ 3αÞ Θ

12
⇔ χ ¼ αbΘ; ð44Þ

with α a proportionality function that remains to be
specified. We reported these results off-shell of the con-
servation laws discussed above. If we now impose these
conservation laws, we obtain qa ¼ 0 and χ ¼ 0. This is
precisely the outcome of the intrinsic hydrodynamic
BDNK analysis for a conformal relativistic fluid: the heat
current and the first-order correction to the energy that
implement causality are zero on-shell of the first order
conservation law. In what follows, we discuss in detail the
structure implied by the geometrical identifications/choices
on the resulting hydrodynamical equations.

IV. CONSEQUENCES

We can now examine the consequences of these choices
on the thermodynamic quantities obtained in (13). First,
note that

Eð0Þ ¼ 3Pð0Þ ≡ e ¼ 3

b4
ð45Þ

Eð1Þ ¼ 3Pð1Þ ¼ 3α

b3

�

∂aua −
3

b
ua∂ab

�

ð46Þ

Qa ¼ 4

b3

�

aa −
Pab

∂bb
b

�

; ð47Þ

where we introduced fe; p ¼ e
3
g to denote the zeroth order

expressions for energy and pressure respectively.
The first order expressions can be reexpressed in terms

of e and p as,

Eð1Þ ¼ 3α

b3

�

∂aua þ
ua∂ae
ðeþ pÞ

�

ð48Þ

Qa ¼ 4

b3

�

aa þ Pab
∂be

3ðeþ pÞ
�

ð49Þ

(the expressions for the pressure is trivially set by the
conformal condition). We can now compare with the
expressions adopted by BDNK for the conformal case,
as this is the one that corresponds to our case [3]. Namely,
denoting with an overbar their choices,

Ēð1Þ ¼
�

χ2∂aua þ χ1
ua∂ae
ðeþ pÞ

�

ð50Þ

Q̄a ¼ λ

�

aa þ Pab
∂be

3ðeþ pÞ
�

; ð51Þ

with λ; χi transport coefficients
6 that are chosen to ensure

causality of the underlying equations, together with η
defined in (12).
Remarkably, the functional form for the first order

corrections are in excellent agreement with the proposed
terms in [3]. Moreover, our choices motivated by consid-
erations at the horizon also imply for the transport
coefficients [for η we recall (13)],

η ¼ 1

b3
; λ ¼ 4

b3
;

χ1 ¼ χ2 ¼ 3χ3 ¼ 3χ4 ¼
3α

b3
; ð52Þ

where fχ3; χ4g are linked to fχ1; χ2g by conformality.
Not only do the transport coefficients have the temper-

ature dependency of T3 as expected from kinetic theory [3],
but the shear viscosity and heat transport coefficients
are uniquely determined.7 In particular, they satisfy the
criteria for causality λ ≥ η identified in [3]. Notice however
our expressions make the transport coefficients χi all
proportional to each other but do not completely fix them,
nor provide bounds for them which need not be surprising.

6Which include fχ3; χ4g analogously introduced for the first-
order pressure Pð1Þ.

7The value of the viscous transport coefficient is tied to the
lowest-lying quasinormal modes of the perturbed black brane
(see, e.g. [35]).
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Namely, conditions on χi determined by the causality
analysis of [3], effectively, come from the high frequency
limit (through the standard analysis within PDE theory).
This can be seen by examining the dispersion relations
for the shear and sound modes and their dependency on
fη; λ;αg. Their roles appear at order k2, k4 and k6

respectively. On the other hand, the fluid-gravity corre-
spondence is obtained in the long wavelength regime of
perturbed black holes in general relativity—which is a
causal theory—thus it is natural to expect that in the regime
where the duality can be established, conditions on relevant
parameters on the hydrodynamic side can be obtained
implying such property.
For the unfixed parameter, we only demand α > 0,

as this choice ensures equilibrium can be reached, i.e.
Eð0Þ þ Eð1Þ → Eð0Þ within a timescale given by α. Of course,
one can choose a suitable value for α such that the full set of
requirements for causality are satisfied (e.g. α ¼ 4=3, so
that χf1;2g ¼ 3χf3;4g ¼ λ) but there is no geometric reason
at this order we can demand to argue for a specific value.

V. FINAL WORDS

In this work we examined from a gravitation angle how
the BDNK first order formulation of relativistic, viscous
hydrodynamics is connected to the fluid-gravity correspon-
dence. Such a formulation, which in practice is simpler to
deal with than standard, second order viscous formulations
[36,37], has received significant attention in recent years
both at the theoretical level [2–5,38] and also in incipient
numerical investigations (e.g. [39–41]). The results
obtained also revealed new connections between relativistic
and Carrollian hydrodynamics as well as with gravity.
Our analysis unearthed a natural way to motivate the

BDNK formulation from a gravitational perspective. Further,
the expected functional dependence of transport coefficients
was obtained and, for the viscous and heat-flux coefficients,
a unique expression was found. As well, our analysis
revealed a connection between the effective Carrollian
hydrodynamic description of null surfaces and the asymp-
totic relativistic fluid that is identified at the timelike infinity
of perturbed black branes in AdS. Such connection implies
that, at leading order, Raychaudhuri’s and Damour’s equa-
tions encode the conservation of a conformal perfect fluid.
The analysis of higher orders and the exploration of
Carrollian hydrodynamics from this perspective is an inter-
esting task which we defer to future work.
In a similar vein, it would be interesting to explore the

horizon physics deeper, as results there would also hold
for asymptotically flat spacetimes. Importantly, in the
latter case, there is also an interesting relation between
the structure of interior null surfaces (like the horizon), and
future null infinity. However, the relationship between the
horizon membrane paradigm and the asymptotic (e.g. Iþ)
null boundary Carrollian fluid is still largely unexplored.

The latter fluid however enjoys Weyl symmetry, which
makes it special. This could also help motivate a fluid
interpretation of (particular) quasi-normal modes in
asymptotically flat spacetimes. Another avenue for
exploration is to consider a potential entropy current,
both for the relativistic fluid at the boundary and the
horizon Carrollian fluid. This current could help us
connect with its microscopic origin and inform standing
questions on Carrolllian hydrodynamics. Finally, a
deeper understanding of potential connections between
phenomena in nonlinear gravity and hydrodynamics can
motivate new avenues to identify and study nonlinear
gravitational behavior (e.g. [16,30,42–49]).
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APPENDIX: ALTERNATIVE CHOICE FOR χ

An alternative choice for χ, which fixes it completely,
would be to demand that to first order κ ¼ 2=b. This would
imply

χ ¼ 2

�

2b
3
∂aua − ua∂ab

�

¼ 2b
3

�

2∂aua þ
ua∂ae
ðeþ pÞ

�

; ðA1Þ

and as a consequence, χ1 ¼ 3χ3 ¼ 2=b3, χ2 ¼ 3χ4 ¼ 4=b3.
These values however, (complemented by λ ¼ 4=b3;
η ¼ 1=b3) are not within the causality bounds of [3].
Further, on-shell dynamical solutions have an associated
energy density at first order which differs from that at
zeroth order.
Going further, one could demand that the first order

expression for μ be proportional to Θ, so first order
perturbations (Θ → Θþ δΘ) of Raychauduri’s equation
would receive no corrections from the nonlinear terms
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except the shear contribution. In turn, this would require
κ ¼ 2=bþ αΘ, thus

χ ¼ b
3

�

ð4þ 6αÞ∂aua þ ð2þ 6αÞ ua∂ae
ðeþ pÞ

�

: ðA2Þ

Thus, χ1 ¼ 3χ3 ¼ ð2þ 6αÞ=b3, χ2 ¼ 3χ4 ¼ ð4þ 6αÞ=b3.
For α ≥ 1 the causality conditions are satisfied, but again
the associated energy-density at first order—on-shell—
would differ from that at zeroth order.
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