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It has been proposed that quantum complexity is dual to the volume of the extremal surface, the action
of the Wheeler-DeWitt patch, and the spacetime volume of the patch. Recently, a generalized volume-
complexity observable was formulated as an equivalently good candidate for the dual holographic
complexity. This proposal is abbreviated as “complexity ¼ anything.” This proposal offers greater
flexibility in selecting extremal surfaces and evaluating physical quantities, e.g., volume or action, on
these surfaces. In this study, we explore the complexity ¼ anything proposal for Gauss-Bonnet black holes
in asymptotic anti–de Sitter space in various dimensions. We demonstrate that this proposal guarantees the
linear growth of the generalized volume at late times, regardless of the coupling parameters for four-
dimensional Gauss-Bonnet gravity. However, this universality does not hold for higher dimensions.
Moreover, discontinuous deformations of the extremal surfaces emerge when multiple peaks exist in the
effective potential, which is reminiscent of a phase transition. Additionally, we present constraints on
the coupling parameters of five-dimensional models in order for the generalized volume to be a viable
candidate for holographic complexity.
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I. INTRODUCTION

The holography of black holes has triggered much
excitement and progress in our understanding of black
holes over the last decade. The core of this treatment is the
validity of the central dogma that black holes exhibit
unitary evolutions [1]. It has been demonstrated in both
replica wormhole calculations as well as qubit models that
the entropy of a black hole is encoded in the area of its
horizon after the Page time [2,3]. The nature of the Page
transition has been hypothesized, for example, as the
emergence of Euclidean wormholes [4,5], the quantum
teleportation induced by effective measurements [6], and
recently, the transition of the information channels [7,8].
While the entropy of a black hole increases only for a finite
duration before reaching thermalization, the volume of its

interior and the length of the wormhole for a two-sided
anti–de Sitter (AdS) black hole continue to grow [9].
Consequently, it was suggested that a new quantum
information measure is needed to capture the feature.
Various concepts have emerged in this endeavor, such as
linking volumes to this complexities of decoding informa-
tion within the black hole, and several explicit calculations
have been developed to demonstrate this duality [10–26].
Quantum complexity is a measure of the least steps it

takes to complete a task by applying gates only from a set
of finite simple operations. The ambiguity in determining
the exact value of complexity arises from the arbitrariness
of the choice of gate set and the cost assigned to each gate.
It was argued that, instead of a shortcoming, this ambiguity
connects nicely with the ambiguity of rescaling freedom of
the length/volume in its holographic dual [13,14]. The
scaling of the complexity with the size of the problem is a
robust property, and the quantum circuit complexity is
shown to grow linearly with the number of Haar-random
two-qubit quantum gates [27].
Inspired by the ER ¼ EPR proposal [28], the observa-

tion of linear growth of the wormhole length and the
switchback effect of external perturbations, the quantum
complexity is conjectured to be dual to volume of the
codimension-one maximal slice [complexity-volume (CV)
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proposal] [10,11], gravitational action in the Wheeler-
DeWitt patch [29–31] and the spacetime volume of the
Wheeler-DeWitt patch [complexity-volume proposal 2.0
(CV2.0)] [12]. In the CV conjecture, the holographic
complexity is conjectured to be dual to the maximal volume
of the hypersurface anchored at the boundary conformal
field theory (CFT) slice ΣCFT, viz.

CVðΣCFTÞ ¼ max
∂B¼ΣCFT

�
VðBÞ

GNlbulk

�
; ð1:1Þ

where B is the bulk hypersurface. The CA conjecture offers
an alternative to the CV proposal. It states that complexity
can be represented as the integral of the gravitational action
in the Wheeler-DeWitt patch, which is defined as the
domain of dependence of the slice B. It is expressed as

CAðΣCFTÞ ¼
IWDW

πℏ
: ð1:2Þ

The CA proposal was investigated in various models. See
Refs. [32–40] for a nonexhaustive list of works. The CV2.0
proposal combines the CV and CA conjectures and pro-
poses that the complexity is simply given by the spacetime
volume of the Wheeler-DeWitt patch anchored at the given
boundary states,

CV2ðΣCFTÞ ¼
VWDW

GNl2
bulk

: ð1:3Þ

Recently, it was realized that the dual of holographic
complexity, which exhibits linear growth and the switch-
back effect at late times, can be extended to an infinite
family of observables of either codimension zero or
one [13,14,41]. For codimension-one observables,
which are the focus of this paper, the generalized volume
is given by

CgenðτÞ¼ max
∂ΣðτÞ¼ΣCFT

�
1

GNL

Z
ΣðF2Þ

dD−1σ
ffiffiffi
h

p
F1ðgμν;XμðσÞÞ

�
;

ð1:4Þ

where the slice ΣðF2Þ is the extremal surface for a scalar
function F2 and τ is the boundary time. Notably, F2 can be
any scalar function, and it is not required to be the same as
F1 in the integrand. It is shown that at the late times,
different choices of the functions F2 result in the same late-
time behavior for the generalized volume [13]. Therefore,
demonstrating the simpler case F1 ¼ F2 should suffice for
the discussion. The proposal of complexity ¼ anything
(CAny) is useful for probing the singularities of black holes
by tuning the coupling parameters [14,41]. Recent develop-
ment extends the CAny to de Sitter spaces [42], charged
black holes [15,43], and two-sided hyperscaling violating

black branes [44]. The details of this proposal will be
delineated in the subsequent sections.
The goal of this paper is to explore the generalized CAny

proposal of the codimension-one surfaces for Gauss-
Bonnet (GB) black holes in four dimensions and higher.
Importantly, the original CAny proposal was formulated
in the Einstein gravity. Generally, its equivalence in the
Gauss-Bonnet gravity may have contributions from
more sources such as the extrinsic curvatures in the CV
proposal [45] or the Gauss-Bonnet coupling α. The quest
for all possible generalizations is beyond the scope of the
current paper and requires further investigations. In this
study, we show that the CAny proposal can be directly
generalized to the Gauss-Bonnet gravity. Specifically, we
show that in four dimensions, the effective potentials for the
Gauss-Bonnet black holes, which dictate the time evolution
of the extremal surfaces, are qualitatively different from
those in higher dimensions due to the existence of multiple
horizons. This feature in 4D Gauss-Bonnet black holes
guarantees the linear growth of the generalized volume at
late times, regardless of the chosen coupling parameters.
This trait of universal linear growth is absent for Gauss-
Bonnet black holes in dimensions higher than four. In
addition, we explore the scenario when multiple extremal
surfaces exist and show that different rates of volume
growth can be assigned to the surfaces. We demonstrate the
time evolution of conserved momenta corresponding to
different configurations of the extremal surfaces and
illustrate the conditions for the generalized volume to be
qualified as the dual of the holographic complexity. In
Sec. II, we provide background information on the essential
features of Gauss-Bonnet black holes. In Sec. III, we review
the CAny proposal and illustrate its application to codi-
mension-one observables. In Sec. IV, we concentrate on the
CAny proposal in 4D Gauss-Bonnet gravity. The analysis
of 5D Gauss-Bonnet gravity is provided in Sec. V. We
summarize our results in the last section.

II. GAUSS-BONNET-AdS BLACK HOLES

The Gauss-Bonnet Lagrangian is a natural generalization
of general relativity which modifies the equations of motion
in dimensions larger than four. In 4D, the Gauss-Bonnet term
is topological and does not contribute to the equations.
Several techniques have been developed to establish a
consistent nontrivial 4D Gauss-Bonnet gravity, and the
related issues have triggered vigorous discussions [46].
Though issues in 4D are more subtle and not entirely
understood, it is still worthwhile to explore the full conse-
quences of the theory.
The 4D Gauss-Bonnet-AdS black holes have two

horizons, which implies that the central singularity is
timelike [47–49]. In spacetime dimensions D ≥ 5, the
solution has only one horizon, similar to the
Schwarzschild solution. The topology of Gauss-Bonnet
black holes is an active research topic and has been
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investigated in Refs. [50–54]. The action for the GB-AdS
black hole is given by [55]

S ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2Λþ α̃L GBÞ þ SGBM; ð2:1Þ

where L GB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ is the Gauss-

Bonnet term, Λ ¼ − ðD−1ÞðD−2Þ
2L2 , and SGBM is the Gauss-

Bonnet-Myers term, which is the generalization of the
Gibbons-Hawking-York boundary term [56]. For simplic-
ity, we denote α ¼ α̃ðD − 3ÞðD − 4Þ. Note that the GB
coupling α̃ is scaled as 1

D−4 which cancels out the (D − 4)
factor in the definition of α. Taking the limit as D → 4
yields the effective equation of the Einstein-Gauss-Bonnet-
AdS model in 4D. The causality bound from the boundary
CFT requires jα=L2j ≪ 1 [57]. On the other hand, a well-
defined vacuum of the theory also requires that 0 ≤ 4α

L2 ≤ 1.
For a spherically symmetric solution, the metric is given by

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
D−2; ð2:2Þ

where ΩD−2 is the phase-space volume of the (D − 2)-
dimensional sphere. In Eddington-Finkelstein coordinates,
it reads

ds2 ¼ −fðrÞdv2 þ 2 dv drþ r2dΩ2
D−2; ð2:3Þ

where the infalling coordinate v ¼ tþ r�ðrÞ with r�ðrÞ ¼
−
R
∞
r

dr0
fðr0Þ, and the lapse function fðrÞ is given by

fðrÞ ¼ 1þ r2

2α

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

�
w

rD−1 −
1

L2

�s #
: ð2:4Þ

Here, w ¼ 16πGM=ððD − 2ÞΩD−2Þ is the rescaled mass of
the black hole. The location of the horizon satisfies
fðrhÞ ¼ 0, viz.,

w ¼ rD−3
h

�
1þ r2h

L2
þ α

r2h

�
: ð2:5Þ

The temperature of the black hole is given by

TBH ¼ fðrÞ0
4π

����
r¼rh

¼ ðD − 3Þr2h þ ðD − 1Þr4h=L2 þ ðD − 5Þα
4πrhðr2h þ 2αÞ : ð2:6Þ

III. CAny PROPOSAL

For the codimension-one observable, CAny generalizes
the CV and the CA proposals to observables of the form

CgenðτÞ ¼ max
∂ΣðτÞ¼ΣCFT

�
1

GNL

Z
Σ
dD−1σ

ffiffiffi
h

p
F1ðgμν;XμðσÞÞ

�
;

ð3:1Þ

where the slice Σ is the extremal surface for the scalar
function F2 which is not necessarily the same as the scalar
function F1 in the integrand and τ is the boundary CFT time
with τ ¼ 2tL ¼ 2tR. The codimension-one extremal slice
can be readily extended to the codimension-zero case,
where the integration spans the spacetime region enclosed
by two extremal slices, along with the contributions from
the two codimension-one slices. These observables exhibit
linear growth with time at late times and display the
switchback effect. In this study, we investigate the CAny
conjecture in Gauss-Bonnet gravity using the square of
Weyl tensors and discuss the conditions under which this
conjecture holds.
For simplicity, we pick F1 ¼ F2 and consider the

spherically symmetric scalar functions. Choosing the para-
metrization ðvðσÞ; rðσÞ; Ω⃗Þ, we have

CgenðτÞ ¼
ΩD−2

GNL

Z
Σ
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞv̇2 þ 2v̇ ṙ

q
F1ðrÞ: ð3:2Þ

Note that by choosing F1 ¼ 1, it returns to the CV
proposal. One can identify the generalized complexity as
the action and the integrand as the Lagrangian. From the
classical equation of motion ∂S

∂qi ¼ ∂L
∂q̇i j∂Σ, we obtain

dCgen

dτ
¼ 1

2

∂ð ffiffiffi
h

p
F1Þ

∂ṫ

����
∂ΣðτÞ

¼ 1

2
Pt

����
∂ΣðτÞ

: ð3:3Þ

The generalized complexity is diffeomorphism invariant
and we employ our freedom of reparametrization to pick
the gauge condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞv̇2 þ 2v̇ ṙ

q
¼ F1ðrÞ

�
r
L

�
D−2

: ð3:4Þ

The momentum Pν conjugate to the infalling time ν is

Pν ¼
∂L
∂ν̇

¼ ṙ − fðrÞν̇; ð3:5Þ

where the dots are the derivatives taken with respect to the
parameter σ which increases from the left AdS boundary to
the right AdS boundary. The above two equations give the
extremality conditions:

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν þ fðrÞF2

1

�
r
L

�
2ðD−2Þ

s
; ð3:6Þ
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ν̇ ¼ 1

fðrÞ

 
−Pν �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν þþfðrÞF2

1

�
r
L

�
2ðD−2Þ

s !

¼ 1

fðrÞ ð−Pν þ ṙÞ: ð3:7Þ

Comparing the equations with the motion of a classical
particle, we obtain the equations of motion

ṙ2 þ ŨðrÞ ¼ P2
ν with ŨðrÞ ¼ −fðrÞF1ðrÞ2

�
r
L

�
2ðD−2Þ

:

ð3:8Þ

Note that

ν̇ ¼ ṫþ dr�
dr

dr
dσ

¼ ṫþ ṙ
fðrÞ ; ð3:9Þ

and the conjugate momentum Pν is conserved for a specific
boundary time τ. Combining it with the above extremality
condition equation (3.7), we have

ṫ ¼ −
Pν

fðrÞ : ð3:10Þ

From the equations of ṫ and ŨðrÞ, we can recast the
generalized volume as

CgenðτÞ ¼
ΩD−2

GNL

Z
τ

Σ
dt

ŨðrðtÞÞ
Pν

: ð3:11Þ

Here the integration is taken on the extremal surface so that
Pν in the denominator is a constant. The boundary time τ is
related to the conjugate momentum by

t ¼ τ=2 ¼ −
Z

∞

rmin

dr
Pν

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν − ŨðrÞ

p ; ð3:12Þ

where rmin is the minimal radius lying on the timelike
surface t ¼ 0. The growth rate of the complexity

dCgen

dτ
¼ ΩD−2

GNL
PνðτÞ ð3:13Þ

can be calculated from the effective potential. The linear
growth of Cgen at late times is dedicated by the condition
that limτ→∞ PνðτÞ ≔ P∞ is constant and the effective
potential ŨðrÞ has a local maximum inside the horizon.
In this case,

lim
τ→∞

dCgen

dτ
¼ ΩD−2

GNL
P∞ ¼ ΩD−2

GNL

ffiffiffiffiffiffiffiffiffiffiffiffi
ŨðrfÞ

q
; ð3:14Þ

where r ¼ rf is the radius of the local maximum. In certain
parameter regimes, the effective potential may have more
than one local maxima as shown in Fig. 1.

FIG. 1. Effective potential ŨðrÞ as a function of radius r in 4D. (a) λ ¼ −0.1. (b) λ ¼ −0.01. (c) λ ¼ −0.02. ŨðrÞ vanishes on the inner
and outer horizons and stays positive between them. This feature of the effective potential is universal in 4D Gauss-Bonnet black holes.
For all, L ¼ w ¼ 1; α ¼ 0.1.

XUANHUA WANG, RAN LI, and JIN WANG PHYS. REV. D 108, 126018 (2023)

126018-4



IV. CODIMENSION-ONE EXTREMAL
SLICES IN 4D

A. Existence of local maxima

For the Gauss-Bonnet black hole, one simple extension
beyond the CV proposal in CAny is to add a higher
curvature terms such as the square of Weyl tensors

C2 ¼ 2

DðD − 1ÞR
2 −

4

D − 1
RμνRμν þ RμνρσRμνρσ: ð4:1Þ

The analysis is much simplified in 4D due to the different
topology of Gauss-Bonnet-AdS black holes. Other choices
of scalars include the generalization of CV conjecture in
higher-curvature gravities by adding the extrinsic curva-
tures, which is investigated in detail in Ref. [45]. For
spherically symmetric solutions of Gauss-Bonnet black
holes in 4D, the square of Weyl tensor is given by

C2ðrÞ ¼ 12L2w2ðL2ðr3 þ αwÞ − 4αr3Þ2
ðL2ðr4 þ 4αrwÞ − 4αr4Þ3 : ð4:2Þ

One straightforward generalization of the CV proposal
(which is recovered by setting F1 ¼ 1) is to pick
F1ðrÞ ¼ 1þ λL4C2ðrÞ. This scalar function is the simplest
nontrivial function in Einstein gravity in vacuum and is the
most studied one.1 Notably, the CAny proposals for
Einstein gravity can be different for higher curvature
gravities in general. One simplest extension is to lift the
coupling constant λ to a function of GB coupling α.
Furthermore, the CAny functional for higher curvature
gravity may require extra extrinsic curvature terms as
shown earlier for the CV proposal. The generalized holo-
graphic complexity is defined as the integration of the
scalar function on the space volume that extremizes the
integral, viz.,

CgenðτÞ¼
ΩD−2

GNL

Z
Σ
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞv̇2þ2v̇ ṙ

q
ð1þλðαÞL4C2ðrÞÞ:

ð4:3Þ

To ensure that the late time evolution of the generalized
complexity increases linearly with the boundary time τ, we
plot the effective potential ŨðrÞ as a function of radius r.
For a reminder, the effective potential reads

ŨðrÞ ¼ −fðrÞF1ðrÞ2
�
r
L

�
2ðD−2Þ

¼ −fðrÞð1þ λðαÞL4C2ðrÞÞ2
�
r
L

�
2ðD−2Þ

: ð4:4Þ

In principle, one can assume an equation of λðαÞ and put
constraints on its coefficients. To simplify our discussion,
we drop the dependence of λðαÞ on α and treat λ as an
arbitrary constant to be constrained in this study. The
Penrose diagram of a Gauss-Bonnet-AdS black hole in 4D
is similar to that of a charged black hole in that they are
both equipped with two horizons. For spacetime regions
inside the inner horizon or outside the outer horizon, i.e.,
r < r− or r > rþ, the lapse function is positive fðrÞ > 0.
For spacetime regions between the two horizons, fðrÞ < 0.
Therefore, the effective potential ŨðrÞ is positive between
the horizons and negative otherwise as shown in Fig. 1.
This ensures that the effective potential always has the local
maximum ŨðrfÞ inside the horizon, which is the condition
for the linear growth of complexity at late times. We will
elaborate on this point further in the following discussion.
To see that any such observables in D ¼ 4 suffice as

candidates for holographic complexity, we show that
limτ→∞ PνðτÞ ¼ P∞ is constant. Recall that the boundary
time is

τ ¼ −2
Z

∞

rmin

dr
Pν

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν − ŨðrÞ

p ; ð4:5Þ

where rmin is determined by P2
ν − ŨðrminÞ ¼ 0. The lapse

function fðrÞ is continuous and nonzero between the
two horizons. For P2

ν < ŨðrfÞ where rf is the radius of
the local maximum of the effective potential, ŨðrÞ ≃ P2

ν þ
Ũ0ðrminÞðr − rminÞ in the vicinity of r ¼ rmin. The integrand

Pν

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν−ŨðrÞ

p of Eq. (4.5) is regular everywhere except at

r ¼ rmin. Notice that for U0ðrminÞ ≠ 0, one can take the
Cauchy principal value and the integral which shows
the boundary time τ is finite. At late times, τ → ∞,
and it corresponds to P2

ν → ŨðrfÞ. In this case, ŨðrÞ≃
P2
ν þ 1

2
Ũ00ðrfÞðr − rfÞ2 þOðr − rfÞ3 near the local maxi-

mum r ¼ rf. One can see that as long as r ¼ rf is the local
maximum for ŨðrÞ, the function in the integrand is no
longer integrable in the domain. In other words, the integral
is divergent with the irregular point at r ¼ rf. This suggests
that when Pν approaches ŨðrfÞ, the result of the integral
which gives τ can take arbitrarily large values. Therefore, at
late times τ → ∞, the conjugate momentum Pν approaches
a constant P2

ν → ŨðrfÞ, and the growth rate of the com-
plexity is

lim
τ→∞

dCgen

dτ
¼ ΩD−2

GNL

ffiffiffiffiffiffiffiffiffiffiffiffi
ŨðrfÞ

q
: ð4:6Þ

Therefore, CAny proposal has the natural realization at
D ¼ 4 in Gauss-Bonnet-AdS black holes. No additional
constraints or regularization for the scalar field is required
for 4D Gauss-Bonnet gravity.

1The simpler choices of scalar functions such as R2 and RμνRμν

do not contribute in the vacuum solutions of the Einstein gravity,
and therefore are not of particular interest in related studies.
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B. Dipping and non-Dipping branches

In the case of planar black holes in Einstein’s theory, the
effective potentials diverge to infinity as r → 0, and it is
obvious that the equation P2

ν ¼ Ũ always has a solution for
arbitrarily large conjugate momentum Pν. It is not the case
for 4D Gauss-Bonnet-AdS black holes where the effective
potential approaches negative infinity as r → 0. The three
possible configurations of the effective potentials for a 4D
Gauss-Bonnet-AdS black hole are shown in Fig. 1. The
“dipping branch” in this scenario corresponds to the time
evolution of Pν approaching P∞ from above; i.e., Pν

decreases with the boundary time τ which is given by

τ ¼ −2
Z

rmax

rmin

dr
Pν

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
ν − ŨðrÞ

p ; ð4:7Þ

where rmin the solution of Pν ¼ ŨðrÞ. This process is
represented by the orange solid lines in Fig. 2(a) going
from right to left and also by the dashed orange branch in
Fig. 2(b). One can compute numerically that the transition-
ing point from no dipping branch to the emergence of a
dipping branch occurs at λ ≃ −0.05. It is worthwhile to
point out that the extremal surfaces corresponding to the
dipping branches in both the 4D Gauss-Bonnet gravity and
the planar Einstein gravity do not yield the maximal
holographic complexity at late times. This can be seen
by comparing the late-time generalized volume evaluated
on the dipping branch with that on the nondipping branch

lim
τ→∞

ðCno−dipðτÞ − CdipðτÞÞ

¼ lim
τ→∞

ΩD−2

GNL

Z
t¼τ

t¼0

dt

�
P∞ −

ŨðrðtÞÞ
P∞

�
: ð4:8Þ

At late times, as PνðτÞ → P∞ and the ŨðrðtÞÞ ≤ P2
∞, the

right-hand side of the above equation remains positive. As
in the case of planar black holes in Einstein gravity [14], the
surface yielding the maximal complexity is always the one

whose minimal radius approaches the local maximum of
the effective potential. However, unlike the case of planar
black holes in Einstein’s theory, the extremal surface in
the 4D Gauss-Bonnet-AdS black holes cannot probe the
singularity since its boundary lies between the inner and
outer horizons for arbitrarily large conjugate momenta.
This is a reminiscence of a charged black hole [15]. The 4D
Gauss-Bonnet black hole, unlike its counterparts in higher
dimensions, has very similar causal structure as a Reissner-
Nordström-AdS black hole and this causal structure
dictates qualitatively the motion of the extremal slice
disregarding their differences.

C. Phase transition of the extremal slice

One feature of the holographic complexity in 4D Gauss-
Bonnet-AdS black holes is the appearance of multiple local
maxima in the effective potential as illustrated in Figs. 1(b)
and 1(c). Consequently, the late-time behavior of the
generalized volume is now characterized by two different
branches, resulting in different rates of increase for the
generalized volume-complexity.
Notably, there is no continuous variation from one

branch to the other along the trajectory of equations of
motion. The time evolution of the conserved momentum Pν

with respect to the boundary time τ extends to an infinite
future, ultimately approaching P∞;R, which is the asymp-
totic conserved momentum defined through Eq. (4.5) as
τ → ∞. It is the value of Pν at the right peak of the effective
potential and is represented by the end value of the blue
curve in Fig. 3(a). Along the trajectory of equations of
motion, the evolution of the generalized volume complexity
is determined either by the left or by the right local
maximum of the effective potential. Both trajectories of
Pν are smooth.
However, according to the volume-complexity con-

jectures, the generalized volume complexity Cgen is
determined by the maximum value obtained across all
the branches. This requirement results in discontinuous

FIG. 2. Conserved momentum when effective potential has two local maxima with global maximum locates inside. (a) The minimal
radius rmin of the extremal surface vs conserved momentum at λ ¼ −0.02. The dashed curves correspond to the hypersurfaces that do not
have boundaries at ΣCFT. (b) Boundary time vs conserved momentum at λ ¼ −0.02. The dashed lines correspond to the hypersurface
where Pν decreases and rmin increases as time evolves. The generalized volume evaluated on this slice is smaller than its counterpart
measured along the blue curve. For both, L ¼ w ¼ 1; α ¼ 0.1.
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jumps of the extremal surface from the blue curve to the
orange one closer to the singularity at time tC as shown
in Fig. 3. We recall that this “phase transition” is not
describable by the equations of motion of the extremal
surfaces [Eq. (3.7)] but rather is from the definition of the
volume complexity

Cgen ¼ max
Σ

�
ΩD−2

GNL

Z
Σ
PνðτÞdτ

�
; ð4:9Þ

where Σ’s are the extremal surfaces.
In Fig. 3(b), we demonstrate the two extremal surfaces

in the Penrose diagram. At the critical time tC, the volume
complexity evaluated on the two surfaces is identical.
However, after the critical time, the surface closer to the
singularity (the solid orange curve) exhibits a larger volume
complexity. As shown in Fig. 2(a), the nondipping branch,
represented by the blue solid line on the top, has a lower
generalized volume at τ → ∞. The extremal surface that
generates the largest volume complexity jumps to the one
ending at the left peak of Fig. 1(c), and is represented by the
orange solid line in Figs. 2 and 3. This behavior resembles
a phase transition and was briefly discussed in [15]. In
particular, depending on the shape of the effective potential
and in higher-dimensional cases, this phase transition
between different branches of Pν − τ diagrams can occur
more than once. Overall, the late-time behavior is always
dictated by the maximal peak of the effective potential ŨðrÞ
and the extremal surface after the transition always moves
closer to the singularity.

V. CODIMENSION-ONE EXTREMAL
SLICES IN 5D

In contrast to the four-dimensional case, Gauss-Bonnet
black holes of dimensions higher than 5 exhibit the presence

of only one horizon. For d > 4, the analysis is similar and can
be easily generalized, but it becomesmuchmore complicated
from Weyl tensor terms. Therefore, in this study, we will
explicitly illustrate the five-dimensional case to demonstrate
the constraints on the coupling parameter necessary for the
existence of the extremal surface at late times.

A. Existence proof of local maxima

In 5D, the black hole has a minimal black hole mass
condition, namely, w > α. It possesses a single horizon,
and its corresponding effective potential does not auto-
matically admit a local maximum inside the horizon
as observed in the 4D case. Notably, the lapse function
fðrÞ < 0 for the inside of the black hole r < rh, which
leads to the effective potential being positive inside the
horizon, i.e., ŨðrÞ > 0. Since ŨðrÞ < 0 for r > rh, it does
not automatically ensure the existence of the local maxi-
mum as that in 4D. Therefore, the volume complexity does
not have the same simple universality as in 4D.
For the spherically symmetric solutions of Gauss-Bonnet

black holes in 5D, the square of Weyl tensor is

C2ðrÞ ¼ 8L2w2ðL2ð3r4 þ 4αwÞ − 12αr4Þ2
r4ðL2ðr4 þ 4αwÞ − 4αr4Þ3 : ð5:1Þ

Therefore, the effective potential reads

ŨðrÞ¼−fðrÞ
�
1þλðαÞ8L

6w2ðL2ð3r4þ4αwÞ−12αr4Þ2
r4ðL2ðr4þ4αwÞ−4αr4Þ3

�
2

×

�
r
L

�
6

: ð5:2Þ

In this case, it is difficult to directly solve for the
local maximum of ŨðrÞ. Nevertheless, one may notice

FIG. 3. Coexistence of two branches of extremal surfaces at λ ¼ −0.02. (a) The boundary time τ vs the conserved momentum Pν. The
two colors represent the two branches of the extremal surfaces. The blue curve represents the evolution from (0,0). The generalized
volume complexity along the blue curve, which is proportional to the area below the curves, is dominating at the beginning of
coexistence of two branches. After some critical time tC, the volume complexity computed from the orange curve dominates, and the
conserved momentum jumps to a higher value discontinuous. (b) The Penrose diagram of the process. For both, L ¼ w ¼ 1; α ¼ 0.1.
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that the effective potential ŨðrÞ → ∞ as r → 0 as
illustrated in Fig. 4. The future null slice that hugs
the singularity will always be the global maximum
when evaluating the integral. This point will be delin-
eated in detail later.
For λðαÞ < 0, we now show that the extremal surface

always exists if the coupling parameter λðαÞ lies within the
range λc < λðαÞ < 0 where λc is the critical coupling to be
determined later. For λðαÞ < 0, λðαÞC2ðrÞ → −∞ near the
singularity. Since C2ðrÞ → 0 as r → ∞, one can see that
ŨðrÞ=fðrÞ ¼ 0 always has roots. For simplicity, we rewrite
the square of Weyl tensor as

C2ðRÞ ∝ ð3R þ βÞ2
RðR þ βÞ3 ; ð5:3Þ

where R ¼ ðL2 − 4αÞr4 and β ¼ 4αwL2. We recall that
ðL2 − 4αÞ > 0 is required by the well-defined vacuum in
the theory. One can check from the above formula,
Eq. (5.3), that dC2ðRÞ=dR < 0 holds for all R > 0.
Therefore, the equation for the effective potential

ŨðrÞ ¼ −fðrÞð1þ λðαÞC2ðrÞÞ2ðr=LÞ2ðD−2Þ ¼ 0 ð5:4Þ

has roots inside the horizon when the coupling parameter
satisfies λc < λðαÞ < 0, where λc is the critical value of λ
that is determined by λcC2ðrhÞ ¼ −1 where rh is the radius
of the horizon. The case λðαÞ ¼ λc corresponds to when the
local minimal of the effective potential is zero at the
horizon. Obviously, for λðαÞ < λc, the effective potential
ŨðrÞ > 0 for r < rh and it does not have a root inside the
horizon. The effective potential ŨðrÞ monotonically
decreases inside the horizon; therefore, in this case it does
not have a local maximum. In conclusion, the above
analysis proves that when λc < λðαÞ < 0, the requirement
of linear growth for the observable Cgen at late times is
satisfied. In addition, the analysis also holds for Gauss-
Bonnet black holes of higher dimensions.
For λðαÞ ≥ 0, the effective potential satisfies ŨðrÞ > 0 for

r < rh so that it does not have a root inside the horizon. We
notice that the effective potential ŨðrÞ ∝ −fðrÞr6ð1þ
λC2ðrÞÞ2. For r2 ≪ α (near the singularity), one has

dð−fðrÞr6Þ
dr4

¼
−2r4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4α

L2 þ 4αw
r4 þ 1

q
− 1
	
− 3α

ffiffiffiffiffi
r4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4α

L2 þ 4αw
r4 þ 1

q
þ 6αw − 8αr4

L2

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4α

L2 þ 4αw
r4 þ 1

q
≃
3αw − 3α

ffiffiffiffiffiffi
αw

p

α
ffiffiffiffiffiffiffiffiffi
4αw

p r2 > 0: ð5:5Þ

FIG. 4. Effective potential ŨðrÞ as a function of radius r in 5D. (a) λ ¼ −0.0005 > λc. This corresponds to the existence of the local
maximum inside the horizon. (b) λ ¼ −0.008877 ¼ λc. This demonstrates the effective potential at exactly the critical point when the
local maximum approaches the horizon and disappears. (c) λ ¼ 0.001 < λ0c. (d) λ ¼ 0.01 > λ0c. For all, L ¼ w ¼ 1; α ¼ 0.1. Unlike the
case in 4D, ŨðrÞ → ∞ close to the singularity r → 0.
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Both the effective potential and its derivative with respect to
the radius r are positive inside the horizon and ŨðrhÞ ¼ 0 on
the horizon. This guarantees thatwhen λðαÞ ¼ 0 there exists a
local maximum ŨðrÞ inside the horizon. Since the square of
Weyl tensor C2ðrÞ is a monotonically decaying function, it
follows that there exists a maximal value of λ0c ≥ 0 such that:
(1) for 0 ≤ λðαÞ < λ0c, the effective ŨðrÞ has a local

maximum inside the horizon;
(2) for λðαÞ > λ0c, dŨðrÞ=dr < 0 inside the horizon.

This completes the existence proof for the localmaximaof the
effective potential within a finite range of the coupling
parameter. The maximal value λ0c depends nontrivially on
w, α, L and can be determined numerically. The graphic
illustration of the above results is shown in Fig. 4. Combining
the analysis above, we conclude that Cgen is a well-behaved
observable for the holographic complexity as long as
λc < λðαÞ < λ0c, where λc ¼ −1=C2ðrhÞ < 0 and λ0c > 0.
As shown in Fig. 5, when the coupling parameter is

within the above-mentioned range, the conserved momen-
tum monotonically increases with time and approaches a
finite asymptotic value P∞. In this case, the generalized
volume-complexity has a constant rate of increase at late

times as limτ→∞
dCgen

dτ ¼ ΩD−2
GNL

P∞.

B. Couplings outside the allowed range

In the previous section, we demonstrated that the desired
behaviors of the volume-complexity observable only mani-
fest within a finite range of coupling parameters. This stands
in contrast to the 4D case where no such constraints are
necessary. However, even for the coupling parameters outside
the desired range, we can just as well explore the behaviors of
the conserved momentum and the extremal surfaces.
First of all, we examine the evolution of the conserved

momentum using Eq. (4.5). For instance, consider a

FIG. 5. The change of conjugate momentum Pν with boundary
time τ. λ ¼ −0.002, L ¼ w ¼ 1, and α ¼ 0.1.

FIG. 6. (a) Time evolution of the conserved momentum with λ ¼ 0.01, L ¼ w ¼ 1, and α ¼ 0.1. (b) Diagrammatic illustration
of the evolution of the conserved momentum at large values in (a). (c) The Penrose diagram for the process in (b) with
L ¼ w ¼ 1; α ¼ 0.1 and λ ¼ −0.01.
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coupling parameter like λðαÞ ¼ 0.01, which exceeds the
critical value λ0c. As depicted in Fig. 4(d), in this scenario,
the effective potential monotonically decreases. We evolve
the extremal surface from τ ¼ 0 and Pν ¼ 0. As shown in
Fig. 6(a), the evolution of the conserved momentum lasts
only for a finite time before the extremal surface ceases to
exist. On the other hand, if we start with an extremely large
Pν, which corresponds to the extremal surface extending
arbitrarily close to the singularity, Pν rapidly decays to its
final value and thereafter, solutions no longer exist.
This case is diagrammatically represented in Fig. 6(b).
In Fig. 6(c), we depict the corresponding changes of the
extremal surface in the Penrose diagram. Beginning with
the extremal surface extending close to the singularity, the
slice rapidly deforms into the one that is further away from
the singularity before ceasing o exist. In this case, the
generalized volume does not have a dual quantum com-
plexity at late times.

VI. DISCUSSION

In the above analysis, the correction to the boundary time
due to the presence of Gauss-Bonnet couplings is not
considered [17]. In general, for a more physical choice of
boundary time that has the speed of light equal to one, the
time coordinate should be shifted according to t → 1

N t

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α=L2

p
Þ

q
. Therefore, the rate of

change in complexity dC
dt is modified by a constant

multiplicative factor N. The Gauss-Bonnet correction to
the boundary time decreases the complexity rate by a
constant factor, but it does not affect our discussion.
In the complexity ¼ anything conjecture, a much wider

class of observables is considered as viable candidates for
the dual of holographic complexity. The core of evaluating
the generalized volume, which is the complexity dual, is to
find the extremal slice. In this study, we explored the CAny
conjecture in four- and five-dimensional Gauss-Bonnet
gravity in anti–de Sitter space. Specifically, we demon-
strated the universality of the existence of the complexity
dual at late times in 4D. Notably, the smallest radius to
which the extremal surface extends always approaches a
constant value at late times. This guarantees the finite
asymptotic value of the conserved momentum and thus a
constant increasing rate of the volume complexity at late
times. We observed that starting from the boundary time
τ ¼ 0, the conserved momentum grows monotonically

and the minimal radius of the extremal surface decreases
monotonically to their corresponding finite asymptotic
values at the local maximum of the effective potential.
In cases where multiple local maxima co-exist, depending
on the shape of the effective potential, phase transitions of
the extremal surface can emerge if the local maximum
closer to the singularity has a larger peak value than the
outermost one. Otherwise, the extremal slice follows a
similar pattern as in the single-peak potential. Furthermore,
we demonstrated that dipping slices, on which Pν decreases
with time, do not yield the largest generalized volume and
can be disregarded in the computation. We argued that this
feature extends beyond the Gauss-Bonnet gravity and is
solely determined by the shape of the effective potential of
a specific model.
The Gauss-Bonnet gravity in 4D and higher dimensions

are dramatically different; the 4D gravity has timelike
singularities and higher-D models all exhibit spacelike
singularities. In the 5D case, we showed that the univer-
sality of extremal slices at late times observed in 4D is not
present, and only models with a certain finite range of
coupling parameters can serve as viable duals to the
complexity. However, for coupling parameters outside
the range, one can nevertheless evaluate the generalized
volume according to the proposed formula. However, we
found that the extremal surface only exists for a finite
boundary time in this scenario and cannot replicate the
constant growing feature of the complexity at late times.
To conclude, we investigated the CAny proposal in the

Gauss-Bonnet gravity and extended the discussion to include
the phase transitions of the extremal slices as well as the
deformations of the extremal slices in various scenarios in
the Gauss-Bonnet-AdS gravity. Generalizations of CAny
proposal in the Gauss-Bonnet, as well as other higher
curvature gravities, can possibly include, for example,
boundary terms, extrinsic curvatures, the dependence of
the coupling parameter on the Gauss-Bonnet and higher-
curvature parameters, etc., which require further studies in
the future. This may stimulate a further quest for the
understanding of the quantum nature of gravity and shed
light to the interiors of the black holes.
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