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Double field theory (DFT) can be constructed as the double copy of a Yang-Mills theory. In this work we
extend this statement by including higher-derivative terms. Starting from a four-derivative extension of
Yang-Mills theory whose double copy is known to correspond to a conformal-gravity theory, we obtain a
four-derivative theory formulated in double space, which in the pure gravity limit reduces to conformal
gravity at quadratic order. This result reveals important aspects for the study of conformal symmetry in the
context of DFT through double copy maps.
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I. INTRODUCTION

Recently, research activities have witnessed a surge of
interest in exploring possible relationships between gauge
and gravity theories. Such a connection can be instrumental
in determining fundamental relations in order to understand
more deeply the quantum formulation of gravitational
interactions. One successful approach in this direction is
the so-called double copy prescription [1], which is a
map between scattering amplitudes in a broad variety of
gravitational and gauge theories (see [2] and references
therein for an introduction to the subject and its applica-
tions). In its original manifestation revealed by Kawai et al.,
closed-string tree-level amplitudes can be written in terms
of open-string amplitudes [3]. The double copy formulation
also presents correspondences of classical solutions of
Yang-Mills theory and gravity [4] and it has been of
paramount importance for scattering-amplitude methods
in the investigation of classical gravitational physics [5].
A very interesting result was recently obtained in [6]. In

this paper, the authors demonstrated that the gravitational
framework that results from the double copy map of Yang-
Mills theory contains a chiral structure, such as the one that

happens in the geometry of double field theory (DFT) [7,8].
In particular, after applying the double copy procedure
to the Yang-Mills theory, the resulting gravitational theory
is indeed described by a weak-constrained perturbative
DFT, both at quadratic and cubic order, which requires the
integration of the generalized dilaton as well as a particular
gauge fixing (Siegel’s gauge) for describing the cubic inter-
actions, while the quadratic interactions can be described
without fixing any gauge.
In DFT, a doubled set of coordinates is included. This

approach allows for a consistent treatment of both momen-
tum and winding modes in a way that is invariant under
T-duality transformations. DFT provides a natural setting
for studying the physics of nongeometric backgrounds and
has applications in various areas of theoretical physics,
including black hole physics, cosmology, and the study of
noncommutative geometries.1 Much of the work on DFT
has been done on the so-called “strongly constrained”DFT:
The inclusion of a T-duality invariant metric as well as a
dynamical generalized metric generates a notion of chiral-
ity that can be explicitly manifest in terms of projectors.
There is an extra fundamental field, the generalized dilaton,
which can be used to construct a measure in the double
geometry. These fields encode the information related with
the massless bosonic fields of the NS-NS (Neveu-Schwarz)
sector of string theory, once the antisymmetric field is
identified with the Kalb-Ramond field. Pure Yang-Mills
theory can be coupled at the DFT level as in [11,12], but in
this work we will consider only gravitational degrees of
freedom in the double geometry.
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The double structure of DFT suggests a natural relation
with the double copy approach. This was initially explored
in [13] where DFT was used to derive the double copy
relationship by showing that the equations of motion of
DFT can be mapped onto the equations of motion for Yang-
Mills theory. This was done from a perturbative method
related with a suitable generalization of the Kerr-Schild
ansatz [14]. This framework can be extended for heterotic
DFT [15,16], Kaluza-Klein DFT [17], and exceptional
field theory [18]. The connection between the double copy
and the geometry of DFT can also explain properties of
the L∞ structure of the latter. It is well known that the
DFT Jacobiator is not trivial (but it is given by a trivial
parameter), and therefore the algebraic structure of DFT is
given by an L∞ algebra with a nontrivial l3 product [19],
which measures the failure of the Jacobi identity in the
double geometry. The L∞ structure of DFTwhen the gener-
alized Kerr-Schild ansatz is imposed was studied in [20],
while the relation between the double copy prescription
given in [6] was recently studied in [21] generalizing the
results of the former.
Based on these previous researches, in this work we go a

step further and explore the double copy of higher-derivative
theories. In particular, we are interested in a result coming
from the computation of scattering amplitudes—the double
copy of certain higher-derivative Yang-Mills theories cor-
responds to conformal (super)gravity [22,23]. As it was
noted in [6], a double copy requires replacing color factors
with a second set of kinematic factors, which come with
their own momenta. This substitution leads to a theory in
double momentum space or, in position space, a doubled
set of coordinates. This suggests a close relation between
conformal gravity and a higher-derivative deformation of
DFT via double copy prescription. We start by reviewing
the double copy prescription on the Yang-Mills Lagrangian
as was done in [6], which serves us to present the procedure
for the leading-order theory (two-derivative case). In the
following section, we extend the analysis to a Lagrangian
containing higher-derivative terms. We find a consistent
action on the double space to quadratic order by imposing
gauge-fixing conditions that reduce to Weyl gravity.
Then we compute the full cubic order of the theory, which
in the pure gravity case contains a larger structure of
terms beyond Weyl gravity. Finally, we discuss different
alternatives to address the inclusion of conformal sym-
metry in nonperturbative DFT. We work with units such
as ℏ ¼ c ¼ G ¼ 1.

II. DOUBLE FIELD THEORY AS THE DOUBLE
COPY OF YANG-MILLS THEORY

As we mentioned previously, it was shown in [6] that
DFT may arise quite naturally from the color-kinematics
double copy of Yang-Mills theory. In that work, the authors
showed that, after implementing a double copy prescription
on a Yang-Mills theory, the resulting gravitational theory is,

at least to cubic order in fields, a weak-constrained
perturbative DFT that requires the integration of the
generalized dilaton. More precisely, at quadratic order they
obtained a gauge invariant DFT, whereas the cubic order
requires a particular gauge-fixing procedure, the use of the
Siegel gauge.
In this section, we briefly review the analysis made in

Ref. [6]. This will help us establish the notation, but mainly
the point here is to introduce the double copy prescription
before applying it to a higher-derivative gauge theory
related to conformal gravity in the next section. The starting
point is a D-dimensional Yang-Mills action,

SYM ¼ −
1

4

Z
dDxκabFμν

aFμνb; ð1Þ

where the Yang-Mills field strength is defined in the
standard way

Fμν
a ¼ 2∂½μAν�a þ gYMfabcAμ

bAν
c; ð2Þ

and space-time indices are contracted with a Minkowski
metric ημν ¼ diagð−;þ;þ;þÞ. Passing over to momentum
space, the quadratic terms of the gauge action reads (up to a
total derivative)

Sð2ÞYM ¼ −
1

2

Z
k
κabk2ΠμνðkÞAμ

að−kÞAν
bðkÞ; ð3Þ

where
R
k ≡

R
dDk. The projector ΠμνðkÞ is defined as

ΠμνðkÞ ¼ ημν −
kμkν

k2
ð4Þ

and obeys the identities

ΠμνðkÞkν ¼ 0; ΠμνΠνρ ¼ Πμ
ρ: ð5Þ

The next step is to take the double copy prescription to
construct a gravitational theory. It consists of replacing the
color indices by a second set of space-time indices (a → μ̄)
corresponding to a second set of space-time momenta k̄μ̄.
This implies

Aμ
aðkÞ → eμμ̄ðk; k̄Þ: ð6Þ

The Cartan-Killing metric κab must also be substituted
following the relation [6]

κab →
1

2
Π̄μ̄ ν̄ðk̄Þ; ð7Þ

where the projector Π̄μ̄ ν̄ is defined in the same way as the
projectorΠμν but for barred momenta and indices instead of
the original ones. Using these rules, the quadratic action (3)
becomes
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Sð2ÞDC ¼ −
1

4

Z
k;k̄

k2ΠμνðkÞΠ̄μ̄ ν̄ðk̄Þeμμ̄ð−k;−k̄Þeνν̄ðk; k̄Þ: ð8Þ

It is obvious that the action is symmetric in k and k̄
except for the factor k2. This asymmetry is solved in DFT
due to the so-called level-matching constraint, which states
that k̄2 ¼ k2.
To complete the construction of the gravitational theory

related to (3), we have to Fourier transform the previous
action to position space. After expanding the projectors and
using the level-matching constraint, we find the presence of
a nonlocal term that forces the introduction of an auxiliary
scalar field ϕðk; k̄Þ such that, when integrated out, the
action (8) can be explicitly recovered. It is straightforward
to Fourier transform to a local action in doubled position
space,

Sð2ÞDC ¼ 1

4

Z
dDxdDx̄

�
eμν̄□eμν̄ þ ∂

μeμν̄∂ρeρν̄

þ ∂
ν̄eμν̄∂

σ̄eμσ̄ − ϕ□ϕþ 2ϕ∂μ∂ν̄eμν̄
�
; ð9Þ

which reproduces the standard quadratic DFT action with-
out the assumption of any gauge choice.
We have reviewed how to obtain quadratic DFT from

the ordinary Yang-Mills action. Next we are going to
discuss some relevant aspects of the cubic construction.
After Fourier transforming to momentum space the cubic
contributions from (1), the three-point vertex function
arises naturally (kij ¼ ki − kj),

πμνρðk1; k2; k3Þ ¼ ημνkρ12 þ ηνρkμ23 þ ηρμkν31; ð10Þ

which satisfies the antisymmetric properties of the structure
constant. The action at this point can be written as
[Ai ≡ AðkiÞ]

Sð3ÞYM ¼ −
igYM

6ð2πÞD=2

Z
ki

δðk1 þ k2 þ k3Þ

× fabcπμνρAa
1μA

b
2νA

c
3ρ; ð11Þ

which shows that an extension of the double copy pre-
scription (6) and (7) must be considered in order to include
the structure constant. The proper substitution rule is

fabc →
i
4
π̄μ̄ ν̄ ρ̄; ð12Þ

defined in the same way as (10) but for barred momentum.
One obtains

Sð3ÞDC ¼ 1

48ð2πÞD=2

Z
dK1dK2dK3δðK1 þ K2 þ K3Þ

× π̄μ̄ ν̄ ρ̄πρμνe1μμ̄e2νν̄e3ρρ̄; ð13Þ

where K ¼ ðk; k̄Þ, dK ¼ d2DK, and eiμμ̄ ¼ eμμ̄ðKiÞ. After
some manipulations, Fourier transformation to position
space, and integration by parts, the authors obtain the
following cubic action for the double copy of Yang-Mills
theory:

Sð3ÞDC ¼ 1

8

Z
dDxdDx̄eμμ̄

h
2∂μeρρ̄∂

μ̄eρρ̄ − 2∂μeνρ̄∂
ρ̄eνμ̄

− 2∂ρeμρ̄∂μ̄eρρ̄ þ ∂
ρeρρ̄∂

ρ̄eμμ̄ þ ∂ρ̄eμρ̄∂ρeρμ̄
i
: ð14Þ

It was proven that this action agrees with the cubic DFT
action by a gauge-fixing condition, integrating out the
dilaton. The imposition of a gauge-fixing condition is
expected considering amplitude computations.
In the next section, we are going to apply the double copy

map (6), (7), and (12) on the minimal ðDFÞ2 theory [22] in
order to explore the relation between higher-derivative
double field theory and conformal gravity.

III. HIGHER-DERIVATIVE DOUBLE FIELD
THEORY FROM THE MINIMAL ðDFÞ2 THEORY

Our main interest in this work lies in exploring the
existence of a relation between conformal gravity and DFT.
It was demonstrated that, at the level of amplitudes, the
double copy of the following higher-derivative (HD)
extension of the usual Yang-Mills theory, given by the
Lagrangian

L ¼ 1

2
κabDμFμνaDρFρ

ν
b; ð15Þ

corresponds to conformal (super)gravity [22,23]. Here, we
take this deformation and follow the procedure presented
in [6]. The idea is to explore if this resulting double copy
presents a structure that can be interpreted from the double
geometry framework.
Considering the gauge covariant derivative defined as

DρFμν
a ¼ ∂ρFμν

a þ gYMfabcAρ
bFμν

c; ð16Þ

the expansion of the action (15) up to quadratic terms and
its subsequent integration by parts becomes

Sð2ÞHD ¼ 1

2

Z
dDxκab□Aμa

�
□Aμ

b − ∂μ∂
νAν

b
�
: ð17Þ

This expression is interesting because it contains the
quadratic expansion of the pure Yang-Mills action (1).
Going to momentum space, it becomes

Sð2ÞHD ¼ −
1

2

Z
k
κabk4ΠμνðkÞAμ

að−kÞAν
bðkÞ: ð18Þ

After imposing the double copy (DC) relations (6) and (7)
on the previous action, we obtain
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Sð2ÞHD=DC ¼ −
1

4

Z
k;k̄

k4ΠμνðkÞΠ̄μ̄ ν̄ðk̄Þeμμ̄ð−k;−k̄Þeνν̄ðk; k̄Þ;

ð19Þ

which, not surprisingly, takes the same form as the Yang-
Mills case except for the additional k2 contribution.
However, this additional contribution avoids the emergence
of nonlocal terms in the action, as we can observe after
expanding the projectors

Sð2ÞHD=DC ¼ −
1

4

Z
k;k̄

k2
�
k2eμν̄eμν̄ − kμkρeμν̄eρν̄

− k̄ν̄k̄σ̄eμν̄eμσ̄ þ
1

k2
kμk̄ν̄kρk̄σ̄eμν̄eρσ̄

�
; ð20Þ

and hence the introduction of auxiliary fields is not
necessary. Transforming the last expression to doubled
position space, we find the following higher-derivative
contributions:

Sð2ÞHD=DC ¼ −
1

4

Z
dDxdDx̄

h
□eμν̄□eμν̄ −□eμν̄∂μ∂ρeρν̄

−□eμν̄∂ν̄∂
σ̄eμσ̄ þ ∂

μ
∂
ν̄eμν̄∂ρ∂

σ̄eρσ̄
i
: ð21Þ

This action can be understood as a higher-derivative
extension of DFT with conformal symmetry in the double
space (in a classical sense). To clarify this point, we are
going to explore the conformal-gravity action

SCG ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
CμνρλCμνρλ; ð22Þ

with the Weyl tensor given by

Cμνρλ ¼ Rμνρλ −
2

D − 2

�
gμ½ρRλ�ν − gν½ρRλ�μ

�

þ 2

ðD − 1ÞðD − 2ÞRgμ½ρgλ�ν: ð23Þ

Considering the expansion of SCG up to quadratic order for
gμν ¼ ημν þ hμν, we obtain

Sð2ÞCG ¼D− 3

D− 2

Z
dDx

	�
□hμν□hμν − 2□hμν∂μ∂ρhρν

þ ∂
μ
∂
νhμν∂ρ∂λhρλ

�
−

1

D− 1

�
□h− ∂μ∂νhμν

�
2



; ð24Þ

where h ¼ hμμ.
The second term in (24) can be removed by imposing the

gauge-fixing condition □h ¼ ∂μ∂νhμν, related to dilatation
symmetry δhμν ¼ −2λDημν. It is straightforward to prove

that, after setting x ¼ x̄ and properly rescaling the metric
(and/or considering a particular volume for the double
space when we integrate), in the pure gravity case
(eμν̄ ∼ hμν) the action (21) reduces to (24).
We will now address the double copy prescription for the

cubic terms in (15), which can be written as

Sð3ÞHD ¼ gYM

Z
dDxfabc

h
△ν

a
�
Aρ

b
∂
ρAνc − Aρ

b
∂
νAρc

�

− ∂ρ△ν
aAρbAνc

i
; ð25Þ

with △ν
a ¼ □Aν

a − ∂ν∂
μAμ

a. Following the same logic as
in the quadratic case, we transform the action to momentum
space obtaining

Sð3ÞHD ¼ igYM
ð2πÞD=2

Z
dk1dk2dk3δðk1 þ k2 þ k3Þ

× fabck21Πρμ
�
kν3 − kν1

�
A1μ

aA2ν
bA3ρ

c; ð26Þ

where Πρμ was defined in (4). Before applying the double
copy prescription, we consider a deformation to the three-
point vertex function, given by

Πμνρðk1; k2; k3Þ ¼ Πμνkρ12 þ Πνρkμ23 þ Πρμkν31: ð27Þ

Notice how similar this is to the standard three-point vertex
function defined in Eq. (10)—indeed, Πμνρ can be obtained
from πμνρ by replacing the metric ημν with Πμν. This object
retains all the properties of the leading-order definition and
allows us to write the cubic action as

Sð3ÞHD ¼ igYM
3ð2πÞD=2

Z
ki

δðkiÞfabck21ΠμνρA1μ
aA2ν

bA3ρ
c: ð28Þ

Analyzing the structure of the action, one can realize that
the only way to apply the double copy prescription (6)
and (7) preserving the symmetry between the coordinates μ
and μ̄ is to consider Πμνρ instead of πμνρ in the substitution
rule for the structure constant (12), this is

fabc →
i
4
Π̄μ̄ ν̄ ρ̄: ð29Þ

Then the higher-derivative cubic contributions read

Sð3ÞHD=DC ¼ −
1

24ð2πÞD=2

Z
dK1dK2dK3δðK1 þ K2 þ K3Þ

× k21Π̄μ̄ ν̄ ρ̄Πρμνe1μμ̄e2νν̄e3ρρ̄: ð30Þ

This expression resembles Eq. (13) but encodes the higher-
derivative terms of the action (15). Expanding this last
equation, we obtain
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Sð3ÞHD=DC ¼ −
1

4ð2πÞD=2

Z
dK1dK2dK3δðK1 þ K2 þ K3Þ

	
k21k

ρ
1k̄

σ̄
1e1μν̄e

μν̄
2 e3ρσ̄ − k21k

ρ
2k̄

σ̄
1e1μν̄e

μν̄
2 e3ρσ̄ þ k21k

μ
2k̄

σ̄
1e1μν̄e

ρν̄
2 e3ρσ̄

− k21k
μ
3k̄

σ̄
1e1μν̄e

ρν̄
2 e3ρσ̄ − k21k

μ
2k̄

σ̄
2e1μν̄e

ρν̄
2 e3ρσ̄ þ k21k

μ
3k̄

σ̄
2e1μν̄e

ρν̄
2 e3ρσ̄ − kμ1k

ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ1k
ρ
1k

λ
2k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄

− kμ2k
ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ3k
ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ2k
ρ
1k

λ
1k̄

σ̄
2e1μν̄e2ρ

ν̄e3λσ̄ − kμ3k
ρ
1k

λ
1k̄

σ̄
2e1μν̄e2ρ

ν̄e3λσ̄

− k̄ν̄1k̄
σ̄
1k̄

κ̄
1k

ρ
1e1μν̄e

μ
2 σ̄e3ρκ̄ þ k̄ν̄1k̄

σ̄
1k̄

κ̄
1k

ρ
2e1μν̄e

μ
2 σ̄e3ρκ̄ þ k̄ν̄1k̄

σ̄
1k̄

κ̄
2k

μ
2e1μν̄e

ρ
2 σ̄e3ρκ̄ − k̄ν̄1k̄

σ̄
1k̄

κ̄
2k

μ
3e1μν̄e

ρ
2 σ̄e3ρκ̄

þ 1

k21
k̄μ̄1k̄

ν̄
1k

μ
1k

ν
1k̄

ρ̄
1k

ρ
1e1μμ̄e2νν̄e3ρρ̄ −

1

k21
k̄μ̄1k̄

ν̄
1k

μ
1k

ν
1k̄

ρ̄
1k

ρ
2e1μμ̄e2νν̄e3ρρ̄ þ

1

k21
k̄μ̄1k̄

ν̄
1k

ν
1k

ρ
1k̄

ρ̄
2k

μ
2e1μμ̄e2νν̄e3ρρ̄

−
1

k21
k̄μ̄1k̄

ν̄
1k

ν
1k

ρ
1k̄

ρ̄
2k

μ
3e1μμ̄e2νν̄e3ρρ̄



: ð31Þ

Unlike the quadratic case, the cubic action contains terms that would give rise to nonlocal terms once we transform to
coordinate space, as in the Yang-Mills theory. As we learned from that case, the introduction of an auxiliary scalar field
solves this problem. Considering this, the action becomes

Sð3ÞHD=DC ¼ −
1

4ð2πÞD=2

Z
dK1dK2dK3δðK1 þ K2 þ K3Þ

h
k21k

ρ
1k̄

σ̄
1e1μν̄e

μν̄
2 e3ρσ̄ − k21k

ρ
2k̄

σ̄
1e1μν̄e

μν̄
2 e3ρσ̄ þ k21k

μ
2k̄

σ̄
1e1μν̄e

ρν̄
2 e3ρσ̄

− k21k
μ
3k̄

σ̄
1e1μν̄e

ρν̄
2 e3ρσ̄ − k21k

μ
2k̄

σ̄
2e1μν̄e

ρν̄
2 e3ρσ̄ þ k21k

μ
3k̄

σ̄
2e1μν̄e

ρν̄
2 e3ρσ̄ − kμ1k

ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ1k
ρ
1k

λ
2k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄

− kμ2k
ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ3k
ρ
1k

λ
1k̄

σ̄
1e1μν̄e2ρ

ν̄e3λσ̄ þ kμ2k
ρ
1k

λ
1k̄

σ̄
2e1μν̄e2ρ

ν̄e3λσ̄ − kμ3k
ρ
1k

λ
1k̄

σ̄
2e1μν̄e2ρ

ν̄e3λσ̄

− k̄ν̄1k̄
σ̄
1k̄

κ̄
1k

ρ
1e1μν̄e

μ
2 σ̄e3ρκ̄ þ k̄ν̄1k̄

σ̄
1k̄

κ̄
1k

ρ
2e1μν̄e

μ
2 σ̄e3ρκ̄ þ k̄ν̄1k̄

σ̄
1k̄

κ̄
2k

μ
2e1μν̄e

ρ
2 σ̄e3ρκ̄ − k̄ν̄1k̄

σ̄
1k̄

κ̄
2k

μ
3e1μν̄e

ρ
2 σ̄e3ρκ̄

þ kμ1k
ρ
1k̄

ν̄
1k̄

σ̄
1ϕ1e2μν̄e3ρσ̄ − kμ1k

ρ
2k̄

ν̄
1k̄

σ̄
1ϕ1e2μν̄e3ρσ̄ þ kμ2k

ρ
2k̄

ν̄
1k̄

σ̄
1ϕ2e1μν̄e3ρσ̄ − kμ3k

ρ
2k̄

ν̄
1k̄

σ̄
1ϕ2e1μν̄e3ρσ̄

i
: ð32Þ

The final step in the procedure consists of transforming back to coordinate space. We finally obtain

Sð3ÞHD=DC ¼ −
1

4

Z
dDxdDx̄

h
□∂

ρ
∂
σ̄eμν̄eμν̄eρσ̄ −□∂

σ̄eμν̄∂ρeμν̄eρσ̄ þ□∂
σ̄eμν̄∂μeρν̄eρσ̄ −□∂

σ̄eμν̄eρν̄∂μeρσ̄ −□eμν̄∂μ∂
σ̄eρν̄eρσ̄

þ□eμν̄∂
σ̄eρν̄∂μeρσ̄ − ∂

μ
∂
ρ
∂
λ
∂
σ̄eμν̄eρν̄eλσ̄ þ ∂

μ
∂
ρ
∂
σ̄eμν̄∂λeρν̄eλσ̄ − ∂

ρ
∂
λ
∂
σ̄eμν̄∂μeρν̄eλσ̄ þ ∂

ρ
∂
λ
∂
σ̄eμν̄eρν̄∂μeλσ̄

þ ∂
ρ
∂
λeμν̄∂μ∂

σ̄eρν̄eλσ̄ − ∂
ρ
∂
λeμν̄∂

σ̄eρν̄∂μeλσ̄ − ∂
ν̄
∂
σ̄
∂
κ̄
∂
ρeμν̄eμσ̄eρκ̄ þ ∂

ν̄
∂
σ̄
∂
κ̄eμν̄∂ρeμσ̄eρκ̄ þ ∂

ν̄
∂
σ̄eμν̄∂

κ̄
∂
μeρσ̄eρκ̄

− ∂
ν̄
∂
σ̄eμν̄∂

κ̄eρσ̄∂μeρκ̄þ∂
μ
∂
ρ
∂
ν̄
∂
σ̄ϕeμν̄eρσ̄ − ∂

μ
∂
ν̄
∂
σ̄ϕ∂ρeμν̄eρσ̄ þ ∂

μ
∂
ρϕ∂ν̄∂σ̄eμν̄eρσ̄ − ∂

ρϕ∂ν̄∂σ̄eμν̄∂μeρσ̄
i
: ð33Þ

Just as in the quadratic case, we will set x ¼ x̄ for the
pure gravity case (eμν̄ ∼ hμν, ϕ ¼ 0) in order to compare
with the cubic contributions coming from (22). As a first
observation, we notice that the cubic action obtained from
the double copy of the ðDFÞ2 theory contains further
contributions apart from the Weyl square action. Some
of these contributions vanish after imposing a particular
gauge, e.g., the harmonic gauge condition, as well as by
choosing a particular space-time dimension. It would be
interesting to fully understand the physical interpretation of
the action (33) in terms of symmetry arguments. In the ideal
case, one expects a four-derivative gauge theory whose
double copy map matches with the higher-derivative DFT
introduced in [24]. It is important to take into account that,
once we are interested in making contact with a theory
coming from a double formalism, it is possible that there
are remnants of OðD;DÞ symmetry in addition to con-
formal symmetry. Therefore, one possibility is to study this

formalism under a generic D-dimensional toroidal com-
pactification and to inspect how the OðD;DÞ multiplets are
constructed.

IV. DISCUSSION

As well known, DFT is defined on a 2D-dimensional
space with coordinates XM ¼ ðx̃μ; xμÞ, where M is in the
fundamental representation of the OðD;DÞ group. The
field content is the generalized metric HMN , a symmetric
OðD;DÞ tensor encoding the standard metric gμν and the
Kalb-Ramond field bμν, and the generalized dilaton d,
which is related to the standard supergravity dilaton ϕ.
BesidesOðD;DÞ symmetry, the theory is invariant under

a generalized notion of diffeomorphism transformations,
which accounts for usual diffeomorphisms as well as
Abelian gauge transformations of the b field. Additional
symmetries can be incorporated; for instance, the tangent

ASPECTS OF CONFORMAL GRAVITY AND DOUBLE FIELD … PHYS. REV. D 108, 126017 (2023)

126017-5



space is enhanced with an extended Lorentz symmetry.
Supersymmetry can also be naturally considered. Closure
of the generalized diffeomorphisms require the imposition
of the so-called “strong constraint,”

∂M⋆∂M⋆ ¼ 0; ∂M∂
M⋆ ¼ 0; ð34Þ

where ⋆ denotes OðD;DÞ fields or combinations of them.
The theory is equipped with an action principle from

which one can derive equations of motion,

SDFT ¼
Z

dDxdDx̃RðH; dÞ: ð35Þ

As we can see, the Lagrangian of DFT is given by the
generalized Ricci scalar R, which depends on both the
generalized metric and the generalized dilaton,

R ¼ 1

4
HMN

∂MHKL
∂NHKL −HMN

∂NHKL
∂LHMK

þ 8HMN
∂M∂Ndþ 8∂MHMN

∂Nd

− 8HMN
∂Md∂Nd − 2∂M∂NHMN: ð36Þ

For a particular solution of the strong constraint, this action
reproduces exactly the NS-NS sector of string theory at
leading order in α0.
At the moment, we do not have a conformal formulation

of DFT in the sense that it is not clear how to implement
conformal symmetry in the double space of the theory. So it
is difficult to compare our cubic action (33) with a given
result derived directly from DFT. We speculate this action
could be the cubic contribution from an appropriate
conformal DFT defined in a suitable generalized Siegel
gauge, a sort of higher-derivative realization of the inter-
pretation given in Ref. [6]. Indeed, our results of the
previous section clearly suggest the existence of a relation
between conformal gravity and some higher-derivative
extension of the usual DFT. This scenario is possible due
to the symmetric structure between k and k̄ that appears in
Eqs. (19) and (30), similar to the ones that emerge in the
pure Yang-Mills case. This gives us the opportunity to
venture into some intriguing proposals that could account
for this relation, which we quickly discuss below.

(i) Generalized Kerr-Schild ansatz: In Ref. [13] a
duality invariant analogous of the widely known
Kerr-Schild (KS) ansatz was introduced. There, the
background generalized metric is linearly and ex-
actly perturbed by a pair of generalized null vectors,

HMN ¼ H̃MN þ κ
�
KMK̄N þ KNK̄M

�
; ð37Þ

with κ an arbitrary parameter that quantifies the
order of the perturbations and where tildes denote
background quantities. Among other conditions,
this generalization of the KS ansatz leads to a

linearization of the equations of motion of DFT.
The parametrization of (37) leads to

gμν ¼ g̃μν þ
κ

1þ 1
2
κðk · k̄Þ kðμk̄νÞ;

bμν ¼ b̃μν −
κ

1þ 1
2
κðk · k̄Þ k½μk̄ν�: ð38Þ

Contrary to the ordinary KS ansatz, now the b field
can be perturbed, but as a consequence, the pertur-
bation of the metric is no longer linear. However,
it was proven in the same work that, with this
perturbation, the classical double copy structure at
the level of the equations of motion can be extended
to the entire string NS-NS sector.

In Ref. [16] the authors extended the analysis to
heterotic DFT at order α0 and, using the classical
double copy, they found higher-derivative correc-
tions to the Maxwell equations at order κ in the
perturbations. Based on this result, one of our
proposals is to continue this path by extending the
order of the perturbations to κ2, which match with
the order of gauge fields expected for the equations
of motion coming from (15).

(ii) Conformal symmetry in DFT: A different path
consists of introducing a new symmetry in the
framework of DFT such that Weyl transformations
at the supergravity level could be obtained. This
seems to be possible with the introduction of an
OðD;DÞ invariant Φ parametrizing double Weyl
transformations.

Consideration of this kind of transformation leads
to a particular parametrization of the generalized
metric as well as a deformation of the OðD;DÞ
metric. As a consequence, the theory requires a
coupling with an extra scalar field to have a
conformal invariant action at leading order.

(iii) Generalized Weyl tensor: It is well known that the
generalized Riemann tensor of DFT is not fully
determined [25] since there are not enough compat-
ibility conditions in the double geometry to fully
determine the generalized connection ΓMNP in terms
of the degrees of freedom of the theory. This makes
the direct construction of higher-order terms with the
structure

RMNPQRMNPQ

a difficult task.
This, however, has not been a sufficiently great

obstacle to calculate higher-derivative extensions of
DFT. A very interesting construction in this sense
was put forward in Ref. [24], based on a generali-
zation of the Green-Schwarz mechanism of anomaly
cancellation. This theory depends on two parameters
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whose values are related to different theories:
bosonic and heterotic strings and also Hohm-
Siegel-Zwiebach theory [26]. Therefore, it would
be interesting to explore if it is possible to obtain
a combination of the parameters such that con-
formal gravity could be obtained after supergravity
reduction.
A different but related approach is to look for the

existence of a two-derivative combination of the
DFT fields CMNPQ, mimicking the usual Weyl
tensor, such that an action

CMNPQCMNPQ

could be constructed and reduced to conformal
gravity.

V. OUTLOOK

We used the double copy prescription introduced in [6]
as a guiding principle to study the relation between higher-
derivative gauge theories and higher-derivative extensions
of double field theory. Exploring the double copy structure
of the action (15), we obtained promising results for
addressing the generalization of conformal symmetry to
the double space in which DFT is formulated.
It is known that the double copy of (15) is related to a

gravity theory with conformal symmetry. As it is possible
to express this double copy in a double space formalism,
we suggest a relation between conformal gravity and a
higher-derivative deformation of DFT. Furthermore, at
quadratic order our prescription reduces to Weyl gravity
upon enforcing a gauge-fixing condition.
Here we prove that, in the pure gravity case, the quadratic

action (21) precisely agrees with the quadratic graviton

terms of conformal gravity. This is expected since these
contributions are common to all theories of conformal
gravity. The cubic action has additional contributions
beyond the Weyl square action. Some of these, but not
all, vanish with specific conditions. The physical interpre-
tation of the action (32) in terms of symmetry arguments is
of interest, and different ways of approaching it were
proposed.
Finally, based on the relation of the action (15) and

conformal gravity and our construction in double space, we
discuss different alternatives to consider conformal sym-
metry in the context of double field theory. We believe that
the proposal discussed in this paper is an important step
further in the construction of a nonperturbative conformal
double geometry with applications to scattering amplitudes.
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Planté, and P. Vanhove, Classical gravity from loop ampli-
tudes, Phys. Rev. D 104, 026009 (2021); The amplitude for
classical gravitational scattering at third post-Minkowskian
order, arXiv:2105.05218; E. Herrmann, J. Parra-Martinez,
M. S. Ruf, and M. Zeng, Radiative classical gravitational
observables at O(G3) from scattering amplitudes,
arXiv:2104.03957; Z. Bern, C. Cheung, R. Roiban, C.-H.
Shen, M. P. Solon, and M. Zeng, Scattering amplitudes and
the conservative Hamiltonian for binary systems at third
post-Minkowskian order, Phys. Rev. Lett. 122, 201603
(2019); Z. Bern, C. Cheung, R. Roiban, C.-H. Shen,
M. P. Solon, and M. Zeng, Black hole binary dynamics
from the double copy and effective theory, J. High Energy
Phys. 10 (2019) 206; Z. Bern, J. Parra-Martinez, R. Roiban,
M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, Scattering
amplitudes and conservative binary dynamics at OðG4Þ,
Phys. Rev. Lett. 126, 171601 (2021); E. Herrmann, J. Parra-
Martinez, M. S. Ruf, and M. Zeng, Gravitational brems-
strahlung from reverse unitarity, Phys. Rev. Lett. 126,
201602 (2021); Z. Bern, A. Luna, R. Roiban, C.-H.
Shen, and M. Zeng, Spinning black hole binary dynamics,
scattering amplitudes, and effective field theory, Phys. Rev.
D 104, 065014 (2021); K. Haddad and A. Helset, The
double copy for heavy particles, Phys. Rev. Lett. 125,
181603 (2020); A. Brandhuber, G. Chen, G. Travaglini,
and C. Wen, Classical gravitational scattering from a gauge-
invariant double copy, J. High Energy Phys. 10 (2021) 118;
A. Brandhuber, G. Chen, H. Johansson, G. Travaglini,
and C. Wen, Kinematic Hopf algebra for Bern-Carrasco-
Johansson numerators in heavy-mass effective field theory
and Yang-Mills theory, Phys. Rev. Lett. 128, 121601 (2022);
A. Brandhuber, G. Chen, G. Travaglini, and C. Wen, A new
gauge-invariant double copy for heavy-mass effective
theory, J. High Energy Phys. 07 (2021) 047; G. Menezes
and M. Sergola, NLO deflections for spinning particles and
Kerr black holes, arXiv:2205.11701.

[6] F. Diaz-Jaramillo, O. Hohm, and J. Plefka, Double field
theory as the double copy of Yang-Mills theory, Phys.

Rev. D 105, 045012 (2022); R. Bonezzi, C. Chiaffrino,
F. Diaz-Jaramillo, and O. Hohm, Gauge invariant double
copy of Yang-Mills theory: The quartic theory, arXiv:2212
.04513.

[7] W. Siegel, Two vierbein formalism for string inspired axionic
gravity, Phys. Rev. D 47, 5453 (1993); Superspace duality in
low-energy superstrings, Phys. Rev. D 48, 2826 (1993);
Manifest duality in low-energy superstrings, in Berkeley
1993 Proceedings, Strings ’93 and State U. New York Stony
Brook—ITP-SB-93-050 (World Scientific Pub Co Inc,
Singapore, 1993), pp. 11, 353–363, arXiv:hep-th/9308133.

[8] C. Hull and B. Zwiebach, Double field theory, J. High
Energy Phys. 09 (2009) 099; O. Hohm, C. Hull, and B.
Zwiebach, Generalized metric formulation of double field
theory, J. High Energy Phys. 08 (2010) 008; J. H. Park,
Comments on double field theory and diffeomorphisms,
J. High Energy Phys. 06 (2013) 098; D. S. Berman, M.
Cederwall, and M. J. Perry, Global aspects of double
geometry, J. High Energy Phys. 09 (2014) 066; I. Jeon,
K. Lee, and J. H. Park, Stringy differential geometry,
beyond Riemann, Phys. Rev. D 84, 044022 (2011); Differ-
ential geometry with a projection: Application to double
field theory, J. High Energy Phys. 04 (2011) 014.

[9] G. Aldazabal, D. Marques, and C. Nuñez, Double field
theory: A pedagogical review, Classical Quantum Gravity
30, 163001 (2013); O. Hohm, D. Lust, and B. Zwiebach,
The spacetime of double field theory: Review, remarks, and
outlook, Fortschr. Phys. 61, 926 (2013); D. S. Berman and
D. C. Thompson, Duality symmetric string and M-theory,
Phys. Rep. 566, 1 (2014).

[10] E. Lescano, α0-corrections and their double formulation,
J. Phys. A 55, 053002 (2022).

[11] I. Jeon, K. Lee, and J.-H. Park, Double field formulation of
Yang-Mills theory, Phys. Lett. B 701, 260 (2011).

[12] Eric Lescano and Sourav Roychowdhury, Heterotic Kerr-
Schild double field theory and its double Yang-Mills
formulation, J. High Energy Phys. 04 (2022) 090.

[13] K. Lee, Kerr-Schild double field theory and classical double
copy, J. High Energy Phys. 10 (2018) 027.

[14] R. P. Kerr and A. Schild, Republication of: A new class of
vacuum solutions of the Einstein field equations, Gen.
Relativ. Gravit. 41, 2485 (2009); Some algebraically degen-
erate solutions of Einstein’s gravitational field equations,
Proc. Symp. Appl. Math. 17, 199 (1965).G. C. Debney, R. P.
Kerr, and A. Schild, Solutions of the Einstein and Einstein-
Maxwell equations, J. Math. Phys. (N.Y.) 10, 1842 (1969).

[15] W. Cho and K. Lee, Heterotic Kerr-Schild double field
theory and classical double copy, J. High Energy Phys. 07
(2019) 030; E. Lescano and A. Rodríguez, N ¼ 1 super-
symmetric double field theory and the generalized Kerr-
Schild ansatz, J. High Energy Phys. 10 (2020) 148.

[16] E. Lescano and A. Rodríguez, Higher-derivative heterotic
double field theory and classical double copy, J. High
Energy Phys. 07 (2021) 072.

[17] S. Angus, K. Cho, and K. Lee, The classical double copy for
half-maximal supergravities and T-duality, J. High Energy
Phys. 10 (2021) 211.

[18] D. S. Berman, K. Kim, and K. Lee, The classical double
copy for M-theory from a Kerr-Schild ansatz for exceptional
field theory, J. High Energy Phys. 04 (2021) 071.

LESCANO, MENEZES, and RODRÍGUEZ PHYS. REV. D 108, 126017 (2023)

126017-8

https://doi.org/10.1103/PhysRevD.97.105019
https://doi.org/10.1007/JHEP01(2020)072
https://doi.org/10.1007/JHEP02(2020)120
https://doi.org/10.1007/JHEP02(2020)120
https://doi.org/10.1007/JHEP02(2014)111
https://doi.org/10.1103/PhysRevD.91.064008
https://doi.org/10.1103/PhysRevLett.114.061301
https://doi.org/10.1103/PhysRevLett.114.061301
https://doi.org/10.1007/JHEP11(2016)117
https://doi.org/10.1103/PhysRevLett.121.171601
https://doi.org/10.1007/JHEP07(2020)093
https://doi.org/10.1007/JHEP07(2020)093
https://doi.org/10.1103/PhysRevD.104.026009
https://arXiv.org/abs/2105.05218
https://arXiv.org/abs/2104.03957
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1103/PhysRevLett.126.171601
https://doi.org/10.1103/PhysRevLett.126.201602
https://doi.org/10.1103/PhysRevLett.126.201602
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevLett.125.181603
https://doi.org/10.1103/PhysRevLett.125.181603
https://doi.org/10.1007/JHEP10(2021)118
https://doi.org/10.1103/PhysRevLett.128.121601
https://doi.org/10.1007/JHEP07(2021)047
https://arXiv.org/abs/2205.11701
https://doi.org/10.1103/PhysRevD.105.045012
https://doi.org/10.1103/PhysRevD.105.045012
https://arXiv.org/abs/2212.04513
https://arXiv.org/abs/2212.04513
https://doi.org/10.1103/PhysRevD.47.5453
https://doi.org/10.1103/PhysRevD.48.2826
https://arXiv.org/abs/hep-th/9308133
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1007/JHEP08(2010)008
https://doi.org/10.1007/JHEP06(2013)098
https://doi.org/10.1007/JHEP09(2014)066
https://doi.org/10.1103/PhysRevD.84.044022
https://doi.org/10.1007/JHEP04(2011)014
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1088/0264-9381/30/16/163001
https://doi.org/10.1002/prop.201300024
https://doi.org/10.1016/j.physrep.2014.11.007
https://doi.org/10.1088/1751-8121/ac463f
https://doi.org/10.1016/j.physletb.2011.05.051
https://doi.org/10.1007/JHEP04(2022)090
https://doi.org/10.1007/JHEP10(2018)027
https://doi.org/10.1007/s10714-009-0857-z
https://doi.org/10.1007/s10714-009-0857-z
https://doi.org/10.1063/1.1664769
https://doi.org/10.1007/JHEP07(2019)030
https://doi.org/10.1007/JHEP07(2019)030
https://doi.org/10.1007/JHEP10(2020)148
https://doi.org/10.1007/JHEP07(2021)072
https://doi.org/10.1007/JHEP07(2021)072
https://doi.org/10.1007/JHEP10(2021)211
https://doi.org/10.1007/JHEP10(2021)211
https://doi.org/10.1007/JHEP04(2021)071


[19] O. Hohm and B. Zwiebach, L∞ algebras and field theory,
Fortschr. Phys. 65, 1700014 (2017); Y. Cagnacci, T. Codina,
and D. Marques, L∞ algebras and tensor hierarchies in
exceptional field theory and gauged supergravity, J. High
Energy Phys. 01 (2019) 117.

[20] E. Lescano and M. Mayo, Gauged double field theory as an
L∞ algebra, J. High Energy Phys. 06 (2021) 058.

[21] R. Bonezzi, F. Diaz-Jaramillo, and O. Hohm, The gauge
structure of double field theory follows from Yang-Mills
theory, Phys. Rev. D 106, 026004 (2022).

[22] H. Johansson and J. Nohle, Conformal gravity from gauge
theory, arXiv:1707.02965.

[23] H. Johansson, G. Mogull, and F. Teng, Unraveling con-
formal gravity amplitudes, J. High Energy Phys. 09 (2018)
080; T. Azevedo, R. L. Jusinskas, and M. Lize, Bosonic
sectorized strings and the ðDFÞ2 theory, J. High Energy
Phys. 01 (2020) 082; G. Menezes, Color-kinematics duality,

double copy and the unitarity method for higher-derivative
QCD and quadratic gravity, J. High Energy Phys. 03
(2022) 074; Leading singularities in higher-derivative
Yang–Mills theory and quadratic gravity, Universe 8, 326
(2022).

[24] D. Marques and C. A. Nunez, T-duality and α0-corrections,
J. High Energy Phys. 10 (2015) 084; W. H. Baron, E.
Lescano, and D. Marques, The generalized Bergshoeff–de
Roo identification, J. High Energy Phys. 11 (2018) 160; W.
Baron and D. Marques, The generalized Bergshoeff–de Roo
identification. Part II, J. High Energy Phys. 01 (2021) 171.

[25] O. Hohm and B. Zwiebach, On the Riemann tensor in
double field theory, J. High Energy Phys. 05 (2012) 126.

[26] O. Hohm,W. Siegel, and B. Zwiebach, Doubled α0-geometry,
J. High Energy Phys. 02 (2014) 065; E. Lescano and D.
Marques, Second order higher-derivative corrections in
double field theory, J. High Energy Phys. 06 (2017) 104.

ASPECTS OF CONFORMAL GRAVITY AND DOUBLE FIELD … PHYS. REV. D 108, 126017 (2023)

126017-9

https://doi.org/10.1002/prop.201700014
https://doi.org/10.1007/JHEP01(2019)117
https://doi.org/10.1007/JHEP01(2019)117
https://doi.org/10.1007/JHEP06(2021)058
https://doi.org/10.1103/PhysRevD.106.026004
https://arXiv.org/abs/1707.02965
https://doi.org/10.1007/JHEP09(2018)080
https://doi.org/10.1007/JHEP09(2018)080
https://doi.org/10.1007/JHEP01(2020)082
https://doi.org/10.1007/JHEP01(2020)082
https://doi.org/10.1007/JHEP03(2022)074
https://doi.org/10.1007/JHEP03(2022)074
https://doi.org/10.3390/universe8060326
https://doi.org/10.3390/universe8060326
https://doi.org/10.1007/JHEP10(2015)084
https://doi.org/10.1007/JHEP11(2018)160
https://doi.org/10.1007/JHEP01(2021)171
https://doi.org/10.1007/JHEP05(2012)126
https://doi.org/10.1007/JHEP02(2014)065
https://doi.org/10.1007/JHEP06(2017)104

