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We investigate the entanglement between the eternal black hole and Hawking radiation. For this purpose,
we utilize the doubly holographic theories and study the entanglement entropy of the radiation to find the
Page curve consistent with the unitarity principle. Doubly holographic theories introduce two types of
boundaries in the AdS bulk, namely the usual anti–de Sitter boundary and the Planck brane. In such a setup,
we calculate the entanglement entropy by examining two extremal surfaces: the Hartman-Maldacena (HM)
surface and the island surface. The latter surface emerges when the island appears on the Planck brane. In
this paper, we provide a detailed analysis of dyonic black holes with regard to the Page curve in the context
of the doubly holographic setup. To begin with, we ascertain that the pertinent topological terms must be
included in the Planck brane to describe the systems at finite density and magnetic field. Furthermore, we
also develop a general numerical method to compute the time-dependent HM surface and achieve excellent
agreement between the numerical results and analytical expressions. Utilizing numerical methodology, we
find that the entanglement entropy of dyonic black holes exhibits unitary evolution over time, wherein it
grows in early time and reaches saturation after the Page time. The initial growth can be explained by the
HM surface, while the saturation is attributed to the island surface. In addition, using the holographic
entanglement density, we also show that, for the first time, the saturated value of the entanglement entropy
is twice the Bekenstein-Hawking entropy with the tensionless brane in double holography.

DOI: 10.1103/PhysRevD.108.126016

I. INTRODUCTION

The black hole information paradox has been a long-
standing and one of the central problems in theoretical
physics [1–5]. An important aspect of this issue is to
understand the entanglement between the black hole and
the radiation in a unitary fashion. In order to demonstrate
that the black hole plus radiation system behaves as a

unitary quantum system, one may need to show that the
time evolution of entanglement entropy of the radiation
follows a characteristic feature of unitary quantum systems,
the Page curve [6,7].
In the case of the evaporating black holes, the Page curve

coherent with the unitarity principle exhibits that the von
Neumann (or fine-grained) entropy gives the initial rise of
the Page curve due to the early Hawking radiation, and then
decreases after the Page time. Recall that Hawking’s earlier
calculation [8] was stating that the entropy keeps growing
until the black holes entirely evaporate.
On the other hand, for the case of the eternal black holes,

the unitarity requires that the growth of the entropy stops
at the Page time and the Page curve is upper bounded by
2SBH, where SBH is the Bekenstein-Hawking entropy of the
black hole, since the fine-grained entanglement entropy
cannot exceed the coarse-grained black hole entropy [3,9].
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From the perspective of quantum mechanics, the
unitarity-inherited theory, it is clear that the expected
Page curve can happen. Nevertheless, one would also like
to understand how the Page curve can be achieved from the
gravity point of view. In recent years, the holographic
principle (or the AdS=CFT correspondence) provides a
great breakthrough to understand the Page curve along this
direction through the study of the emergence of the islands
and quantum extremal surfaces [10–14]. The inclusion of
new bulk regions known as “islands” after the Page time
played a significant role in reproducing the Page curve,
i.e., bending/saturating the growing entanglement entropy
for the evaporating/eternal black holes. In particular,
motivated by the Ryu-Takayanagi (RT) formula together
with its generalization [15–18], the gravitational analysis
has been facilitated by the development of the holographic
computations of the fine-grained entropy of a system by the
quantum extremal surface [19].
The essential idea behind gravity computations is that the

Hawking radiation is absorbed by a nongravitational bath
coupled to the asymptotic boundary of the gravitational
system containing the black hole. For instance, the black
hole in AdS spacetime is connected to a flat space on the
boundary, which is treated as a thermal bath in order to
collect the radiation. Then, one can determine the entangle-
ment entropy of the radiation, SR, by the “island formula” as

SR ¼ min
I

�
ext
I

�
S½R ∪ I� þ Area½∂I�

4GN

��
; ð1Þ

where GN is the gravitational constant. Note that (1) takes
into account the entanglement entropy of the radiation
region (R) together with the gravitational bulk region called
islands (I). Also note that SR is determined by the standard
procedure, i.e., when the entire function gets minimized
after taking the extremization of all possible islands.
For instance, for the case of evaporating black holes, the
entropy (1) at the early time is evaluated without the

inclusion of any islands, and the result agrees with
Hawking’s calculation. However, the contribution of
islands becomes more prominent over time, leading to
the appearance of a new saddle point during the minimi-
zation of (1) in the later time.1 At this stage, the black hole
entropy, which appears in the second term of (1), dominates
the entropy computation and produces the expected Page
curve. Utilizing the island formula, the Page curve has been
extensively developed and investigated under various
scenarios, for instance, [10–13,19–74].2

A. The doubly holographic theories and Page curve

In particular, in the context of doubly holographic
theories (which are closely related to AdS/BCFT (BCFT;
boundary conformal field theory) [75–81] and brane world
theory [82–84]), a useful method has been developed
in [11] for holographic computation of the entanglement
entropy of Hawking radiation.3 Within the doubly holo-
graphic framework (i.e., the gravityþmatter theory where
the matter sector has one higher-dimensional holographic
dual; see also the sketch in Fig. 1), the authors in [11]
showed that the prescription for extremizing the generalized
entropy (1) can be equivalent to the standard RT/HRT (HRT;
Hubney, Rangamani, and Takayanagi) prescription [15,17]
of extremizing the area. In other words, following a Randall-
Sundrum type with a d-dimensional brane in a (dþ 1)
dimensional ambient spacetime [83,84,125], the quantum

FIG. 1. A sketch of three different representations of the same system where d denotes the dimension. The left is the quantum
mechanical (QM) description where QM lives at the boundary of the bath conformal field theory (CFT) (red). The center is the gravity
theory plus the matter CFT (gray), coupled to a bath having the same CFT (red): the CFT is assumed to have a holographic dual. The
right is a one higher-dimensional holographic description of the center in which the d-dimensional matter CFT (gray) is replaced
by (dþ 1) dimensional ambient AdS spacetime (yellow region). Note that the d-dimensional gravity is described by the Planck brane
(i.e., a dynamical boundary metric on the brane) in the AdS spacetime and the bath CFT corresponds to the boundary of the AdS
spacetime. In short, the right consists of two boundaries (Planck brane, AdS boundary) in the AdS spacetime.

1This phenomenon arises from the fact that the quanta of
Hawking radiation possess a significant degree of entanglement
with the quantum fields located beyond the black hole horizon.

2The provided list is not exhaustive. We encourage readers to
refer to the references in aforementioned literature to explore the
related topic further.

3See also [11,13,20–23,25,26,29,30,37,46,47,51–54,56,58,60,
61,71,85–124] and the references therein for the recent develop-
ment of various quantum information quantities (such as entan-
glement entropy, reflected entropy, complexity, and negativity
etc), resorting to the doubly holographic theories.
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extremal surfaces in d-dimension corresponds to the stan-
dard RT surfaces in (dþ 1) dimensions. Thus, it becomes a
feasible gravity calculation for the entanglement entropy. We
will review this procedure in detail in the next section.
Furthermore, considering evaporating black holes, the

authors in [11] ensured that the minimal surface of the
Hawking radiation coincides with that of the evaporating
black holes (so that we can focus on evaluating the
entanglement entropy of the radiation in order to investigate
the entanglement between the radiation and black hole).4

Recall that when the combined state of the black hole
and Hawking radiation is a pure state, the entanglement
entropy of the radiation should be equivalent to that of the
black hole.5

It is worth noticing that the authors of [11] facilitated the
entanglement entropy calculation of the evaporating two-
dimensional black holes using the doubly holographic
setup, i.e., d ¼ 2 in Fig. 1, and left the analysis of the
higher-dimensional black holes as future investigation. For
this purpose, the authors of [13] initiated the study of the
higher-dimensional case for the case of eternal black holes
in five-dimensional Schwarzschild-AdS black holes within
the doubly holographic setup. Note that for the two-sided
eternal black holes, Fig. 1 can be expressed as Fig. 2.
Furthermore, the case of the Reissner-Nordström-AdS
black hole is investigated in the four-dimensional eternal

black holes in [21]. The upshot of this analysis with the
higher-dimensional black hole is that using the ordinary
RT/HRT prescription, the doubly holographic theories
can provide the affirmative result for the resolution of
the information paradox by virtue of the emergence of an
island. In addition, one can also produce the Page curve
consistent with the unitarity principle even for the higher-
dimensional (neutral or charged) black holes.

B. Motivation of this paper

In this paper, we further investigate the information
paradox in the higher-dimensional eternal black holes using
the doubly holographic theories, i.e., we intend to show that
the island paradigm would be a general solution to the
information paradox for black holes in higher dimensions.
In particular, we consider a dyonic Reissner-Nordström-

AdS black hole in the same dimension of [21]. There are
several motivations to consider this dyonic black hole in the
doubly holographic setup. Most importantly, studying the
magneto-transport properties of the dyonic black holes,
the authors in [129,130] claimed that a finite charge density
must be supported by a magnetic field within AdS/BCFT
construction (the same gravity setup in double holography).
In other words, this implies that one may not consider the

finite density system in the framework of the doubly holo-
graphic theories without introducing an external magnetic
field. Apparently, this seems to be in contrast with [21]
since the finite charge density effect is investigated there
even without a magnetic field. Therefore, the scope of this
work not only extends the analysis in [21] to include the
external magnetic fields but also aims to reconcile this
would-be disagreement.
Furthermore, giving all the details of the computations,

we also study how the doubly holographic theories can
produce the double Bekenstein-Hawking entropy, 2SBH, at
late times in the Page curve. Notice that although [13,21]

FIG. 2. A sketch of the two-sided eternal black holes: A, B, C, and D points may be useful for the readers to associate the left and the
right. The left is composed of the d-dimensional black hole with the conformal matter living inside (gray). The black lines represent the
radiation regions in the two left/right baths (red). The right is a one higher-dimensional description where the d-dimensional black hole is
described by the Planck brane and the conformal matter is replaced by the AdS spacetime (yellow region). Here the angle θ is taken to be
π=2. We will elaborate on this point in the next section.

4From the recent development beyond the scope of doubly
holographic theories [66,74], one should exercise caution with
regard to the complementarity property, whereby the entropy of
the radiation may not be equivalent to that of its complement.

5The essence of this doubly holographic approach [11] is that
the interior region of the black hole may be connected to the
radiation through the additional dimension. The entanglement
between the interior modes of the quantum matter and the
Hawking radiation can be linked via the geometric connection.
In this regard, the extra dimension can be seen as a demonstration
of the ER ¼ EPR [126] concept. See also [127,128].
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showed that the entanglement entropy of the eternal black
holes is saturated at late times, its value was not comparable
with 2SBH as it is supposed to be for the eternal black
holes. In this paper, considering the entanglement density
concept [131–134], we provide the possible way to obtain
2SBH within the doubly holographic setup.
This paper is organized as follows. In Sec. II, we review

the doubly holographic setup for dyonic black holes.
In Sec. III, we present the formula of the entanglement
entropy of the Hawking radiation in the framework of
doubly holographic theories introduced in Sec. II. In
Sec. IV, we study the extremal surfaces of dyonic black
holes and discuss the Page curve. In addition, considering
the entanglement density, we provide a way to exhibit the
double Bekenstein-Hawking entropy within doubly holo-
graphic theories. Section V is devoted to conclusions.

II. THE DOUBLY HOLOGRAPHIC SETUP:
A QUICK REVIEW

In this section, following [11] we introduce the doubly
holographic setup for dyonic black holes: d ¼ 3 in Fig. 2.
In other words, we consider three-dimensional (electrically/
magnetically) charged eternal black holes coupled to two
baths on each side where the conformal matter lives in the
bulk: the left configuration in Fig. 2.
As demonstrated in the Introduction, this configuration

can be equivalently described by a doubly holographic
setup, i.e., a three-dimensional black hole is replaced by
the Planck brane and the conformal matter is dual to a
four-dimensional AdS spacetime: the right configuration in
Fig. 2. Thus, in the doubly holographic setup, we are led to
consider the action of the dyonic black holes [129,130],
Stotal, as

Stotal ¼ Sbulk þ Sbrane;

Sbulk ¼
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2

�

−
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν −

Θ
8π2

Z
F ∧ F;

Sbrane ¼
1

8πGN

Z
d3x

ffiffiffiffiffiffi
−h

p
ðK − αÞ − k

4π

Z
A ∧ F; ð2Þ

where GN is the gravitational constant and L the AdS
radius.
The bulk action Sbulk is composed of the metric gμν

together with the gauge field Aμ via its field strength
F ¼ dA: see Eq. (42). The last term in the bulk action,
≈Θ
R
F ∧ F, is a topological term (so it does not appear in

the equations of motion) which is relevant for the analysis
of the boundary conditions.
The other action, Sbrane, is the one for the Planck brane

where its induced metric or the extrinsic curvature on the
Planck brane is denoted as hab and K, respectively. Here,

α is related to the tension on the Planck brane as we will
show shortly. The last term in the brane action, ≈k

R
A ∧ F,

is a Chern-Simons term on the brane, which is suitable for
the analysis of the dyonic black holes within AdS/BCFT or
the doubly holographic setup: see Refs. [129,130] for a
more detailed description of it.6

It is worth noticing that the topological terms (Θ and k)
were not taken into account for the analysis of the electri-
cally charged black holes in [21]. As we will show, these
topological terms may play an important role to investigate
the aspect of the doubly holographic theories even in the
case of electrically charged black holes.

A. The Planck brane and Neumann
boundary conditions

The bulk equation of motion from the action (2) reads

Rμν −
R
2
gμν −

3

L2
gμν ¼ 8πGN

�
FμρFν

ρ −
gμν
4

FρσFρσ

�
;

∇μFμν ¼ 0: ð3Þ

Furthermore, in addition to the bulk equations of motion
above, it is also required to specify the boundary conditions
in order to establish a well-defined variational principle in a
space with boundaries: recall that in the doubly holographic
theories, there can be two kinds of boundaries (the AdS
boundary and the Planck brane).
Following the standard holographic duality, Dirichlet

boundary conditions are imposed on the AdS boundary.7

On the other hand, in AdS/BCFT or doubly holographic
setup, Neumann boundary conditions are imposed on the
Planck brane. To discuss the boundary condition on the
Planck brane, one can find the following boundary terms by
a variation of the total action with respect to the metric/
gauge field, respectively as

1

16πGN

Z
pb

δ3x
ffiffiffiffiffiffi
−h

p
½Kab − ðK − αÞhab�δhab;

2

Z
pb

�
1

2
� F −

�
Θ
8π2

þ k
4π

�
F

�
∧ δA; ð4Þ

where pb indicates that these are the objects on the
Planck brane.

6One can also introduce the supplemental two kinds of
boundary actions into the total action (2). The first one would
be the usual Gibbons-Hawking term on the AdS boundary and
the other is the junction term at the intersection of the Planck
brane and the AdS boundary (i.e., at the red point in Fig. 3). In
this paper, we omit these additional terms to avoid clutter, which
would be superficial for our discussion. For the readers who are
interested, please refer to [129,130].

7See Refs. [135–139] and references therein for the recent
development of the mixed boundary conditions on the AdS
boundary.
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From the equations in (4), one can impose Dirichlet
boundary conditions (i.e., δhab ¼ δA ¼ 0). However, one
may need to employ Neumann boundary conditions to
determine the Planck brane dynamically, i.e.,

Kab − ðK − αÞhab ¼ 0;
1

2
� F −

�
Θ
8π2

þ k
4π

�
F ¼ 0:

ð5Þ

Note that imposing the Neumann boundary condition
(rather than the Dirichlet one) allows a specific boundary
component of the bulk to be referred to as a Planck brane or
RS brane [82,83].8

Next, let us review the implication of the Neumann
boundary conditions (5). When the bulk geometry is
asymptotically AdS such as

ds2 ≈
L2

z2
	
−dt2 þ dz2 þ dx2 þ dy2



; ð6Þ

where the AdS boundary is located at z ¼ 0, the Planck
brane can be described by the hypersurface

zþ x tan θ ¼ 0: ð7Þ

Here θ is the angle between the AdS boundary and the
Planck brane. See Fig. 3. Then, one can evaluate the
extrinsic curvature on this hypersurface as

Kab ¼
cos θ
L

hab: ð8Þ

Plugging it into the first boundary condition in (5), one
finds that the parameter α is determined by the angle θ:

α ¼ 2 cos θ
L

: ð9Þ

Note that from the Israel junction condition [140], such a
quantity, α, can be interpreted as the tension of the brane.
In other words, the first Neumann condition in (5) produces
(9) implying that the angle θ sets the tension of the Planck
brane in which θ ¼ π=2 gives the tensionless brane.
One can also find the same result with a unit vector

normal, nμ, to the Planck brane. See the explicit form of nμ

in [129,130]. Using the defined nμ together with the
pullback of the equations (5) to the bulk, one can find
that the first Neumann condition in (5) produces

x0ðzÞ ¼ Lαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − L2α2

p : ð10Þ

Then, plugging (7) into this equation, we find the same
result with (9).
Similar to the discussion with the Neumann condition

from the variation of the metric above, one can also study
what the Neumann condition from the variation of the gauge
field implies, i.e., the second Neumann condition in (5).
For this purpose, we consider the gauge field as in (42)

where At ¼ μ − ρz. Here μ is the chemical potential, ρ a
density, and B an external magnetic field. Then, using nμ

again, the second Neumann condition in (5) can be
rewritten as

ffiffiffi
g

p
nνFνμ þ cpb

2
nνϵνμρσFρσ ¼ 0; cpb ≔

Θ
4π2

þ k
2π

;

ð11Þ

where we define the coefficients of the topological terms on
the Planck brane as cpb. Furthermore, given nμ in [129,130],
one can find that (11) gives two equations as

0 ¼ ρ cos θ þ cpbB cos θ; 0 ¼ B sin θ − cpbρ sin θ:

ð12Þ

Before proceeding, two remarks are in order. First, let
us revisit the case of the purely electrically charged black
hole [21]. Implementing (12) in the absence of the magnetic
field, one is led to consider

ðρ ≠ 0; B ¼ 0Þ∶ θ ¼ π

2
and cpb ¼ 0; ð13Þ

in order to study a finite density system. In other words,
both the tension of the brane (9) and topological terms
should vanish.9 This implies that in the doubly holographic

FIG. 3. A simple setup of a Planck brane or Randall-Sundrum
brane. The Planck brane (gray line) is anchored at ðz; xÞ ¼ ð0; 0Þ
and penetrates into the bulk with an angle θ.

8The string theory orientifold construction may also support
this Neumann boundary condition as a natural choice for the
boundary condition [76].

9The analysis at the finite tension may be regarded by adding
extra terms on the brane such as a Dvali-Gabadadze-Porrati term
(DGP). However, the entanglement entropy at finite tension
has been only approached at t ¼ 0 using the DeTurck method.
Thus, further future investigation or development for the time
evolution of the entanglement entropy at finite tension is still
required [13,21].
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framework, the purely electrically charge black holes may
be investigated only at zero tension, rather than at a weak
(but finite) tension as in [21].10

Second, in this paper we consider the tensionless
“limit” (but a finite cpb) to study the dyonic black holes
as in [129,130] in order for the continuity from a finite
density result (13). When (12) at θ ¼ π=2, we have

ðρ ≠ 0; B ≠ 0Þ∶ θ ¼ π

2
and

ρ

B
¼ 1

cpb
; ð14Þ

which is one of the main features of the doubly holographic
or the AdS/BCFT setup of dyonic black holes: the density
ρ and the magnetic field B are no longer independent
parameters by virtue of the additional boundary conditions
at the Planck brane.11 Also note that the tensionless Planck
brane in double holography indicates that the brane can be
considered a probe so that its backreaction to the back-
ground geometry is neglected.
In the next section, using (14) we will examine if the

Page curve of the entanglement entropy in the doubly
holographic theories can be produced even at finite cpb.
Note that it may not be straightforward to expect the effect
of the topological coefficients on the Page curve without
explicit computations. For instance, is the Page time
suppressed or enhanced by a finite cpb? When the Page
time is suppressed (or even it vanishes by any chance) a
relevant Page curve may not be recovered. However, we
will show that this is not the case.
Two remarks are in order. As elucidated thus far, it is

inadequate to account for finite tension on the brane in the
presence of electric/magnetic charges. This implies a
requisite for further investigation to elucidate the influence
of tension beyond neutral black holes. Nevertheless, within
the scope of this paper, we explore the scenario of zero
tension (θ ¼ π=2) as a tensionless limit (θ → π=2), i.e., a
case of small tension. This can be justified by the fact that
the physics, particularly with regard to the Page curve,
remains unaltered in scenarios of small tension compared to
those of zero tension, e.g., [21].
Moreover, with the advent of a novel method for

examining tension in the presence of finite charge, the

exploration of the opposite scenario—the large tension case
(or very small values of θ)—will also become viable.12

In summary, within doubly holographic theories for
dyonic black holes, there can be two Neumann boundary
conditions imposed on the Planck brane: (5). The former one
gives the relation between the tension and the angle of the
Planck brane: (9), i.e., given strength of the tension α, such a
relation determines the location (or the angle θ) of the Planck
brane or vice versa. On the other hand, the latter produces the
ratio between the density and magnetic field, which is
inversely proportional to topological coefficients: (14).

B. The quantum extremal surface

The entanglement entropy of the Hawking radiation (or
equivalently of the black holes; recall that the entire system
is in the pure state) can be measured by the quantum
extremal surfaces [10–14]. One can have two kinds of the
quantum extremal surfaces: (I) the connected surface;
(II) the disconnected surface. For instance, see the left
part of Fig. 4.
In the doubly holographic framework, as demonstrated

in the Introduction, the quantum extremal surfaces can be
equivalently described by the RT/HRT surface in one-
higher dimensions [11,13,21]: see the right part of Fig. 4
where the connected surface is promoted into the Hartman-
Maldacena surface (HM surface) [142], while the discon-
nected surface is into the island surface. In other words,
using the double holography, one can simply evaluate the
entanglement entropy of the radiation by

SR ¼ min
I

�
AreaðΓI∪RÞ

4GN

�
; ð15Þ

where ΓI∪R is the standard codimension two HRT surface in
the bulk, which is corresponding to the HM surface (ΓHM) or
island surface (ΓIs). In the next section, we give the details of
how to obtain both the HM surface and the island surface.
Note that the HM surface (blue solid line) is anchored on

the left/right baths when the island is absent and passes
through the black hole horizon, while the island surface
(orange solid line) is anchored on the Planck brane
containing the island, which is outside the horizon. This
implies that the entropy computed using the HM surface
can exhibit the time evolution because of the stretching of
space inside the horizon as described in [142], while the
one from the island surface does not since it does not
penetrate the horizon (i.e., the entropy from the island
surface does not get affected by the stretching of space
inside the horizon so it is time independent).
Thus, one can expect that the initial rise of the entangle-

ment entropy in the Page curve is described by the HM

10The authors in [21] also considered (11) with cpb ¼ 0.
However, the role of the Neumann condition of the gauge field is
not explored there [e.g., (13)] in detail. Note that if one tries to
consider the finite tension (θ ≠ π=2) at B ¼ 0 as in [21], (12)
indicates that the system should be neutral ρ ¼ 0.

11Based on the fact that the ratio ρ=B corresponds to the Hall
conductivity of the dyonic black holes, the authors of [129,130]
argued that the AdS/BCFT construction may provide the relevant
holographic description similar to the Chern-Simon description
of the quantum Hall effect since the Hall conductivity is
independent of both ρ and B, but inversely proportional to
topological coefficients. See also [141] for a similar discussion
in the presence of the Horndeski gravity term.

12This perspective may be more relevant in the context of the
d-dimensional effective theory of gravity and matter through the
lens of Randall-Sundrum.
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surface and the saturation of the entanglement entropy at
late times is by the island surface. We will show that this is
the case by the explicit calculations.
Alternatively, one can also say that the Page curve cannot

be achieved if the island surface dominates over the HM
surface at t ¼ 0, i.e., the Page curve is being saturated at
t ¼ 0 (it is equivalent to saying the Page time tP ¼ 0). It is
also worth noticing that this issue may arise in the context
of a doubly holographic framework, which was noticed
in [37] first and elaborated further in [87]. See also [96]
for the related topic: the constant entropy belt. However,
it is shown [21] that the resolution of it is simply to take
the large value of xb (i.e., moving the end point of the
radiation region away from the Planck brane).13

Furthermore, in this paper, we show that this resolution
(taking large xb) can also be further implemented to find the
double Bekenstein-Hawking entropy in the Page curve at
late times.

III. SOME FORMALISM FOR
EXTREMAL SURFACES

In this section, we present the holographic calculation
of two extremal surfaces (HM surface ΓHM and island
surface ΓIs) in detail. In particular, we present not only the
holographic formula of both surfaces at t ¼ 0, but also the
time-dependent HM surface.
For this purpose, we consider a general asymptotically

AdSdþ1 metric as

ds2 ¼ L2

z2
	
−f0ðzÞdt2 þ f1ðzÞdx2i þ f2ðzÞdz2



; ð16Þ

where i ¼ 1;…; d − 1 and f0ðzÞ, f1ðzÞ, and f2ðzÞ are
approaching to 1 at the AdS boundary (z → 0).

A. The extremal surfaces at t= 0

Let us first discuss the extremal surfaces at fixed time
t ¼ 0, i.e., the induced metric of it does not contain f0ðzÞ
of (16). Recall that in this paper, we focus on the tension-
less brane, for which its backreaction to the background
geometry can be negligible.

1. Entanglement entropy from the island surface

Since the island surface (the solid orange line in Fig. 4)
is the standard Ryu-Takayanagi surface of the subsystem
length xb, the holographic entanglement entropy of the
island surface can be simply obtained as

SIsðt ¼ 0Þ ≔ AreaðΓIsÞ
4GN

¼ 2Ld−1Ωd−2

4GN

Z
zb

ϵ

dz
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðzÞfd−21 ðzÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fd−1

1
ðzbÞz2d−2

fd−1
1

ðzÞz2d−2b

r ; ð17Þ

where Ωd−2 is a volume of the (d − 2) spatial directions,
zb is the deepest point of the minimal surface in the bulk
(i.e., the orange point in Fig. 4), and ϵ the UV cutoff.14 One
can also find the relation between xb and zb from the
minimization of the area as

xb ¼
Z

zb

0

dα

ffiffiffiffiffiffiffiffi
f2ðαÞ
f1ðαÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fd−1
1

ðαÞz2d−2b

fd−1
1

ðzbÞα2d−2

r
− 1

: ð18Þ

FIG. 4. A sketch of the two-sided eternal black holes with the radiation region (solid black lines) in the two baths (red regions). In the
left, the two candidates of the quantum extremal surfaces are expressed in different colors: the connected one (blue), the disconnected
one (orange). The island is also depicted as the dashed black line. In the right, i.e., in the doubly holographic setup, the quantum extremal
surfaces are measured by the HM surface (blue) or the island surface (orange). The end point of the radiation region in the bath, xb, is
represented by black dots.

13See also [21] for the related treatment at t ¼ 0 using a DGP
term when the tension is taken into account.

14The extremal surface for (17) can be found by solving an
extremization problem with a function zðx1Þ in which the
geometric symmetry in the x1 direction produces a closed form
for z0ðx1Þ in terms of a conserved quantity.
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Note that when the metric has a simple form as

f0ðzÞ ¼ fðzÞ; f1ðzÞ ¼ 1; f2ðzÞ ¼
1

fðzÞ ; ð19Þ

where fðzÞ is the emblackening factor, all formulas [(17)
and (18)] reduce to results in [21] of which the Planck brane
is tensionless. Note also that our formulas are consistent
with the usual holographic entanglement entropy of a strip
subsystem when the subsystem size l ¼ 2xb, for instance,
see Ref. [143].

2. Entanglement entropy from the
Hartman-Maldacena surface

The holographic entanglement entropy of the Hartman-
Maldacena surface (HM surface; the solid blue line in
Fig. 4) [142] at t ¼ 0 can be obtained as

SHMðt ¼ 0Þ ≔ AreaðΓHMÞ
4GN

¼ 2Ld−1Ωd−2

4GN

Z
zh

ϵ

dz
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðzÞfd−21 ðzÞ

q
; ð20Þ

where zh is the horizon radius and it is consistent
with [21] when the simple metric (19) is chosen.15

Notice that, when we consider the one-higher dimensional
object of (20), we obtain the holographic complexity
formula (via complexity ¼ volume conjecture) [144,145]
as expected: recall that there is one dimensional difference
between the area (i.e., entanglement entropy) and the
volume (i.e., complexity).
In the next section, we will numerically compute the

time-dependent SHM in the Eddington-Finkelstein coordi-
nate and show that the numerical result at t ¼ 0 is
consistent with the analytic expression (20).

3. The UV-finite holographic entanglement entropy

Using all the holographic formulas of the entanglement
entropy of the Hawking radiation above [(17) and (20)],
one can study which entropy is dominated at t ¼ 0, for
instance, if SIs > SHM, SR in (15) corresponds to SHM.
However, since both (17) and (20) are UV-divergent

quantities, we first need to regularize the entanglement
entropy. Note that both entropies have the same structure of
UV divergence as

SIs or HM ≈
#

ϵd−2
þ SFiniteIs or HM; ð21Þ

where the divergent term, 1=ϵd−2, originates from the
contribution near the AdS boundary.
There may be several ways to regulate the entropy given

in the literature. For instance, one can simply omit the
divergence term by hand and study the remained finite
piece. Another way is to study the difference between
SIs or HM and the one from a pure AdS geometry (SAdS)
usually interpreted as the entanglement entropy of the
ground state of the CFT: note that in this way the finite
piece of SIs or HM can be slightly varied by the finite piece
of SAdS.
Nevertheless, the other type of regularization has been

implemented for the study of the Page curve in double
holography [13,21] as

ΔSHMðtÞ ≔ SHMðtÞ − SHMðt ¼ 0Þ
¼ SFiniteHM ðtÞ − SFiniteHM ðt ¼ 0Þ;

ΔSIsðtÞ ≔ SIsðtÞ − SHMðt ¼ 0Þ
¼ SFiniteIs ðtÞ − SFiniteHM ðt ¼ 0Þ; ð22Þ

where (20) is used for the regularization. Note that this kind
of regularization can be justified for the purpose of the Page
curve: the time evolution of the entanglement entropy in
which its growth is of main interest.
Furthermore, (22) can also be useful to discuss if the

Page curve can be achieved or not at t ¼ 0. For instance,
based on the explanation described below (15), one needs
to find ΔSIsðt ¼ 0Þ > 0 in order to obtain the Page curve at
a finite Page time: otherwise, the entanglement entropy is
already saturated by the island surface at t ¼ 0. Strictly
speaking, ΔSIsðtÞ is a time-independent quantity since the
island surface cannot penetrate the horizon unlike the HM
surface [142], i.e., ΔSIsðtÞ ¼ ΔSIsðt ¼ 0Þ for all time. We
will discuss more on this point when we display the Page
curve of dyonic black holes.
In summary, following the doubly holographic theo-

ries [13,21] for higher dimensional black holes, we con-
sider the UV-finite entanglement entropy of the Hawking
radiation (22) in order to describe the Page curve as

SR ¼
�ΔSHMðtÞ; ðt < tPÞ
ΔSIsðtÞ; ðt ≥ tPÞ;

ð23Þ

where tP denotes the Page time. For instance, see Fig. 5.

B. Time-dependent Hartman-Maldacena surface

Next, we provide the detailed methodology to compute
the time-dependent HM surface, ΓHMðtÞ, which leads to
obtaining ΔSHMðtÞ. When we study the time evolution of
the HM surface, we are essentially moving a bulk surface
(BHM or B0

HM) forwards in time (tL, tR) on both sides: see
Fig. 6. Note that the HM surface is moving in a time
direction perpendicular to the right part of Fig. 4.

15The extremal surface corresponding to (20) can be deter-
mined with the symmetry in ðt; xiÞ, identifying it as the surface
that falls straight into the bulk.
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In what follows, we consider the metric ansatz (16)
in order to generalize the formalism beyond the simple
setup (19), given in previous literature. It is also worth
noticing that the metric of interest has time translational
symmetry. In other words, the final result depends only on
the combination

Δt ≔ tR − tL; ð24Þ

rather than each of the boundary times (tL or tR). This is due
to the invariance of the system under the shift as tL →
tL − δt and tR → tR − δt, see Ref. [144]. Therefore, one can
choose the symmetric configuration with time

tL ≔ −
Δt
2
; tR ≔

Δt
2
; ð25Þ

in order to study the time evolution of the HM surface: see
the right part of Fig. 6.

1. Reparametrization of the HM surface

In order to discuss the time-dependent HM surface
ΓHMðtÞ, it is convenient to rewrite the metric (16) using
the null coordinate Vðt; zÞ,

Vðt; zÞ ¼ eβ̄vðt;zÞ ¼ eβ̄ðt−z�ðzÞÞ;

z�ðzÞ ¼
Z

z

0

ffiffiffiffiffiffiffiffiffiffiffi
f2ðz̃Þ
f0ðz̃Þ

s
dz̃; ð26Þ

where vðt; zÞ is the infalling Eddington-Finkelstein coor-
dinate, and β̄ will be determined by solving the equation of
motion near the horizon: see Eq. (36).
In this null coordinate, the metric (16) reads

ds2 ¼ L2

z2

�
−f0ðzÞdv2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
dvdzþ f1ðzÞ

Xd−1
i¼1

dx2i

�

¼ L2

z2

�
−
f0ðzÞ
β̄2V2

dV2 −
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
β̄V

dVdzþ f1ðzÞ
Xd−1
i¼1

dx2i

�
: ð27Þ

FIG. 5. A sketch of the Page curve of the entanglement entropy
of the Hawking radiation from (23) where the HM surface is
dominant before the Page time tP and the entropy is saturated
after tP by the island surface.

FIG. 6. A sketch of the time-dependent HM surface. Here tL and tR denote times at each boundary and zh the horizon radius. λ is
introduced to parametrize zðλÞ and VðλÞ. BHM is the schematic representation of a bulk surface connecting tL and tR in the left part of the
figure, while B0

HM is the one connecting − Δt
2
and Δt

2
in the right part.
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Furthermore, one can find the induced metric of the bulk surfaces (solid blue curves) in Fig. 6, which can be parametrized
by λ as

ds2HM ≔
L2

zðλÞ2
"�

−
f0ðzðλÞÞ
β̄2VðλÞ2 V

0ðλÞ2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzðλÞÞf2ðzðλÞÞ

p
β̄VðλÞ V 0ðλÞz0ðλÞ

�
dλ2 þ f1ðzðλÞÞ

Xd−1
i¼2

dx2i

#
: ð28Þ

Then, using this induced metric, we are led to find the area of the bulk surface, AreaðΓHMÞ, as

AreaðΓHMÞ ¼ Ld−1Ωd−2
Z

L1dλ; ð29Þ

where

L1 ≔
f1ðzðλÞÞd−22
zðλÞd−1

�
−
f0ðzðλÞÞ
β̄2VðλÞ2 V

0ðλÞ2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzðλÞÞf2ðzðλÞÞ

p
β̄VðλÞ V 0ðλÞz0ðλÞ

�
1=2

; ð30Þ

and Ωd−2 is the volume of the spatial geometry as in (17). In addition, one can also find that we only have a single Euler-
Lagrangian equation from (29):

−
z00

z0
þV 00

V 0 þ
1

2

�
4ðd− 1Þ

z
−
f00ðzÞ
f0ðzÞ

−
2ðd− 2Þf01ðzÞ

f1ðzÞ
−
f02ðzÞ
f2ðzÞ

�
z0 þ 2ðd− 1Þf0ðzÞf1ðzÞ− zf00ðzÞf1ðzÞ− ðd− 2Þzf0ðzÞf01ðzÞ

2β̄2zz0V2f1ðzÞf2ðzÞ
V 02

þ 6ðd− 1Þf0ðzÞf1ðzÞ− 2β̄zf1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
− 3zf00ðzÞf1ðzÞ− 3ðd− 2Þzf0ðzÞf01ðzÞ

2β̄Vzf1ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p V 0 ¼ 0: ð31Þ

However, it would be problematic since we have two independent fields [zðλÞ, VðλÞ]. In order to resolve this, one can
introduce the auxiliary field εðλÞ to (29),

AreaðΓHMÞ ¼ Ld−1Ωd−2
Z �

1

εðλÞL
2
1 þ εðλÞ

�
dλ≕Ld−1Ωd−2

Z
L2dλ; ð32Þ

from which we obtain three Euler-Lagrangian equations as

β̄f2ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p z00 −
β̄f2ðzÞε0

ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p z0 þ V 00

V
−
V 02

V2
−
�
ε0

ε
−
�
2 − 2d

z
þ f00ðzÞ

f0ðzÞ
þ ðd − 2Þf10ðzÞ

f1ðzÞ
�
z0
�
V 0

V

−
h
f0ðzÞ

�
f1ðzÞð4ðd − 1Þf2ðzÞ − zf20ðzÞÞ − 2ðd − 2Þzf10ðzÞf2ðzÞ

�
− zf00ðzÞf1ðzÞf2ðzÞ

i β̄z02f2ðzÞ
2zf1ðzÞðf0ðzÞf2ðzÞÞ3=2

¼ 0;

V 00 −
h
f1ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
zf00ðzÞ þ f0ðzÞ

�
2f1ðzÞ


β̄f2ðzÞz − ðd − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p �þ ðd − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
zf10ðzÞ

�i
×

V 02

2β̄f0ðzÞf1ðzÞf2ðzÞVz
−
ε0V 0

ε
¼ 0;

1þ z−2ðd−1Þ

ε2

�
2f1ðzÞd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
V 0z0

β̄V
þ f0ðzÞf1ðzÞd−2V 02

β̄2V2

�
¼ 1 −

L2
1

ε2
¼ 0: ð33Þ

Furthermore, one can also check that only two of these three equations are independent: here, we choose the second and
third equations of motion.

2. Equations of motion for the area of HM surface

Hereafter we take the auxiliary field εðλÞ ¼ 1 in order to recover the original variational problem. Then, two independent
equations of motion read
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V 00 −
h
f1ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
zf00ðzÞ þ f0ðzÞ

�
2f1ðzÞ


β̄f2ðzÞz − ðd − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p �
þ ðd − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
zf01ðzÞ

�i V 02

2β̄f0ðzÞf1ðzÞf2ðzÞVz
¼ 0;

1þ z−2ðd−1Þ
�
2f1ðzÞd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðzÞf2ðzÞ

p
V 0z0

β̄V
þ f0ðzÞf1ðzÞd−2V 02

β̄2V2

�
¼ 1 − L2

1 ¼ 0: ð34Þ

Then, we solve these equations of motion numerically by the shooting method where we perform the shooting from the
horizon to the two boundaries.
Note that the horizon is located at λ ¼ 0, i.e., ðVð0Þ; zð0ÞÞ ¼ ð0; zhÞ: see the blue dot for λ ¼ 0 in Fig. 6. In addition, one

can find the series solutions near the horizon (λ ¼ 0) as

V ¼ Vð1Þλþ
�
d − 1

zh
−
ðd − 2Þf01ðzhÞ

2f1ðzhÞ
þ χ0ðzhÞ
4χðzhÞ

−
f000ðzhÞ
2f0ðzhÞ

�
zð1ÞVð1Þλ2 þ � � � ;

z ¼ zh þ zð1Þλþ
�

z2d−2h f00ðzhÞ
4χðzhÞf1ðzhÞd−2

þ
�
d − 1

zh
−
ðd − 2Þf01ðzhÞ

2f1ðzhÞ
−

χ0ðzhÞ
4χðzhÞ

�
z2ð1Þ

�
λ2 þ � � � ; ð35Þ

where we have two-independent shooting parameters
(Vð1Þ, zð1Þ). Solving the equations of motion at the lead-
ing order, one can also find the value of β̄ introduced
in (26) as

β̄ ¼ −
f00ðzhÞ
2
ffiffiffiffiffiffiffiffiffiffiffi
χðzhÞ

p ; χðzhÞ ≔ f0ðzhÞf2ðzhÞ: ð36Þ

One can easily check that β̄ ¼ 2πT as expected from the
structure of the null coordinate.
In order for the numerical calculations, we further

introduce z̃ ¼ z=zh without loss of generality, i.e., it is
convenient to set zh ¼ 1 for numerics. Then, given
value of the shooting parameters [Vð1Þ, zð1Þ], one can
solve (34) and find the corresponding numerical solutions
[z̃ðλÞ; VðλÞ].
Furthermore, one can determine the value of (λR, λL)

from one of the numerical solutions, z̃ðλÞ, at the given
cutoff z̃m (see Fig. 6) as

z̃ðλRÞ ¼ z̃m; z̃ðλLÞ ¼ z̃m; ð37Þ

where λR > 0 and λL < 0.
Therefore, once (λR, λL) are evaluated from the numerics,

we are finally led to the computation of the area (29) as

AreaðΓHMÞ ¼ Ld−1Ωd−2
Z

L1dλ

¼ Ld−1Ωd−2
Z

dλ

¼ Ld−1Ωd−2ðλR − λLÞ; ð38Þ

since we can use the fact L1 ¼ 1 from the second equation
of motion in (34).16 In other words, the area can be simply
obtained by the difference λR − λL.
In addition, using all the numerical solutions [z̃ðλÞ; VðλÞ]

together with the definition of the null coordinate (26), we
can also find the times at the boundary cutoff z̃m as

t0R ≔ tðλRÞ ¼
logðjVðλRÞjÞ

β̄
þ z�ðλRÞ;

t0L ≔ tðλLÞ ¼
logðjVðλLÞjÞ

β̄
þ z�ðλLÞ; ð39Þ

which leads to find (24)

Δt ¼ t0R − t0L ¼ 1

β̄

	
logðjVðλRÞjÞ − logðjVðλLÞjÞ



; ð40Þ

where we take z�ðλRÞ − z�ðλLÞ ¼ 0 by (26) and (37).17

Strictly speaking, Δt is the value in the z̃m → 0 limit,
however Δt can be defined at z̃m ¼ 10−2 for the numerical
calculation where z�ðλRÞ − z�ðλLÞ ¼ 0 is valid.
In summary, by solving the equations of motion (34), we

find the numerical solutions. Then, using the corresponding
numerical solutions together [(37)–(39)], we evaluate the
time-dependent HM surface, i.e., the time-dependent entan-
glement entropy as

16L1 ¼ 1 in (29) can also be associated with the reparamet-
rization invariance giving a single equation of motion (31).

17Note that (t0R; t
0
L) are evaluated at finite z̃m, which can be

identical with the boundary times (tR, tL) at the AdS boundary.
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SHMðtÞ ¼
AreaðΓHMÞ

4GN
¼ Ld−1Ωd−2

4GN

	
λRðz̃mÞ − λLðz̃mÞ



;

Δt ¼ 1

β̄

�
log

VðλRðz̃mÞÞ
VðλLðz̃mÞÞ

�
: ð41Þ

For the sake of simplicity, we shall henceforth set the
parameter Ld−1Ωd−2

4GN
to unity.

IV. RESULTS OF DYONIC BLACK HOLES

In this section, implementing all the methods presented
in the previous section, we study the Page curve of the
dyonic black holes (2) within a doubly holographic setup.

A. Holographic setup

Using the simple metric ansatz (19) together with the one
for the gauge field as

A ¼ AtðzÞdt −
B
2
ydxþ B

2
xdy; ð42Þ

one can find the analytic background solution,

fðzÞ ¼ 1 −m0z3 þ
μ2z2h þ B2z4h

4

z4

z4h
;

m0 ¼ z−3h

�
1þ μ2z2h þ B2z4h

4

�
; AtðzÞ ¼ μ

�
1 −

z
zh

�
;

ð43Þ

where μ is the chemical potential, B magnetic field, and zh
horizon radius. Furthermore, the various thermodynamic
parameters including the temperature T, density ρ, and
Bekenstein-Hawking entropy density SBH read

T ¼ 1

4π

�
3

zh
−
B2z3h þ μ2zh

4

�
; ρ ¼ μ

zh
; SBH ¼ 4π

z2h
:

ð44Þ

Here, we set the gravitational constant 16πGN ¼ 1 and
AdS radius L ¼ 1 to avoid clutter.18

In order for the numerical calculations, it is also
convenient to introduce the tilde variables as

B̃ ≔ Bz2h; T̃ ≔ Tzh ¼
1

4π

�
3 −

B̃2 þ μ̃2

4

�
;

μ̃ ≔ μzh; ρ̃ ≔ ρz2h ¼ μ̃; ð45Þ

which would be equivalent to setting zh ¼ 1.

In this paper, as the extension of the previous study [21],
we also study the entanglement entropy (23) at the fixed
chemical potential. In other words, we aim to evaluate SR=μ
in terms of ðT=μ; B=μ2Þ. In order for this, one needs to
solve the following:

T
μ
¼ T̃

μ̃
¼ 1

4πμ̃

�
3 −

B̃2 þ μ̃2

4

�
;

B
μ2

¼ B̃
μ̃2

; ð46Þ

and find the relation B̃ ¼ B̃ðT=μ; B=μ2Þ and μ̃ ¼
μ̃ðT=μ; B=μ2Þ. Then, finally SR=μ can be rewritten
as SR=μðT=μ; B=μ2Þ.19

1. Thermodynamic property in doubly holographic setup

As demonstrated in Sec. II, in the doubly holographic
setup, the density and the magnetic field are no longer
the independent parameters: (14). They are associated
through the coefficients introduced on the Planck brane,
cpb in (11). As we will show below, this further implies that
at fixed chemical potential, T=μ is related to B=μ2 in the
presence of cpb.
Note that the relationship (14) can be further expressed

as a function of (T=μ; B=μ2) using (45) and (46):

1

cpb
¼ ρ

B
¼ ρ̃

B̃
¼ μ̃

B̃
¼ F

�
T
μ
;
B
μ2

�
: ð47Þ

One can find the explicit form of F ðT=μ; B=μ2Þ. However,
it is so complicated and not illuminating as well. Thus, we
make a plot of it in Fig. 7.
In the left part of Fig. 7, we display T=μ vs B=μ2 at given

values of cpb. cpb ¼ 0 (blue data) corresponds to the setup
in [21] where B=μ2 ¼ 0 for all T=μ. On the other hand,
when cpb is nonvanishing, one may have all T=μ after the
certain (minimum) value of B=μ2. For instance, when
cpb ¼ 1 (green data) such a minimum magnetic field
would be B=μ2 ≈ 0.4.
In the right part of Fig. 7, we also show cpb vs B=μ2 at

given temperature T=μ ¼ 0, where its analytical expression
reads

c2pbðT ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48ðB=μ2Þ2

p
− 1

2
: ð48Þ

Note the right part of the figure corresponds to the
collection of all minimum values of B=μ2 in the left part,
i.e., the dots indicate the same data in both parts. Also

18Together with Ld−1Ωd−2

4GN
¼ 1, this implies that we set

4πΩd−2 ¼ 1.

19The intermediate step of rescaling with the horizon (45) can
be useful for the numerical computations (zh ¼ 1). One can
directly find the rescaling with μ from the fact that the black hole
is invariant under ðzh; μ; B; T; ρÞ → ðzhα; μ=α; B=α2; T=α; ρ=α2Þ
together with ðt; z; x; y;ΩÞ → αðt; z; x; y;Ω=α2Þ when α is a
positive constant.
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notice that Fig. 7 implies that at given T, one should
consider a finite topological coefficient on the Planck brane
in order to have a finite magnetic field.

B. Entanglement entropy from HM surface

Based on the thermodynamic relation (47) including
the topological coefficient, we study the aspects of two
extremal surfaces of dyonic black holes: HM surface and
island surface.
Let us first discuss the time-dependent HM surface,

SFiniteHM ðtÞ in (22). Implementing the method in Sec. III B, we
find the time evolution of SFiniteHM ðtÞ at given temperature.
See Fig. 8.
In the left part of Fig. 8, the numerical results (solid lines)

show that SFiniteHM grows in time where its Δt → 0 limit
is consistent with the analytic results (dots) evaluated
from (20). We also find that at the given time, cpb enhances
the value of SFiniteHM (e.g., from blue to red).
On the other hand, in the opposite limitΔt → ∞, one can

find that SFiniteHM exhibits a monotonically (linearly) increas-
ing behavior. This linear behavior is more visible in the
time derivative of entropy: see the right part of Fig. 8.

We also check that our numerical results (solid lines)
are consistent with the previously derived analytic expres-
sion (dots) of the late time analysis of the HM surface,
given in [21]:

lim
Δt→∞

∂SFiniteHM

∂Δt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzMÞ

p
zd−1M

; ð49Þ

where zM can be determined by solving

ð1 − dÞz−dM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzMÞ

p
−

z1−dM f0ðzMÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzMÞ

p ¼ 0: ð50Þ

We also study the temperature dependence in SFiniteHM :
see Fig. 9. We find that the entropy increases at higher
temperatures or, equivalently, it barely grows in the low-
temperature limit. In particular, we also find that the growth
rate is linear in temperature in the near extremal limit:

lim
Δt→∞

∂SFiniteHM

∂Δt
¼ π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2pbðT ¼ 0Þ

2

s
T
μ
þO

�
T
μ

�
2

; ð51Þ

FIG. 7. Data with different value of cpb ¼ 0, 1, 1.5 (blue, green, red). The left part shows T vs B at given cpb, while the right part
shows cpb vs B at given T. In particular, we set T ¼ 0 in the right part where the black solid line is an analytic expression in (48). Dots
denote the same data in both parts.

FIG. 8. The result from the time-dependent HM surface at T=μ ¼ 0.03with cpb ¼ 0, 1, 1.5 (blue, green, red). The left part of the figure
shows the time evolution of SFiniteHM ðtÞ, while the right part is its growth rate over time. In all parts, the solid lines are numerical results and
dots are analytic results: (20) (left), (49) (right).
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where c2pbðT ¼ 0Þ is from (48). Once the topological
coefficient vanishes, it reduces to the one in [21]. Also it
is believed that the origin of this linearity can be attributed
to the infrared (IR) geometry [21].20

As the entanglement between the black hole and the
radiation is established through the exchange of Hawking
modes before the Page time, the observed temperature
dependence implies that a higher Hawking temperature
corresponds to a greater rate of exchange.
One can easily find ΔSHMðtÞ in (22) using the data in the

left part of Fig. 8. Also notice that such an entropy from
the HM surface will keep growing due to the exchange of
Hawking mode and exceed the maximum entropy of the
black hole, which is in contrast with what the unitarity
principle imposes as demonstrated in the Introduction. The
other candidate of the extremal surface, the island surface,
will contribute to having the saturated maximum entropy
and resolve this information paradox.

C. Entanglement entropy from island surface

Based on the result SFiniteHM ðt ¼ 0Þ above, next we study
the entanglement entropy from the island surface, ΔSIs
in (22), using the holographic formula (17). Recall that as
described in the previous section, ΔSIs is time independent,
ΔSIsðtÞ ¼ ΔSIsðt ¼ 0Þ, since the extremal surface is not
associated to the stretch of space inside the horizon.
Furthermore, also recall that ΔSIs may have an issue for

the Page curve in doubly holographic theories: the positive
sign of it,ΔSIs > 0, is not guaranteed. Note that if its sign is
negative (i.e., the dominant entropy at t ¼ 0 is from the
island surface), one cannot have the Page curve since the

entropy is already being saturated at t ¼ 0. In order to
resolve this issue, it is suggested [21] that one needs to
consider the large value of xb, i.e., moving the end point of
the radiation region away from the Planck brane (e.g., see
the right part of Fig. 4).
In Fig. 10, we plotΔSIs for dyonic black holes. In the left

part, we display the xb dependence at given T: one can
check that ΔSIs > 0 at larger values of xb. We also present
the T dependence in the right part, which is similar to the
entropy from the HM surface: T enhances the entropy.
In addition, we also observe that the role of cpb is also
qualitatively the same: at given xb or T, the entropy is
enhanced by a finite cpb (e.g., from blue to red).
It is also interesting that the coefficient cpb may also

resolve the issue of the sign of ΔSIs rather than taking a
larger xb. In the left part of Fig. 10, one can find that there
is a minimum value of xb (≕ xmin

b ) at given cpb, which is
giving ΔSIs ¼ 0. For instance, xmin

b μ ≈ 2.34 when cpb ¼ 0

(blue). Such a minimum value depends on the value of cpb,
in particular, it is vanishing as we increase cpb: see also
Fig. 11. This implies that one can have ΔSIs ≥ 0 in all
ranges of xb once we take the large enough cpb.

21

D. Page curve of dyonic black holes

Finally, we discuss the Page curve of dyonic black holes
using the evaluated entropy above: ΔSHM and ΔSIs. In the
left part of Fig. 12, we display the Page curve (23) where
the entropy is described by the HM surface, SR ¼ ΔSHM
(solid lines), before the Page time (stars) and it is saturated
by the island surface SR ¼ ΔSIs (dashed lines) after the
Page time. Thus, the figure implies that the Page curve can
be obtained even at finite cpb.
In the right part of Fig. 12, we also show the T

dependence on the Page time tP. We find that tP is enlarged
in the low T regime, which is consistent with the electri-
cally charged black holes in the presence of a weak
tension [21].22 It is worth noting that this result,
tP ≈ 1=T, is qualitatively in agreement with the Page time
obtained from alternative approaches that do not utilize the
doubly holographic method, for instance [31–35].

1. Entanglement density and the refined Page curve

Although the doubly holographic theories yield the
Page curve exhibiting an initial growth in entropy, which
subsequently saturates after the Page time, its effectiveness

FIG. 9. The temperature dependence in SFiniteHM with cpb ¼ 0, 1,
1.5 (blue, green, red). Solid lines are from (49) and the dashed
lines are its low temperature limit (51). The data at T=μ ¼ 0.03
corresponds to the dots in the right part of Fig. 8.

20One can find (e.g., see Ref. [146]) that the dyonic black hole
still has AdS2 × R2 IR geometry as in the charged black hole. It
would also be interesting to study how the IR parameters such as
the hyperscaling violation exponent and the critical dynamical
exponent change the temperature scaling in (51). See Ref. [147]
for one of the recent studies of the entanglement entropy with IR
parameters.

21In order to avoid ΔSIs < 0 (or the constant entropy belt), one
may make use of a high tension brane or the large enough cpb.
Exploring the physical implications of ΔSIs < 0 and the precise
conditions necessary to attain a sufficiently large cpb presents
an intriguing avenue for further investigation.

22However, recall that as we demonstrated in detail in Sec. II,
one cannot turn on a finite (even weak) tension on the brane
for the purely electrically charged black holes (13). See also
footnote 10.
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may be limited by the fact that the Page curve for an eternal
black hole should saturate to twice the Bekenstein-
Hawking entropy SBH [13,21]23

SBH ¼ Ld−1

4GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðzhÞd−1

p
zd−1h

; ð52Þ

where we use (16). It is also noteworthy that SR does not even
have the same energy dimension with SBH, for instance, in
AdS4, SR=μ is dimensionless, while SBH=μ2 has dimension.
In this paper, inspired by the holographic entanglement

density [131–134], we will show that taking a large xb limit
can be useful not only to retain ΔSIs ≥ 0, but also to obtain
2SBH in the Page curve.
Let us first shortly review the holographic entanglement

density below. For this purpose, it is convenient to rewrite

the entanglement entropy at t ¼ 0, (17) and (20), as
follows:

SIs ¼
2Ld−1Ωd−2

4GN

�
1

d− 2

1

ϵd−2
þ xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðzbÞd−1

p
zd−1b

þ CIs

zd−2b

�
;

SHM ¼ 2Ld−1Ωd−2

4GN

�
1

d− 2

1

ϵd−2
−

1

d− 2

1

zd−2h

þCHM

�
; ð53Þ

where xb is from (18) and we defined

CIs ≔ −
1

d − 2
þ
Z

1

0

du
ud−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2ðd−1Þ

f1ðzbÞd−1
f1ðzbuÞd−1

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðzbuÞf1ðzbuÞd−2

q
− 1

1
A;

CHM ≔
Z

zh

ϵ

du
ud−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðuÞf1ðuÞd−2

q
− 1
�
: ð54Þ

Then, following (22), we can find the time-independent
entanglement entropy responsible for the saturated Page
curve after the Page time as

ΔSIs ¼ SIs − SHM

¼ 2Ld−1Ωd−2

4GN

�
xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðzbÞd−1

p
zd−1b

þ CIs

zd−2b

þ 1

d − 2

1

zd−2h

− CHM

�
: ð55Þ

The holographic entanglement density [131–134] is
defined by the holographic entanglement entropy divided
by the volume of the boundary region xbΩd−2 as

ΔSDIs or HM ≔
ΔSIs or HM
xbΩd−2 : ð56Þ

In this entanglement density context, (55) is rewritten as

FIG. 10. The result from the island surface at cpb ¼ 0, 1, 1.5 (blue, green, red). The left displays ΔSIs at given T=μ ¼ 0.03 and the
right shows the temperature dependence at given xbμ ¼ 8. The dots are the same data in both parts.

FIG. 11. xmin
b vs cpb at T=μ ¼ 0.03. Dots are numerical results

and dashed lines are fitting curves: xmin
b μ ¼ 2.34 − 0.5c0.8pb (gray),

3c−0.8pb (black).

23It should be noted that the previous studies, for instance
[13,21], did not report such saturation SR ≈ 2SBH by the explicit
calculations. Furthermore, it can also be noted that in the doubly
holographic setup, the (dþ 1)-dimensional horizon can be
associated with the d-dimensional horizon at the brane [13].
Consequently, the Bekenstein-Hawking entropy may also be
applicable in this scenario.
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ΔSDIs ¼
2Ld−1

4GN

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðzbÞd−1

p
zd−1b

þ 1

xb

�
CIs

zd−2b

þ 1

d − 2

1

zd−2h

− CHM

��
: ð57Þ

As we take the large xb limit, one can expect that the
maximum value of zb approaches the horizon, i.e.,
limxb→∞ zb ¼ zh [131–134]. Then, the leading contribution
of (57) is

ΔSDIs ≈
2Ld−1

4GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðzhÞd−1

p
zd−1h

¼ 2SBH; ð58Þ

where SBH is from (52). For instance, we display the
representative actual data in the left part of Fig. 13.
The appearance of the Bekenstein-Hawking entropy in

the large xb limit (58) can be attributed to the volume law
term in the standard RT surface: when xb is large, the
subsystem becomes the entire system so that the minimal
surface lies along the horizon [148,149]. This implies that
the ordinary RT surface (or island surface here) becomes

the thermal entropy density SBH in (52). The factor “2” of
2SBH is from the fact that our doubly holographic setup is for
the thermofield double state, i.e., the “two-sided” eternal
black holes. See also footnote 23. For a more detailed
description of the volume law term (as well as the area
law term associated with the area theorem [16,150–152]),
see Ref. [134].
One remark is in order. As demonstrated in [53], the

entanglement entropy from the island surface can be
matched with the Bekenstein-Hawking entropy in the
context of doubly holographic models: for instance, when
the tension on the brane is large enough the extremal
surface in the d-dimensional theory can be close to the
horizon on the brane. Essentially, this scenario serves as the
d-dimensional description for the Bekenstein-Hawking
entropy at late times.
Nevertheless, the primary focus of this section is to

present a method for finding the Bekenstein-Hawking
entropy even in the tensionless limit. The key inquiry
under consideration is whether it is feasible to locate the
extremal surface close to the horizon on the brane in the
tensionless limit.

FIG. 12. The left part displays the Page curve of dyonic black holes at T=μ ¼ 0.03, xbμ ¼ 8 with cpb ¼ 0, 1, 1.5 (blue, green, red).
The solid line is ΔSHM, while the dashed line is ΔSIs. The Page time tP is depicted by the stars. The right part shows the T dependence in
tP. The stars indicate the same data in both parts.

FIG. 13. Page curve and entanglement density at cpb ¼ T=μ ¼ 1. In the left part, ΔSDIs approaches 2SBH as we increase xb, consistent
with (58). In the right part, we make a plot of the Page curve at xbμ ¼ 10 where the star denotes the Page time.
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To achieve this, employing the concept of entanglement
density, our strategy is based on two observations: (I) in the
limit of large xb, the island surface approaches the (dþ 1)-
dimensional horizon; (II) the (dþ 1)-dimensional horizon
intersects with the brane at the d-dimensional horizon [13]
(also refer to footnote 23). These observations indicate
that the island surface may be associated with the
d-dimensional horizon when we consider a large value
of xb. Consequently, this can also imply a connection
between our SBH in (58) and the d-dimensional description
of the Bekenstein-Hawking entropy on the brane.24

Therefore, if we refine the entanglement entropy of the
radiation (23) using the entanglement density (56) as

SDR ¼
(
ΔSDHMðtÞ; ðt < tPÞ
ΔSDIsðtÞ; ðt ≥ tPÞ;

ð59Þ

we find the expected behavior of the Page curve of the
eternal black hole, the entanglement entropy is saturated to
twice the Bekenstein-Hawking entropy after the Page time,
in the context of doubly holographic theories: see also the
right part of Fig. 13.

V. CONCLUSION

We have studied the entanglement between the eternal
black hole and the Hawking radiation in the context of
the doubly holographic theories. In particular, we consi-
der the entanglement entropy of the radiation and aim
to find the Page curve consistent with the unitarity
principle. The main implication of the doubly holographic
theories is that the ordinary RT/HRT prescription (using
two types of extremal surfaces: Hartman-Maldacena sur-
face and island surface) can yield a positive resolution of
the information paradox through the appearance of the
island.
The doubly holographic method for the Page curve is ini-

tially implemented in the lower-dimensional black hole [11]
and subsequently extended to the higher-dimensional black
holes: neutral black hole [13] and charged black hole [21].
In this paper, following the previous literature, we study the
Page curve of the dyonic black holes within doubly holo-
graphic theories.

We find that the extension to include a finite magnetic
field would be a nontrivial task in that the dyonic black hole
in the doubly holographic setup requires the additional
topological actions on the Planck brane [129,130] where its
effective topological coefficient is denoted as cpb in (11).
Note that by virtue of a finite cpb, the density has a

relation with the magnetic field (14). In addition, analyzing
such topological actions in detail, we also find that both the
tension of the Planck brane and cpb should vanish for the
purely electrically charged black holes. See also foot-
notes 10 and 22.
Furthermore, we also develop a general (in metric

and dimension) numerical method to compute the time-
dependent Hartman-Maldacena surface, which produces
numerical results in excellent agreement with analytic
expressions.
Considering the tensionless brane but finite cpb, we find

that the doubly holographic theories can exhibit the Page
curve consistent with the unitarity principles for the dyonic
black holes: the entanglement entropy grows at early time
and saturates after the Page time. The initial growth can
be explained by the Hartman-Maldacena surface, while
the saturation is attributed to the island surface. As a
by-product, we also find that the aspect of the obtained
Page time is consistent with the one derived from other
approaches that do not employ the doubly holographic
method in the literature.
Finally, using the holographic entanglement density

[131–134], we also demonstrate that the saturated value
of the entanglement entropy after the Page time can be
comparable to twice the Bekenstein-Hawking entropy. To
our knowledge, our work is the first doubly holographic
study showing this twice the Bekenstein-Hawking entropy
by explicit calculations.
Therefore, our analysis of dyonic black holes in the

doubly holographic framework may provide another con-
crete example to support that the island paradigm would be
a general solution to the information paradox for black
holes in higher dimensions.
There can be a natural extension of our work. It may be

desirable to investigate or develop a new method to include
the effect of the tension on the Planck brane. For instance,
see Refs. [21,129,130] for some discussion on the finite
tension brane. In general, at a finite tension, the Planck
brane is likely to give the backreaction to the background
geometry. In such a case, one may need to explore the
entanglement entropy of the radiation beyond the scope of
the way that we presented in this paper.
It will also be interesting to study other quantum

information quantities (such as the subregion complexity,
reflected entropy) from dyonic black holes in the frame-
work of doubly holographic theories and compare/contrast
with the entanglement entropy given in this work. We leave
this subject as future work and will address them in the near
future.

24Our argument may share similarities with the maximum
tension case discussed in [53]. In [53], the area of the bulk RT
surface within the (dþ 1)-dimensional bulk, denoted as
ART=ð4GNÞ, can be dominated by a local contribution. This
local contribution corresponds to the area of the intersection
between the RT surface and the brane, represented as
AQES=ð4GeffÞ, which signifies the quantum extremal surface
(QES) within the d-dimensional theory governed by the effective
Newton’s constant Geff . Extremizing the area of the bulk RT
surface drives the QES in close proximity to the horizon on the
brane, enabling us to determine the Bekenstein-Hawking entropy
within the d-dimensional theory, expressed as Ahorizon=ð4GeffÞ.
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