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We analyze the entanglement of a Schwinger pair created by a time-dependent pulse. In the semiclassical
approximation, the pair creation by a pulse of external electric field is captured by a periodic world line
instanton. At strong gauge coupling, the gauge-gravity dual world sheet instanton exhibits a falling
wormhole in AdS. We identify the tunneling time at the boundary with the inverse Unruh temperature, and
derive the pertinent entanglement entropy between the created pair using thermodynamics. The
entanglement entropy is enhanced by the subbarrier tunneling process, and partly depleted by the
radiation in the postbarrier process.
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I. INTRODUCTION

Schwinger pair creation [1] is a quantum process in
which a pair of particles is produced from the vacuum in an
external electric field. In quantum chromodynamics
(QCD), the external chromoelectric field inside a confining
string can lead to the production of a quark-antiquark pair,
leading to string breaking when the string energy exceeds
the light meson mass. This process is used in event
generators (LUND, PYTHIA) [2] to account for jet
fragmentation in high energy collisions [3].
The pair creation proceeds through tunneling, a quintes-

sential quantum process. The vacuum pair tunnels through
a potential barrier under the effect of a strong background
field, and is produced with a finite probability. Throughout
the creation process, the pair is correlated and interacts with
both with the external (classical) field and the quantum
gauge field. Quantum entanglement is the measure of these
correlations throughout the pair history.
Recently, this pair creation process was used as an

illustration of the Einstein-Rosen-Podolsky (EPR) paradox,
in the context of quantum field theory at strong coupling
[4,5]. In this strong coupling regime, the gravity dual of the
pair is a string world sheet [6–15] with a nontraversable

wormhole, or Einstein-Rosen (ER) bridge [4]. The quan-
tum entanglement entropy of the pair is sensitive to the
location of the ER bridge [4,16].
In the receding quark-antiquark pair in the Schwinger

process, the endpoints of the string are never causally
connected. However the pair is entangled owing to its color
neutrality. In nonconfining dual gravity description, the
entanglement entropy was found to be of order

ffiffiffi
λ

p
in the

weak field limit [4,12,12,17,18], with λ ¼ g2YNc the strong
0t Hooft coupling. In this work, we will extend our
discussion which was restricted to static electric fields
[17] and explore the entanglement in the pair creation
process in the presence of a time-dependent electric pulse.
In QCD, a strong gauge field pulse could be generated by

a highly boosted nucleus, assuming that all wee partons
in the nuclear wave function add up coherently, see
Refs. [19,20] and references therein. In the rest frame of
a target interacting with this highly boosted nucleus, the
target is crossed by a “gluon wall” [21] that is a pulse of
gauge field. This pulse will lead to pair creation. The
entanglement entropy of the pair can be converted to
the Gibbs entropy of the final hadronic state. For QED,
the equality between the entanglement and Gibbs entropies
in Schwinger pair production by a pulsewas demonstrated in
[22]. For CFTs it was shown in [23] that the entanglement
entropy across a spherical region is equal to the thermal
entropy of the hyperbolic geometry R × Hd−1, which is the
direct product of time and the hyperbolic plane. In QCD, the
effects of confinement have to be taken into account
compared to the weak coupling QED calculation in [22],
as well as radiation in the final state. Our present work
addresses this problem from a holographic perspective.
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The organization of the paper is as follows: In section II
we briefly review the semiclassical analysis of the
Schwinger process for particle pair creation by a pulse.
The world line instanton solution is discussed, and an
estimate of its entanglement entropy is given. In Sec. III, we
extend the analysis to strong coupling, where the dual of the
world line is a world sheet in AdS. The world sheet is
characterized by a moving wormhole, a hallmark of the
time-varying pulse at the boundary. We show that the
entanglement entropy receives a positive contribution from
tunneling (subbarrier process) and a negative contribution
from radiation loss (postbarrier process). Our conclusions
are in Sec. V.

II. TUNNELING IN A TIME-DEPENDENT
EXTERNAL FIELD

Consider first a scalar particle of mass M, in an
Abelianized external field moving in proper time, with
the action

S ¼
Z

dτM
ffiffiffiffiffi
ẋ2

p
þ i
I

A ð1Þ

Tunneling in (1) is captured by the world line instanton
solution to the classical equations of motion in Euclidean
signature,

M
d
dτ

�
ẋμffiffiffiffiffi
ẋ2

p
�

¼ iFμνẋν: ð2Þ

For a time dependent pulse electric field in Minkowski
signature,

EðtÞ ¼ E
cosh2ðωtÞ ð3Þ

the Euclideanized vector potential in (1)

A3ðx4Þ ¼
−iE
ω

tanðωx4Þ ð4Þ

is purely imaginary. Since (4) is singular for x4S ¼ π
2ω, all

world lines are bounded by this maximum value
in jx4j ≤ x4S.

A. World line instanton

The tunneling process was discussed by many [24–31],
with the instanton solution given by [27]

x3ðτÞ ¼
1

aγ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p arcsinh

�
γ cos

�
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
τ

��
≡ 1

aγ̄
sinh−1ðγ cosðāτÞÞ

x4ðτÞ ¼
1

aγ
arcsin

�
γffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p sin

�
a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
τ

��
≡ 1

aγ
sin−1ðγ sinðāτÞÞ: ð5Þ

It is periodic, with period

β ¼ 2π

ā
≡ 2π

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð6Þ

with a ¼ E=M and γ ¼ ω=a.
Throughout, E≡ gYE refers to the invariant electric field

in the probe D3 brane. Eqs. (5) describe a cyclotron-like
trajectory that satisfies ẋ23 þ ẋ24 ¼ 1, since the applied force
in (2) is magnetic in Euclidean signature. The Wilson loop
traced by the boundary world line (5) is ellipticlike in
general,

sh2ðaγ̄x3Þ
γ2

þ sin2ðaγx4Þ
γ2

¼ 1 ð7Þ

as illustrated in Fig. 1. The high eccentricity of the
trajectories along the x4 direction follows from the singu-
larity of the force from the pulse, at x4S ¼ π

2ω of (1) noted

�0.6 �0.4 �0.2 0.0 0.2 0.4 0.6

�0.5

0.0

0.5

FIG. 1. Contour plot of (7) for a ¼ γ ¼ 1 (outer) and a ¼ 1,
γ ¼ 2.5 (inner) with M ¼ 1.
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earlier. It becomes circular in the static limit, x23 þ x24 →
1
a2

as ω → 0.

B. Particle entanglement

For scalar pair creation of mass 2M, the action evaluated
using (5) is

SðβÞ ¼ βM

1þ ð1 − ðβω=2πÞ2Þ12 ð8Þ

with e−2SðβÞ, the penalty for tunneling in the absence of
confinement. When the pulse is about static, SðβÞ ∼ 1

2
βM in

agreement with Schwinger’s original result. Alternatively,
when the pulse is very sharp in time, SðβÞ ∼ 2πM

ω . At large
frequency, the pair production is uninhibited.
We interpret (8) as the free energy SðβÞ ¼ βFðβÞ of the

tunneling pair in the pulse. As a result, the corresponding
quantum entropy at the boundary, is given by thermo-
dynamics

SBEE ¼ βMγ2

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
Þ2

ð9Þ

It vanishes in the static limit as SBEE ∼ βMγ2, and for large
frequencies vanishes as SBEE ∼ 2πM

ω .

III. HOLOGRAPHIC PAIR PRODUCTION

The world line instanton (5) captures the pair production
of a particle of mass M at the boundary, at weak coupling.
In the double limit of strong ’t Hooft coupling λ and large
Nc, the gravity dual description is captured by a string
world sheet sourced by the boundary Wilson loop on a D3
brane. Holographic pair production of particles as end
points of strings, extends (1) to the Nambu-Goto action in
bulk

S ¼ σT

Z
dτdσj det gMN∂τXM

∂σXN j12 þ i
I

A ð10Þ

in AdS5 with line element

ds2 ¼ gMNdxMdxN ¼ L2

z2
ðdx2μ þ dz2Þ ð11Þ

with σTL2 ¼ ffiffiffi
λ

p
=2π. The coordinate embedding of the

string XMðτ; σÞ can be obtained numerically in Euclidean
signature, using the Nambu-Goto action for the string in
bulk, as constrained by the Wilson loop at the D3 boundary.

A. Euclidean string world sheet

In Euclidean signature, the world sheet surface in bulk is
ellipsoidal. To parametrize it in AdS5, we use cylindrical
coordinates r;φ; z,

xMðz;φÞ ¼ ð0; 0; rðz;φÞ cosðφÞ; rðz;φÞ sinðφÞ; zÞ ð12Þ
in terms of which the Nambu-Goto action plus the electric
field at the boundary, read

S¼
ffiffiffi
λ

p

2π

Z
zE

zM

dz
Z

2π

0

dφ
1

z2
ðr2ð1þ r2zÞþ r2φÞ12 þ i

I
A ð13Þ

with the shorthand notation rz ¼ ∂zr and rφ ¼ ∂φr. Here

zM is the position of the probe D3 brane, with zM ¼
ffiffi
λ

p
2πM

fixed by the mass of the probe D3 brane at the boundary.
Here zE is the tip (extrema) of the ellipsoidal-like world
sheet in bulk,

rðzE;φÞ ¼ 0 rzðzE;φÞ ¼ ∞ ð14Þ

In (13) we have used the fact that the electric field (5) acts
as a magnetic field in Euclidean signature, with the “vector
potential” (4). Its contribution to the Wilson loop at the
boundary z ¼ zM, is

i
I

A ¼
Z

2π

0

dφ
E
ω
tanðωr sinφÞðcosφrφ − r sinφÞ ð15Þ

The bulk equation of motion follows by variation

−rrzzðr2 þ r2φÞ þ rrφφð1þ r2zÞ −
2

z
rφðr2ð1þ r2zÞ þ r2φÞ − r2r2z − 2r2φ − 2rrzrφrzφ − r2 ¼ 0 ð16Þ

subject to the Lorentz force along the z-direction at the D3
brane on the boundary at z ¼ zM,ffiffiffi
λ

p

2π

1

z2M

r2rz
ðr2ð1þr2zÞþr2φÞ12

¼ E
cos2ðωrsinφÞ

�
r−

1

2
rφ sin2φ

�
:

ð17Þ
Again, we made use of the short hand notations rzz ¼ ∂

2
zr,

rφφ ¼ ∂
2
φr, and rzφ ¼ ∂z∂φr. (16) subject to the boundary

condition (17) can be solved numerically using the pseudo-
spectral methods (with Chebychev discretization in the
radial direction and Fourier discretization in φ).
In Fig. 2 (left) we show the Euclidean surface for zME ¼

0.44 and zMω ¼ 0.25. The on-shell action SOS of the
ellipsoidal surface (13), sets the tunneling probability for
the holographic pair production in the pulse, in the strong
field limit. In Fig. 3 (left) we show the behavior of the on-
shell action versus T ¼ 1=β given in (6), for increasing

ENTANGLEMENT ENTROPY IN A TIME-DEPENDENT … PHYS. REV. D 108, 126014 (2023)

126014-3



frequencies of the pulse from bottom-red to top-purple. The
numerical results shown in the dashed-black curve for
ω ¼ 0, coincide with the analytical results for the holo-
graphic pair production derived in [8]

SOS →

ffiffiffi
λ

p

2

 ffiffiffiffiffi
Tc

T

r
−

ffiffiffiffiffi
T
Tc

s !
2

ð18Þ

with

Tc ¼
ac
2π

¼ 1

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2M

p :

Our numerical results, generalize (28) to a time-
dependent pulse.
In Fig. 3 (right) we show the on-shell action versus γ ¼

Mω=E for fixed temperature. The increasing action reflects
on the larger penalty for the pair production rate, with larger
ω and fixed E as the pulse is short lived. Equivalently, the
larger E for fixed ω, the smaller the penalty for pair
production.

B. Particle multiplicities in a pulse

Strong and coherent chromoelectric pulses can be
produced during the initial phase of an ultrarelativistic
heavy-ion collision. The higher the energy of the ion

projectile, the stronger the field and the shorter is its
duration in the frame of the target.
Strong chromoelectric fields can produce light quark

pairs through the Schwinger mechanism. For the strongly
coupled phase, the mean number of produced pairs in the
pulse is

n̄ ¼
X∞
n¼1

npn ¼
X∞
n¼1

nðeSOS − 1Þe−nSOS ¼ 1

1 − e−SOS

In Fig. 4, we show the dependence of the mean number of
produced particles on γ ¼ M ω

E (not to be confused with the
Lorentz contraction factor). The mean number of produced
pairs decreases with increasing γ, since tunneling is more

FIG. 2. Left: Subbarrier Euclidean string world sheet, for pair production in a pulse for zME ¼ 0.44 and zMω ¼ 0.25. Right:
Postbarrier Minkowski string world sheet, for pair production in a pulse, for γ ¼ a ¼ 1 (green) and γ ¼ 2, a ¼ 1 (red), with zM ¼ 0.

FIG. 3. Left: On-shell action vs T ¼ 1=β for different ω (increasing from red to purple). The analytical result for ω ¼ 0 is the black
dashed line. Right: On-shell action vs γ for T ¼ 0.08 and λ ¼ 12.

FIG. 4. Mean number of particles produced in the pulse as a
function of γ ¼ M ω

E for T ¼ 0.08, zM ¼ 1 and λ ¼ 12.
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suppressed (note that the case of strong and static electric
fields corresponds to γ → 0.)

C. Minkowski string world sheet

In Minkowski signature, the world sheet in bulk is the
locus of the retarded radiation, sourced by an accelerating
qq̄ pair tracing the Wilson loop with hyperboliclike world
lines. It follows from the ruled surface in bulk [32]

XMðt; zÞ ¼ ðzẋμðtÞ þ xμðtÞ; zÞ ð19Þ

with σ ¼ z. The boundary world lines

xμðtÞ ¼ ðx0ðtÞ; 0; 0; x3ðtÞÞ

follow from (5) by analytical continuation τ → it and
ix4 → x0,

x3ðtÞ ¼ 1

aγ̄
sinh−1ðγ coshðātÞÞ

x0ðtÞ ¼ 1

aγ
sinh−1ðγ sinhðātÞÞ ð20Þ

with ẋ2μ ¼ −1. In Fig. 2 (right) we show twoworld sheets as
given by (19) and traced by (20) with γ ¼ a ¼ 1 (green)
and γ ¼ 2, a ¼ 1 (red). We have set zM ¼ 0 for the D3
brane for convenience. For γ ¼ 0, the ruled surface (right)
is the analytical continuation of the Euclidean surface (left),
as initially observed in [4,5].

D. Moving wormhole on the world sheet

The time-dependent string world sheet harbors a moving
wormhole. To see this, consider the line element associated
to (19)

dX2
M ¼

�
a2ðtÞ − 1

z2

�
dt2 −

2

z2
dtdz ð21Þ

with a squared acceleration

a2ðtÞ≡ ẍ2 ¼ a2ð1þ γ2 sinh2ðātÞÞ−2 ð22Þ

and an effective horizon at zHðtÞ ¼ 1=aðtÞ. In the static
limit ω → 0, it reduces to the static horizon zH → 1

a. Away
from the static limit, the horizon is moving away from the
boundary, with asymptotically

zHðtÞ ∼
γγ

4ā
e2āt ð23Þ

The black hole is falling rapidly in bulk, a hallmark of a
time-dependent problem [33–35].

IV. ENTANGLEMENT FORTHE PULSING STRING

The effective horizon zHðtÞ splits the world sheet in bulk
into a causal part with z < zHðtÞ and a noncausal part with
z > zHðtÞ. This is also the location of a time-dependent
wormhole, as observed in [4] for the static case.
The entanglement entropy (EE) receives contribution

from both the causal part of the world sheet (positive) and
noncausal part of the world sheet (negative). We will
distinguish between the weak field limit and strong
coupling where the world sheet surface can be obtained
both analytically and numerically (for the causal part only),
and the strong field and strong coupling limit where the
world sheet surface can only be obtained numerically.

A. Causal contribution to EE: Weak field limit

The causal contribution to the entanglement entropy in
the weak field limit and finite γ ¼ Mω=E is given numeri-
cally by the Euclidean surface, and more explicitly by the
ruled surface in Minkowski signature, as we have discussed
in [17]. Specifically, the causal contribution of the world
sheet action

SC ¼ 2 ×

ffiffiffi
λ

p

2π

Z þ1
2
T

−1
2
T

dt
Z

1
aðtÞ

zM

dz
z2

¼ 2 ×

ffiffiffi
λ

p

2π

Z þ1
2
T

−1
2
T

dt

�
1

zM
− aðtÞ

�
ð24Þ

The first contribution [from the minuend in (24)] reduces to
the rest mass contribution

SCð1Þ ¼
ffiffiffi
λ

p

πzM

Z þ1
2
T

−1
2
T

dt ¼ 2 × T

ffiffiffi
λ

p

2πzM
¼ 2T M: ð25Þ

For ω ≠ 0, the time integration of the subtracted term in
(24) gives

SCð2Þ ¼−
ffiffiffi
λ

p

π

Z þ1
2
T

−1
2
T

dtaðtÞ

¼ 2×

ffiffiffi
λ

p

2π
ln

����ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ1Þe−āT þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
−1

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
−1Þe−āT þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ1

���� ð26Þ

after using (22).
In the large T limit, (26) reduces to

SCð2ÞðT → ∞Þ ¼ 2 ×

ffiffiffi
λ

p

2π
ln

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

����: ð27Þ

In the small frequency limit with jγj ≪ 1, (27) reduces to

− 2
ffiffi
λ

p
π ln j 1γ j, which is to be compared to [17]

2MT − 2
ffiffiffi
λ

p
T =β ð28Þ
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in the static limit. This limit is singular and does not reduce
to our static result [17]. We conclude that the small
frequency limit does not commute with the large time
limit. If we take the small frequency limit first, then (26)
reduces to

SCð2Þðω → 0Þ ¼ −2
ffiffiffi
λ

p
TT þ

ffiffiffi
λ

p sinhð2πTT Þ
8π3T

ω2 þOðω4Þ:
ð29Þ

Equation (29) correctly reproduces the static case con-
sidered in [17]. In the following, we assume that ω is
sufficiently large. Recall, that we are in the weak field limit,
i.e. E ¼ M · a ≪ 1. In the weak field limit, (26) reduces to

SCð2Þða → 0Þ ¼ −
2
ffiffiffi
λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2T2 − ω2

p
tanhðT ω

2
Þ

πω
þOða3Þ:

ð30Þ
If ω is not too small, we can safely take the large T limit

with tanhðT ω=2Þ → 1. Hence, SCð2Þ is finite in the large T
limit and thus subleading.
With this in mind and using (28), the causal contribu-

tion is

SC ¼ 2T M − 2
ffiffiffi
λ

p
T =βð1 − θðjγjÞÞ þOðT 0Þ ð31Þ

This is expected for γ ≠ 0, since the effective horizon
asymptotes the Poincaré singularity for large times as we
noted in (23). At late times, the self-energy is solely due to
the mass following from the D3 brane, with no Debye
screening mass induced by the rapid fall off. We now
interpret the causal part of the action FC ¼ SC=β as a free
energy for fixed temperature T ¼ 1=β [17]. In the weak
field limit, the causal contribution of the EE for the pulse is
then identified through thermodynamics

SCEEðγÞ ¼ β2
∂FC

∂β
¼

ffiffiffi
λ

p
ð1 − θðjγjÞÞ þOðT 0Þ; ð32Þ

which is equal to zero at late times for finite jγj.

B. Causal contribution to EE: Strong field limit

The causal contribution to the entanglement entropy in
the strong field limit, is solely given by the numerically
generated Euclidean world sheet, using the arguments we
presented in [17]. Again, we can regard the on-shell action
SOS ¼ βFOS as a function of the temperature T ¼ 1=β
shown in Fig. 3 (left), as a free energy FOS. In the strong
field limit, the EE is again identified through thermo-
dynamics

SCE ¼ β2
∂FOS

∂β
: ð33Þ

In Fig. 5 (left) we show the numerical results for the EE
as given by (33) versus temperature T ¼ 1=β, for different
pulse frequencies ω. The curves are for increasing frequen-
cies from bottom-red to top-purple. The black-dashed curve
is the exact result [17] for ω ¼ 0.
In the right side of Fig. 5, we show the EE versus

γ ¼ ω=a. In the pulsing electric field, the EE is continu-
ously enhanced.

C. Noncausal contribution to EE: Weak field limit

The noncausal part of the entanglement entropy,
amounts to evaluating the radiation loss across the falling
horizon. This is readily done by noting that (19) with the
time-dependent acceleration (22), captures the Larmor
radiation at strong coupling [32]

ER ¼
ffiffiffi
λ

p

2π

Z þ1
2
T

−1
2
T

dta2ðtÞ ¼ a
ffiffiffi
λ

p

4π

�
−ð2þ γ2Þ ln

���� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1Þe−āT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1Þe−āT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
þ 1

���� − γ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
ðeāT − e−āT Þ

γ2

2
ðe−āT þ eāT Þ þ γ2 þ 2

�
ð34Þ

FIG. 5. Left: entanglement entropy as a function of the temperature T ¼ 1=β for different ω (increasing from red to purple).
The analytical result for ω ¼ 0 is the black dashed line. Right: entanglement entropy as a function of γ ¼ ω=a for T ¼
0.08, zM ¼ 1 and λ ¼ 12.

GRIENINGER, KHARZEEV, and ZAHED PHYS. REV. D 108, 126014 (2023)

126014-6



which simplifies in the large time limit to

−
a
ffiffiffi
λ

p

4π

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 1

q
þ ðγ2 þ 2Þ ln

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ 1

����
�
:

The radiation loss of the entanglement entropy follows
by interpreting (34) as free energy and taking the derivative
with respect to the temperature. The temperature follows by

using (6) to redefine the acceleration in terms of the
effective temperature for fixed ω as in (6). If we identify
T ¼ N=T as the luminal time it takes the radiation to fall to
the effective horizon [17], the entanglement entropy fol-
lows as SNC

EE ¼ −∂ER=∂T. The constant N fixes the time it
takes to reach the horizon and was determined in [17,32] as
N ¼ 1=ð3πÞ. Hence, we find

SNC
EE ðγÞffiffiffi

λ
p ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
γ2ðe4=3 − 1Þðð1þ e2=3Þ2γ2 þ 12e2=3Þ
ðð1þ e2=3Þ2γ2 þ 4e2=3Þ2 þ ðγ2 − 2Þ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p
− tanhð1

3
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p

þ tanhð1
3
Þ

��
ð35Þ

where e is Euler’s number.
A few comments are in order. Unlike in the last

subsection, we did not have to take a large T limit since
it takes only a finite amount of time to reach the world sheet
horizon. In fact, setting γ to zero reduces the EE to
SNC
EE ð0Þ ¼ − 2

3

ffiffiffi
λ

p
as we observed in the static case in

[17]. Moreover, the expression (35) is in general negative,
or a loss due to radiation.

D. Estimate of net EE: Strong field

The net EE in the pulse, is the sum of the causal
contribution due to tunneling (positive) and the noncausal
contribution due to radiation (negative). In the strong field
limit, the former follows from the Euclidean surface using
(33) as shown in Fig. 5 (left). In contrast, the radiation part
following from the ruled world-sheet surface, only
accounts for the radiation in the weak-field limit (no
backreaction) as we argued in [17]. To remedy for this,
we suggest an estimate for the net EE as

SEE ¼ SCEE þ
�
SNC
EE þ

ffiffiffi
λ

p T
Tc

�
ð36Þ

Note that with the added extra contribution, it reduces to the
strong field limit discussed in [17] for ω ¼ 0. As shown in
Fig. 6, the radiation loss in Eq. (36) slightly overpowers the
gain in the causal entanglement entropy for intermediate

γ ¼ Mω=E, before being overtaken by the latter for larger
γ. The dots in Fig. 6 are the numerical result for (36) with
SCEE following numerically from (33), and SNC

EE given by
(35) corrected by 2

3
.

The dots are the numerical results for (36) with SCEE
following numerically from (33), and SNC

EE given by (35).

V. CONCLUSIONS

In the semiclassical approximation at weak coupling, the
Schwinger pair creation by an electric pulse is captured by a
periodic world line instanton. The inverse period of the
instanton can be identified with the Unruh temperature.
The pair production in an electric pulse at strong

coupling in the gravity dual description is described by
a world sheet instanton. We have found the corresponding
world sheet in Minkowski signature in the weak field limit.
In the strong field limit, we have obtained numerically the
tunneling surface, thereby generalizing the holographic
Schwinger pair production process in a constant electric
field [8] to time-dependent electric pulses.
Remarkably, the gravity dual string world sheet exhibits

a falling wormhole that acts as a separatrix splitting the
world sheet into a causal and acausal part which is hidden
behind the horizon. In the weak field limit and under the
assumption that ω is sufficiently large, the causal part of the
world sheet does not generate any entanglement entropy to
leading order at late times, and all of it results from the
radiation in the acausal part.
This is not the case in the strong field limit, where the

causal part of the world sheet can be captured by the
Euclidean surface. Indeed, the numerically generated
Euclidean world sheet results in a positive contribution
to the entanglement entropy.
It would be interesting to derive the strong field expression

for the contribution to the entanglement entropy from
radiation. Moreover, in the weak field limit, it would be
illuminating to work out the subleading contributions to the
causal part of the entanglement entropy and see if it yields a
net positive entanglement entropy at intermediate times.

FIG. 6. Net entanglement entropy for pair production in a pulse
as in (36) for T ¼ 0.08, zM ¼ 1 and λ ¼ 12.
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