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We construct a replica technique to perturbatively compute the odd entanglement entropy (OEE) for
bipartite mixed states in TT̄ deformed CFT2s. This framework is then utilized to obtain the leading-order
correction to the OEE for two disjoint intervals, two adjacent intervals, and a single interval in TT̄ deformed
thermal CFT2s in the large central charge limit. The field theory results are subsequently reproduced in the
high-temperature limit from holographic computations for the entanglement wedge cross sections in the
dual bulk finite cutoff Bañados-Teitelboim-Zanelli geometries. We further show that for finite size TT̄
deformed CFT2s at zero temperature the corrections to the OEE are vanishing to the leading order from
both field theory and bulk holographic computations.
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I. INTRODUCTION

Quantum entanglement has emerged as a prominent area
of research to explore a wide range of physical phenomena
spanning several disciplines from quantum many-body
systems in condensed matter physics to issues of quantum
gravity and black holes. The entanglement entropy (EE)
has played a crucial role in this endeavor as a measure for
characterizing the entanglement of bipartite pure quantum
states although it fails to effectively capture mixed-state
entanglement due to spurious correlations. In this context
several mixed-state entanglement and correlation measures
such as the reflected entropy, entanglement of purification,
balanced partial entanglement etc. have been proposed in
quantum information theory.
Interestingly it was possible to compute several of these

measures through certain replica techniques for bipartite
states in two-dimensional conformal field theories (CFT2s).
In this connection the Ryu-Takayanagi (RT) proposal [1,2]
quantitatively characterized the holographic entanglement
entropy (HEE) of a subsystem in CFTs dual to bulk AdS
geometries through the AdS/CFT correspondence. This was
extended by the Hubeny-Rangamani-Takayanagi (HRT)
proposal [3] which provided a covariant generalization of

the RT proposal for time dependent states in CFTs dual to
nonstatic bulk AdS geometries. The RTand HRT proposals
were later proved in [4–7].
Recently another computable measure for mixed state

entanglement known as the odd entanglement entropy
(OEE) was proposed by Tamaoka in [8]. The OEE may
be broadly understood as the von Neumann entropy of the
partially transposed reduced density matrix of a given
subsystem [8].1 The author in [8] utilized a suitable replica
technique to compute the OEE for a bipartite mixed
state configuration of two disjoint intervals in a CFT2.
Interestingly in [8] the author proposed a holographic
duality relating the OEE and the EE to the bulk-entangle-
ment wedge cross section (EWCS) for a given bipartite
state in the AdS3=CFT2 scenario. For recent developments
see [9–18].
On a different note it was demonstrated by

Zamolodchikov [19] that CFT2s which have undergone
an irrelevant deformation by the determinant of the stress
tensor (known as TT̄ deformations) exhibit exactly solv-
able energy spectrum and partition function. These the-
ories display nonlocal UV structure and have an infinite
number of possible RG flows leading to the same fixed
point. A holographic dual for such theories was proposed
in [20] to be a bulk AdS3 geometry with a finite radial
cutoff. This proposal could be substantiated through the
matching of the two-point function, energy spectrum and
the partition function between the bulk and the boundary
(see [21–29] for further developments). The authors in
[30–40] computed the HEE for bipartite pure state
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1This is a loose interpretation as the partially transposed
reduced density matrix does not represent a physical state and
may contain negative eigenvalues [8].
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configurations in various TT̄ deformed dual CFTs.
Subsequently the authors in [41] obtained the reflected
entropy and its holographic dual, the EWCS, for bipartite
mixed states in TT̄ deformed dual CFT2s. Recently the
entanglement negativity for various bipartite mixed states
in TT̄ deformed thermal CFT2s, and the corresponding
holographic dual for bulk finite cutoff Baññados-
Teitelboim-Zanelli (BTZ) black hole geometries were
computed in [42].
Motivated by the developments described above, in this

article we compute the OEE for various bipartite mixed
states in TT̄ deformed dual CFT2s. For this purpose we
construct an appropriate replica technique and a con-
formal perturbation theory along the lines of [32,34,42] to
develop a path integral formulation for the OEE in TT̄
deformed CFT2s with a small deformation parameter. This
perturbative construction is then utilized to compute the
first-order corrections to the OEE for two disjoint inter-
vals, two adjacent intervals, and a single interval in a TT̄
deformed thermal CFT2 with a small deformation param-
eter in the large central charge limit. Subsequently we
explicitly compute the bulk EWCS for the above mixed-
state configurations in the TT̄ deformed thermal dual
CFT2s by employing a construction involving embedding
coordinates as described in [10]. Utilizing the EWCS
obtained we demonstrate that the first-order correction to
field theory replica technique results for the OEE in the
large central charge and the high-temperature limit match
exactly with the first-order correction to the sum of the
EWCS and the HEE verifying the holographic duality
between the above quantities in the context of TT̄
deformed thermal CFT2s. Following this we extend our
perturbative construction to TT̄ deformed finite size
CFT2s at zero temperature and demonstrate that the
leading-order corrections to the OEE are vanishing, which
is substantiated through bulk holographic computations
involving the EWCS.
This article is organized as follows. In Sec. II we briefly

review the basic features of TT̄ deformed CFT2s and the
OEE. In Sec. III we develop a perturbative expansion for
the OEE in a TT̄ deformed CFT2. In Sec. IV this
perturbative construction is then employed to obtain the
leading-order corrections to the OEE for various bipartite
states in a TT̄ deformed thermal CFT2. Following this we
explicitly demonstrate the holographic duality for first-
order corrections between the OEE and the sum of the
bulk EWCS and the HEE for these mixed states.
Subsequently in Sec. V we extend our perturbative
analysis to a TT̄ deformed finite size CFT2 at zero
temperature and show that the leading-order corrections
to the OEE are zero. This is later verified through bulk
holographic computations. Finally, we summarize our
results in Sec. VI and present our conclusions. Some of
the lengthy technical details of our computations have
been described in Appendix.

II. REVIEW OF EARLIER LITERATURE

A. TT̄ deformation in a CFT2

We begin with a brief review of a two-dimensional
conformal field theory deformed by the TT̄ operator
defined as follows [19]:

ðTT̄Þ ¼ 1

8
ðTabTab − ðTa

aÞ2Þ: ð2:1Þ

It is a double-trace composite operator which satisfies the
factorization property [19]. The corresponding deformation
generates a one parameter family of theories described by a
deformation parameter μð≥0Þ as given by the following
flow equation [19,32,34]:

dI ðμÞ
QFT

dμ
¼
Z

d2xðTT̄Þμ; I ðμÞ
QFTjμ¼0 ¼ ICFT; ð2:2Þ

where I ðμÞ
QFT and ICFT represent the actions of the deformed

and undeformed theories respectively. The deformation
parameter μ has dimensions of length squared. Note that the
energy spectrum may be determined exactly for a TT̄
deformed CFT2 [43,44].
When μ is small, the action of the deformed CFT2 may

be perturbatively expanded as [32,34]

I ðμÞ
QFT ¼ ICFT þ μ

Z
d2xðTT̄Þμ¼0

¼ ICFT þ μ

Z
d2xðTT̄ − Θ2Þ; ð2:3Þ

where T ≡ Tww, T̄ ≡ Tw̄ w̄, and Θ≡ Tww̄ describe the
components of the stress tensor of the undeformed theory
expressed in the complex coordinates ðw; w̄Þ. Our inves-
tigation focuses on deformed CFT2s at a finite-temperature,
and finite-size deformed CFT2s at zero temperature, which
are defined on appropriate cylinders. The expectation value
of Θ vanishes on a cylinder and the Θ2 term in Eq. (2.3)
may be dropped from further consideration [32].

B. Odd entanglement entropy

We now focus our attention on a bipartite mixed state
correlation measure termed the OEE, which approximately
characterizes the von Neumann entropy for the partially
transposed reduced density matrix of a given bipartite
system [8]. In this context we begin with a bipartite system
comprising the subsystems A and B, described by the
reduced density matrix ρAB defined on the Hilbert space
HAB ¼ HA ⊗ HB, where HA and HB denote the Hilbert
spaces for the subsystems A and B, respectively. The partial
transpose ρTB

AB for the reduced density matrix ρAB with
respect to the subsystem B is then given by

heðAÞi eðBÞj jρTB
ABjeðAÞk eðBÞl i ¼ heðAÞi eðBÞl jρABjeðAÞk eðBÞj i; ð2:4Þ
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where jeðAÞi i and jeðBÞj i describe orthonormal bases for the
Hilbert spaces HA and HB, respectively. The Rényi odd
entropy of order no between the subsystems A and B may
be defined as [45]

SðnoÞo ðA∶BÞ ¼ 1

1 − no
log ½TrðρTB

ABÞno �; ð2:5Þ

where no is an odd integer. The OEE between the
subsystems A and B may now be defined through the
analytic continuation of the odd integer no → 1 in Eq. (2.5)
as follows [8]:

SoðA∶BÞ ¼ lim
no→1

½SðnoÞo ðA∶BÞ�

¼ lim
no→1

1

1 − no
log ½TrðρTB

ABÞno �: ð2:6Þ

C. Odd entanglement entropy in a CFT2

The subsystems A and B in a CFT2 may be characterized
by the disjoint spatial intervals ½z1; z2� and ½z3; z4� in the
complex plane [with x1 < x2 < x3 < x4; x ¼ ReðzÞ]. In [8]
the author advanced a replica technique to compute the
OEE for bipartite systems in a CFT2. The replica con-
struction involves an no sheeted Riemann surface Mno
(where no ∈ 2Zþ − 1) prepared through the cyclic and
anticyclic sewing of the branch cuts of no copies of the
original manifold M along the subsystems A and B
respectively. Utilizing the replica technique, the trace of
the partial transpose in Eq. (2.5) may be expressed in terms
of the partition function on the no sheeted replica manifold
as follows [46,47]:

TrðρTB
ABÞno ¼

Z½Mno �
ðZ½M�Þno : ð2:7Þ

The relation in Eq. (2.7) may be utilized along with
Eq. (2.6) to express the OEE in terms of the partition
functions as follows:

SoðA∶BÞ ¼ lim
no→1

1

1 − no
log

�
Z½Mno �
ðZ½M�Þno

�
: ð2:8Þ

The partition function in Eq. (2.7) may be expressed in
terms of an appropriate four-point correlation function of
the twist and antitwist operators σno and σ̄no located at the
end points of the subsystems A and B as follows [46,47]:

Z½Mno �
ðZ½M�Þno

¼ hσnoðz1; z̄1Þσ̄noðz2; z̄2Þσ̄noðz3; z̄3Þσnoðz4; z̄4Þi: ð2:9Þ

We are now in a position to express the OEE between the
subsystems A and B in terms of the four-point twist

correlator by combining Eqs. (2.5)–(2.7), and (2.9) as
follows [8,46,47]:

SoðA∶BÞ ¼ lim
no→1

1

1 − no
log½hσnoðz1; z̄1Þσ̄noðz2; z̄2Þ

× σ̄noðz3; z̄3Þσnoðz4; z̄4Þi�: ð2:10Þ

Note that σno and σ̄no represent primary operators in CFT2

with the following conformal dimensions [46–48]:

hno ¼ h̄no ¼
c
24

�
no −

1

no

�
: ð2:11Þ

We also note in passing the conformal dimensions of the
twist operators σ2no and σ̄2no , which are given as follows
[8,46–48]:

hð2Þno ¼ h̄ð2Þno ¼ hno ¼
c
24

�
no −

1

no

�
: ð2:12Þ

D. Holographic odd entanglement entropy

We now follow [8,49] to present a brief review of the
EWCS. Let M be any specific time slice of a bulk static
AdS geometry in the context of AdSdþ1=CFTd framework.
Consider a region A in ∂M. The entanglement wedge of A is
given by the bulk region bounded by A ∪ Γmin

A , where Γmin
A

is the RT surface for A. It has been proposed to be dual to
the reduced density matrix ρA [50–52]. To define the
EWCS, we subdivide A ¼ A1 ∪ A2. A cross section of
the entanglement wedge for A1 ∪ A2, denoted by ΣA1A2

, is
defined such that it divides the wedge into two parts
containing A and B separately. The EWCS between the
subsystems A1 and A2 may then be defined as [53]

EWðA1∶ A2Þ ¼
AreaðΣmin

A1A2
Þ

4GN
; ð2:13Þ

where Σmin
A1A2

represents the minimal cross section of the
entanglement wedge.
In [8] the author proposed a holographic duality describ-

ing the difference of the OEE and the EE in terms of the
bulk EWCS of the bipartite state in question as follows:

SoðA1∶ A2Þ − SðA1 ∪ A2Þ ¼ EWðA1∶A2Þ; ð2:14Þ

where SðA1 ∪ A2Þ is the EE for the subsystem A1 ∪ A2, and
EWðA1∶A2Þ represents the EWCS between the subsystems
A1 and A2, respectively.

III. OEE IN A TT̄ DEFORMED CFT2

In this section we develop an appropriate replica tech-
nique similar to those described in [32,34,42] for the
computation of the OEE for various bipartite mixed-state
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configurations in a TT̄ deformed CFT2. To this end we
consider two spatial intervals A and B in a TT̄ deformed
CFT2 defined on a manifold M. The partition functions
onM andMno for this deformed theory may be expressed
in the path integral representation as follows [refer to
Eq. (2.3)]

Z½M� ¼
Z
M

Dϕe−I
ðμÞ
QFT½ϕ�;

Z½Mno � ¼
Z
Mno

Dϕe−I
ðμÞ
QFT½ϕ�: ð3:1Þ

When the deformation parameter μ is small, Eqs. (2.3),
(2.8), and (3.1) may be utilized to express the OEE as

SðμÞo ðA∶BÞ

¼ lim
no→1

1

1 − no
log

"R
Mno

Dϕe
−ICFT−μ

R
Mno

ðTT̄Þ

ðRMDϕe−ICFT−μ
R
M
ðTT̄ÞÞno

#
; ð3:2Þ

where the superscript μ has been used to specify the OEE in
the deformed CFT2. The exponential factors in Eq. (3.2)
may be further expanded for small μ to arrive at

SðμÞo ðA∶BÞ ¼ lim
no→1

1

1 − no
log
�R

Mno
Dϕe−ICFTð1 − μ

R
Mno

ðTT̄Þ þOðμ2ÞÞ
½RM Dϕe−ICFTð1 − μ

R
MðTT̄Þ þOðμ2ÞÞ�no

�

¼ SðCFTÞo ðA∶BÞ þ lim
no→1

1

1 − no
log

�ð1 − μ
R
Mno

hTT̄iMno
Þ

ð1 − μ
R
MhTT̄iMÞno

�
: ð3:3Þ

The term SðCFTÞo ðA∶BÞ≡ Sðμ¼0Þ
o ðA∶BÞ in Eq. (3.3) represents the corresponding OEE for the undeformed CFT2. The

expectation values of the TT̄ operator on the manifolds M and Mno appearing in Eq. (3.3) are defined as follows:

hTT̄iM ¼
R
MDϕe−ICFTðTT̄ÞR

M Dϕe−ICFT
; hTT̄iMno

¼
R
Mno

Dϕe−ICFTðTT̄ÞR
Mno

Dϕe−ICFT
: ð3:4Þ

The second term on the right-hand side of Eq. (3.3) may be simplified to obtain the first-order correction in μ to the OEE due
to the TT̄ deformation as follows:

δSoðA∶BÞ ¼ −μ lim
no→1

1

1 − no

�Z
Mno

hTT̄iMno
− no

Z
M
hTT̄iM

�
: ð3:5Þ

IV. TT̄ DEFORMED THERMAL CFT2
AND HOLOGRAPHY

A. OEE in a TT̄ deformed thermal CFT2

We now investigate the behavior of the deformed CFT2

at a finite temperature 1=β. The corresponding manifoldM
for this configuration is given by an infinitely long cylinder
of circumference β with the Euclidean time direction
compactified by the periodic identification τ ∼ τ þ β.
This cylindrical manifold M may be described by the
complex coordinates [48]

w ¼ xþ iτ; w̄ ¼ x − iτ; ð4:1Þ

with the spatial coordinate x∈ ð−∞;∞Þ and the time
coordinate τ∈ ð0; βÞ. The cylinder M may be further
expressed in terms of the complex plane C through the
following conformal map [48]

z ¼ e
2πw
β ; z̄ ¼ e

2πw̄
β ; ð4:2Þ

where ðz; z̄Þ represent the coordinates on the complex
plane. The transformation of the stress tensors under the
conformal map described in Eq. (4.2) is given as

TðwÞ ¼
�
2πz
β

�
2

TðzÞ − π2c
6β2

;

T̄ðw̄Þ ¼
�
2πz̄
β

�
2

T̄ðz̄Þ − π2c
6β2

: ð4:3Þ

The relations in Eq. (4.3) may be utilized to arrive at

hTðwÞT̄ðw̄ÞiM ¼
�
π2c
6β2

�
2

; ð4:4Þ

where we have used the fact that hTðzÞiC ¼ hT̄ðz̄ÞiC ¼ 0
for the vacuum state of an undeformed CFT2 described by
the complex plane. In the following subsections, we utilize
Eq. (3.5) to compute the first-order correction in μ to the
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OEE in a finite temperature TT̄ deformed CFT2 for two
disjoint intervals, two adjacent intervals, and a single
interval.

1. Two disjoint intervals

We begin with the bipartite mixed-state configuration of
two disjoint spatial intervals A ¼ ½x1; x2� and B ¼ ½x3; x4�

in a TT̄ deformed CFT2 at a finite temperature 1=β, defined
on the cylindrical manifold M (x1 < x2 < x3 < x4). Note
that the intervals may also be represented as A ¼ ½w1; w2�
and B ¼ ½w3; w4� with τ ¼ 0 [cf. Eq. (4.1)]. The value of
hTT̄iMno

on the replica manifoldMno may be computed by

insertion of the TT̄ operator into the appropriate four-point
twist correlator as follows [54,55]:

Z
Mno

hTT̄iMno
¼
Xno
k¼1

Z
M

hTkðwÞT̄kðw̄Þσnoðw1; w̄1Þσ̄noðw2; w̄2Þσ̄noðw3; w̄3Þσnoðw4; w̄4ÞiM
hσnoðw1; w̄1Þσ̄noðw2; w̄2Þσ̄noðw3; w̄3Þσnoðw4; w̄4ÞiM

¼
Z
M

1

no

hTðnoÞðwÞT̄ðnoÞðw̄Þσnoðw1; w̄1Þσ̄noðw2; w̄2Þσ̄noðw3; w̄3Þσn0ðw4; w̄4ÞiM
hσnoðw1; w̄1Þσ̄noðw2; w̄2Þσ̄noðw3; w̄3Þσnoðw4; w̄4ÞiM

: ð4:5Þ

Here TkðwÞ and T̄kðw̄Þ are the stress tensors of the undeformed CFT2 on the kth sheet of the Riemann surface Mno , while
TðnoÞðwÞ; T̄ðnoÞðw̄Þ represent the stress tensors onMno [54,55]. σnoðwi; w̄iÞ; σ̄noðwi; w̄iÞ represent the twist operators located
at the end points wi of the intervals. An identity described in [34] has been used to derive the last line of Eq. (4.5). The
relation in Eq. (4.3) may now be utilized to transform the stress tensors from the cylindrical manifold to the complex plane.
The followingWard identities are then employed to express the correlation functions involving the stress tensors in terms of
the twist correlators on the complex plane

hTðnoÞðzÞO1ðz1; z̄1Þ…Omðzm; z̄mÞiC ¼
Xm
j¼1

�
hj

ðz − zjÞ2
þ 1

ðz − zjÞ
∂zj

�
hO1ðz1; z̄1Þ…Omðzm; z̄mÞiC;

hT̄ðnoÞðz̄ÞO1ðz1; z̄1Þ…Omðzm; z̄mÞiC ¼
Xm
j¼1

�
h̄j

ðz̄ − z̄jÞ2
þ 1

ðz̄ − z̄jÞ
∂z̄j

�
hO1ðz1; z̄1Þ…Omðzm; z̄mÞiC; ð4:6Þ

where Ois represent arbitrary primary operators with conformal dimensions ðhi; h̄iÞ. Utilizing Eq. (4.3), we may now
express the expectation value in Eq. (4.5) as

Z
Mno

hTT̄iMno
¼ 1

no

Z
M

1

hσnoðz1; z̄1Þσ̄noðz2; z̄2Þσ̄noðz3; z̄3Þσnoðz4; z̄4ÞiC

�
−
π2cno
6β2

þ
�
2πz
β

�
2X4
j¼1

�
hj

ðz− zjÞ2
þ 1

ðz− zjÞ
∂zj

��

×

�
−
π2cno
6β2

þ
�
2πz̄
β

�
2X4
k¼1

�
h̄k

ðz̄− z̄kÞ2
þ 1

ðz̄− z̄kÞ
∂z̄k

��
hσnoðz1; z̄1Þσ̄noðz2; z̄2Þσ̄noðz3; z̄3Þσnoðz4; z̄4ÞiC; ð4:7Þ

where hi ¼ h̄i ¼ hno (i ¼ 1; 2; 3; 4) [see Eq. (2.11)]. The four-point twist correlator in Eq. (4.7) for two disjoint intervals in
proximity described by the t-channel is given by [8,56]

hσnoðz1; z̄1Þσ̄noðz2; z̄2Þσ̄noðz3; z̄3Þσnoðz4; z̄4ÞC ≈ jz14z23j−4hno
�
1þ ffiffiffi

η
p

1 − ffiffiffi
η

p
�

−hð2Þno
�
1þ ffiffiffī

η
p

1 −
ffiffiffī
η

p
�−h̄ð2Þno

: ð4:8Þ

The conformal dimensions hno , h
ð2Þ
no , and h̄

ð2Þ
no in Eq. (4.8) are given in Eqs. (2.11) and (2.12). We have defined the cross ratio

η ≔ z12z34
z13z24

where zij ≡ zi − zj.
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We are now in a position to obtain the first-order correction due to μ in the OEE of two disjoint intervals in a TT̄ deformed
finite temperature CFT2 by substituting Eqs. (4.4), (4.7), and (4.8) into Eq. (3.5) as follows:

δSoðA∶BÞ ¼ − μc2π4
ffiffiffi
η

p
18β4z21z32z41z43

Z
M

z2
�
z32z42½z31ð2z − 3z1 þ z4Þ ffiffiffi

η
p þ z43ðz − z1Þ�

ðz − z1Þ2

þ z31z41½z42ð2z − 3z2 þ z3Þ ffiffiffi
η

p − z43ðz − z2Þ�
ðz − z2Þ2

− z42z41½z31ð2zþ z2 − 3z3Þ ffiffiffi
η

p − z21ðz − z3Þ�
ðz − z3Þ

− z31z32½z42ð2zþ z1 − 3z4Þ ffiffiffi
η

p þ z21ðz − z4Þ�
ðz − z4Þ2

�
þ H:c: ð4:9Þ

The detailed derivation of the definite integrals in Eq. (4.9) has been provided in Appendix A 1. These results may be used
to arrive at

δSoðA∶BÞ ¼
μc2π3

36β2

2
64
n� ffiffiffiffiffiffiffiffiffi

z42z43
z21z31

q
þ 1
�
z1 þ z4

o
z41

log

�
z1
z2

�
þ

� ffiffiffiffiffiffiffiffiffi
z21z43
z31z42

q
− 2
�
ðz1z2 − z3z4Þ

z32z41
log

�
z2
z3

�

þ

n
z1 −

� ffiffiffiffiffiffiffiffiffi
z21z31
z42z43

q
− 1
�
z4
o

z41
log

�
z3
z4

�
þ H:c:

3
75: ð4:10Þ

We may now substitute zi ¼ z̄i ¼ e
2πxi
β (at τi ¼ 0) into Eq. (4.10) to finally obtain the leading-order corrections to the OEE

as follows:

δSoðA∶BÞ ¼ −
μc2π4

9β3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
πx21
β

�
sinh

�
πx43
β

�
sinh

�
πx31
β

�
sinh

�
πx42
β

�
vuuut �

x21 coth

�
πx21
β

�
−x32 coth

�
πx32
β

�
− x41 coth

�
πx41
β

�
þ x43 coth

�
πx43
β

��

−
μc2π4

9β3

�
x32 coth

�
πx32
β

�
þ x41 coth

�
πx41
β

��
; ð4:11Þ

where xij ≡ xi − xj. It is worth noting that the last term
in the above expression is nothing but the leading-
order corrections to the entanglement entropy of the two
disjoint intervals in the t-channel. Remarkably, in the
low-temperature limit β ≫ xij, the corrections to the OEE

scales exactly like that for the entanglement entropy, −2μπ
3c2

9β2

[32]. In particular, in the zero-temperature limit β → ∞, the
corrections vanish conforming to our expectations.

2. Two adjacent intervals

We now turn our attention to the bipartite mixed state
configuration of two adjacent intervals A ¼ ½x1; x2� andB ¼
½x2; x3� in a TT̄ deformed CFT2 at a finite temperature 1=β
(x1 < x2 < x3). As earlier the intervals may be expressed as
A ¼ ½w1; w2� and B ¼ ½w2; w3� with τ ¼ 0. The value of
hTT̄iMno

for two adjacent intervals may be evaluated in a
manner similar to that of two disjoint intervals as follows:

Z
Mno

hTT̄iMno
¼
Z
M

1

no

hTðnoÞðwÞT̄ðnoÞðw̄Þσnoðw1; w̄1Þσ̄2noðw2; w̄2Þσnoðw3; w̄3ÞiM
hσnoðw1; w̄1Þσ̄2noðw2; w̄2Þσnoðw3; w̄3ÞiM

: ð4:12Þ

As before the relations in Eqs. (4.3) and (4.6) may be utilized to express the expectation value in Eq. (4.12) as follows:

Z
Mno

hTT̄iMno
¼ 1

no

Z
M

1

hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσnoðz3; z̄3ÞiC

�
−
π2cno
6β2

þ
�
2πz
β

�
2X3
j¼1

�
hj

ðz − zjÞ2
þ 1

ðz − zjÞ
∂zj

��

×

�
−
π2cno
6β2

þ
�
2πz̄
β

�
2X3
k¼1

�
h̄k

ðz̄ − z̄kÞ2
þ 1

ðz̄ − z̄kÞ
∂z̄k

��
hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσnoðz3; z̄3ÞiC: ð4:13Þ
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In eq. (4.13) we have h1 ¼ h3 ¼ hno ; h2 ¼ hð2Þno with h̄i ¼ hi (i ¼ 1; 2; 3) [see Eq. (2.11)]. The three-point twist correlator in
Eq. (4.13) is given by [57]

hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσnoðz3; z̄3ÞiC ¼
Cσno σ̄2noσno

ðzh
ð2Þ
no

12 z
hð2Þno
23 z

2hno−h
ð2Þ
no

13 Þðz̄h̄
ð2Þ
no

12 z̄
h̄ð2Þno
23 z̄

2h̄no−h̄
ð2Þ
no

13 Þ
; ð4:14Þ

where Cσne σ̄2neσne is the relevant OPE coefficient. The first-order correction due to μ in the OEE of two adjacent intervals in a

TT̄ deformed thermal CFT2 may now be obtained by substituting Eqs. (4.4), (4.13), and(4.14) into Eq. (3.5) as follows:

δSoðA∶BÞ ¼ −
μc2π4

18β4

Z
M

z2
�

1

ðz − z1Þ2
þ 1

ðz − z2Þ2
þ 1

ðz − z3Þ2
þ ð−3zþ z1 þ z2 þ z3Þ
ðz − z1Þðz − z2Þðz − z3Þ

þ H:c:

�
: ð4:15Þ

The technical details of the definite integrals in Eq. (4.15) have been included in Appendix A 2. The correction to the OEE
may then be expressed as

δSoðA∶BÞ ¼ − μc2π3

36β2

�ðz21 − z2z3Þ logðz1z2Þ
z12z13

þ
ðz1z2 − z23Þ logðz2z3Þ

z23z13
þ H:c:

�
: ð4:16Þ

As earlier we may now restore the x coordinates by inserting zi ¼ z̄i ¼ e
2πxi
β (at τi ¼ 0) into Eq. (4.16) to arrive at

δSoðA∶BÞ ¼ −
�
μc2π4

36β3

� x21 coshð2πx21β Þ þ x32 coshð2πx32β Þ − x31 coshð2πx31β Þ
sinhðπx21β Þ sinhðπx32β Þ sinhðπx31β Þ : ð4:17Þ

Once again, we see that the leading-order corrections to the
OEE scales exactly like that of the entanglement entropy in
the low-temperature limit β ≫ xij. It is interesting to note
that we are unable to reproduce the above result by taking an
appropriate adjacent limit of the corrections to the disjoint
intervals given in Eq. (4.11). However, this does not lead to
any contradiction since our field theory results are pertur-
bative and there is no a priori reason to believe that a limiting
analysis holds in each order of conformal perturbation
theory. More evidence towards this mismatch will be
provided from a holographic viewpoint in Sec. IV B 2.

3. A single interval

We finally focus on the case of a single interval A ¼
½−l; 0� in a thermal TT̄ deformed CFT2 (l > 0). To this end

it is required to consider two auxiliary intervals B1 ¼
½−L;−l� and B2 ¼ ½0; L� on either side of the interval A
with B≡ B1 ∪ B2 (L ≫ l) [48]. The intervals may be
equivalently represented by the coordinates B1 ¼ ½x1; x2�,
A ¼ ½x2; x3� and B2 ¼ ½x3; x4�, with x1 ¼ −L; x2 ¼
−l; x3 ¼ 0; x4 ¼ L and x1 < x2 < x3 < x4. As before
the intervals may also be characterized as B1 ¼ ½w1; w2�,
A ¼ ½w2; w3�, and B2 ¼ ½w3; w4� with τ ¼ 0. The OEE for
the mixed-state configuration of the single interval A is then
evaluated by implementing the bipartite limit L → ∞
(B1 ∪ B2 → Ac) subsequent to the replica limit no → 1
[48]. For the configuration described above, the integral of
hTT̄iMno

on the replica manifold is given by

Z
Mno

hTT̄iMno
¼
Z
M

1

no

hTðnoÞðwÞT̄ðnoÞðw̄Þσnoðw1; w̄1Þσ̄2noðw2; w̄2Þσ2noðw3; w̄3Þσ̄noðw4; w̄4Þi
hσnoðw1; w̄1Þσ̄2noðw2; w̄2Þσ2noðw3; w̄3Þσ̄noðw4; w̄4Þi

: ð4:18Þ

As earlier Eq. (4.18) may be simplified by utilizing Eqs. (4.3) and (4.6) as follows:

Z
Mno

hTT̄iMno
¼ 1

no

Z
M

1

hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσ2noðz3; z̄3Þσ̄noðz4; z̄4Þi
�
−
π2cno
6β2

þ
�
2πz
β

�
2X4
j¼1

�
hj

ðz−zjÞ2
þ 1

ðz−zjÞ
∂zj

��

×

�
−
π2cno
6β2

þ
�
2πz̄
β

�
2X4
k¼1

�
h̄k

ðz̄− z̄kÞ2
þ 1

ðz̄− z̄kÞ
∂z̄k

��
hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσ2noðz3; z̄3Þσ̄noðz4; z̄4ÞiC; ð4:19Þ
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where h1 ¼ h4 ¼ hno ; h2 ¼ h3 ¼ hð2Þno with h̄i ¼ hi (i ¼ 1; 2; 3; 4) [see Eqs. (2.11) and (2.12)]. The four-point twist
correlator in Eq. (4.19) is given by [48]

hσnoðz1; z̄1Þσ̄2noðz2; z̄2Þσ2noðz3; z̄3Þσ̄noðz4; z̄4Þ ¼ cnoc
ð2Þ
no

�
F noðηÞ

z
2hno
14 z

2hð2Þno
23 ηh

ð2Þ
no

��
F̄ noðη̄Þ

z̄
2h̄no
14 z̄

2h̄ð2Þno
23 η̄h̄

ð2Þ
no

�
; ð4:20Þ

where cno and c
ð2Þ
no are the normalization constants. The functionsF noðηÞ and F̄ noðη̄Þ in Eq. (4.20) satisfy the following OPE

limits:

F noð1ÞF̄ noð1Þ ¼ 1; F noð0ÞF̄ noð0Þ ¼
Cσno σ̄2no σ̄no

cð2Þno

;

where Cσno σ̄2no σ̄no represents the relevant OPE coefficient. As earlier, Eqs. (4.4), (4.19), and (4.20) may be substituted into
Eq. (3.5) to arrive at

δSoðA∶BÞ ¼ − μc2π4

18β4

Z
M

�X4
j¼1

z2

ðz − zjÞ2
−X4

j¼1

z2

ðz − zjÞ
∂zjðlog½z223z214ηfðηÞ�Þ þ H:c:

�
: ð4:21Þ

The functions fðηÞ and f̄ðη̄Þ introduced in Eq. (4.21) are defined as follows:

lim
no→1

½F noðηÞ�
1

1−no ¼ ½fðηÞ�c=12; lim
no→1

½F̄ noðη̄Þ�
1

1−no ¼ ½f̄ðη̄Þ�c=12:

The first-order correction due to μ in the OEE of a single interval in a TT̄ deformed CFT2 at a finite temperature 1=β may
now be computed from Eq. (4.21) by reverting back to the coordinates involving l; L and implementing the bipartite limit
L → ∞ as follows:

δSoðA∶AcÞ ¼ −
2 μc2π4l

9β3

�
1

e
2πl
β − 1

− e−
2πl
β
f0½e−2πl

β �
2f½e−2πl

β �

�
− lim

L→∞

�
μc2π4L
9β3

coth
�
2πL
β

��
: ð4:22Þ

The technical details of the integrals necessary to arrive
at Eq. (4.22) from Eq. (4.21) have been provided in
Appendix A 3. Note that the second term on the right-
hand side of Eq. (4.22) represents a divergent piece in the
OEE for a single interval. Essentially, the quantity inside
the parenthesis of the second term is the leading-order
correction to the entanglement entropy of the interval
A ∪ B1 ∪ B2. In the bipartite limit L → ∞, this represents
the entanglement entropy of the entire system and hence
should be vanishing. The IR divergence is an artifact of
placing a cutoff in a continuum field theory.2

Interestingly the universal finite piece of the OEE for a
single interval in a TT̄-deformed CFT2 may be rewritten up
to leading order in the deformation as follows:

SoðA∶AcÞ ¼ SA − SThA ; ð4:23Þ

where the thermal entropy SThA is now given by

SThA ¼ πcl
3β

�
1 − μ

π3c
3β2

�
: ð4:24Þ

A comparison of the above expression to the thermal
contribution in the undeformed case, πcl

3β [48], indicates
that the thermal entropy receives nontrivial corrections due
to the TT̄-deformation.

B. Holographic OEE in a TT̄ deformed
thermal CFT2

We now turn our attention to the holographic description
of the OEE as advanced in [8] for various bipartite mixed
states in a TT̄ deformed CFT2 at a finite temperature 1=β.

2Similar divergences are observed in the usual CFT2 in its
vacuum state. The entanglement entropy for a single interval of
length l at zero temperature is given by c

3
logðlϵÞ [54], which

diverges logarithmically as l → ∞.
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The holographic dual of a TT̄ deformed CFT2 is described
by the bulk AdS3 geometry corresponding to the unde-
formed CFT2 with a finite cut-off radius rc given as
follows [20]:

rc ¼
ffiffiffiffiffiffiffiffi
6R4

πcμ

s
¼ R2

ϵ
: ð4:25Þ

In Eq. (4.25) μ is the deformation parameter, c is the
central charge, ϵ is the UV cutoff of the field theory, and
R is the AdS3 radius. For a TT̄ deformed CFT2 at a finite
temperature 1=β, the corresponding bulk dual is character-
ized by aBTZblack hole [58]with a finite cutoff, represented
by [20]

ds2 ¼ −
r2 − r2h
R2

dt2 þ R2

r2 − r2h
dr2 þ r2dx̃2: ð4:26Þ

In the abovemetric, the horizon of the black hole is located at
r ¼ rh, with β ¼ 2πR2

rh
as the inverse temperature of the black

hole and the dual CFT2. For simplicity fromnowonwardswe
set the AdS radius R ¼ 1. The metric on the TT̄ deformed
CFT2, located at the cutoff radius r ¼ rc, is conformal to the
bulk metric at r ¼ rc as follows [32,34]:

ds2¼−dt2þ dx̃2

1− r2h
r2c

≡−dt2þdx2; x¼ rcx̃ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c−r2h

p ; ð4:27Þ

where x represents the spatial coordinate on the deformed
CFT2. To compute theEWCS,we embed theBTZ black hole
described by Eq. (4.26) in R2;2 as follows [10]:

ds2 ¼ ηABdXAdXB

¼ −dX2
0 − dX2

1 þ dX2
2 þ dX2

3; X2 ¼ −1: ð4:28Þ

The metric in Eq. (4.26) may then be described by these
embedding coordinates as follows [59,60]:

X0ðt; r; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

rh2
− 1

s
sinh

�
2πt
β

�
;

X1ðt; r; xÞ ¼
r
rh

cosh

�
2πx̃
β

�
;

X2ðt; r; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

rh2
− 1

s
cosh

�
2πt
β

�
;

X3ðt; r; xÞ ¼
r
rh

sinh

�
2πx̃
β

�
: ð4:29Þ

Note that for convenience the embedding coordinates in
Eq. (4.29) are parametrized in terms of the coordinate x

described in Eq. (4.27). We also introduce a new coordinate
u ¼ 1=r to simplify later calculations, with uc ≡ 1=rc and
uh ≡ 1=rh. We also note the Brown-Henneaux formula
GN ¼ 3=ð2cÞ described in [61], which will be extensively
used in later sections. In the following subsections we apply
the methods described above to compute the holographic
OEE from Eq. (2.14) for two disjoint intervals, two adjacent
intervals, and a single interval in a TT̄ deformed thermal
holographic CFT2.

1. Two disjoint intervals

We begin with the two disjoint spatial intervals
A ¼ ½x1; x2� and B ¼ ½x3; x4� with x1 < x2 < x3 < x4 as
described in section 4. 1. 1. The setup has been shown
in Fig. 1. The EWCS involving the bulk points
Xðs1Þ; Xðs2Þ; Xðs3Þ, and Xðs4Þ is given by [10]

EW ¼ 1

4GN
cosh−1

�
1þ ffiffiffi

u
pffiffiffi
v

p
�
; ð4:30Þ

where

u¼ ξ−112 ξ
−1
34

ξ−113 ξ
−1
24

; v¼ ξ−114 ξ
−1
23

ξ−113 ξ
−1
24

; ξ−1ij ¼−XðsiÞ ·XðsjÞ: ð4:31Þ

The four points on the boundary may be expressed
in the global coordinates as Xð0; rc; xiÞ for i ¼ 1; 2; 3; 4.
The corresponding EWCS may then be computed from
Eq. (4.30) as

Black Hole Interior

Horizon

FIG. 1. EWCS for two disjoint intervals in a TT̄ deformed
CFT2. Figure based on [42].
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EWðA∶BÞ ¼
1

4GN
cosh−1

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x31

u2h

���
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x42

u2h

��
�
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x32

u2h

���
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x41

u2h

��
vuuuuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x21

u2h

���
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x43

u2h

��
�
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x32

u2h

���
u2c − u2h þ u2h cosh

� ffiffiffiffiffiffiffiffiffi
u2h−u

2
c

p
x41

u2h

��
vuuuuut

1
CCCA: ð4:32Þ

To compare with the field theory computations in Sec. IVA 1, we have to take the limit of small deformation parameter μ,
corresponding to large cutoff radius rc (or small uc) [see Eq. (4.25)]. Further we must consider the high-temperature limit
β ≪ jxijj, as the dual cutoff geometry resembles a BTZ black hole only in the high-temperature limit. Expanding Eq. (4.32)
for small uc and β ≪ jxijj we arrive at

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ 2

sinhðx21
2uh

Þ sinhðx43
2uh

Þ
sinhðx32

2uh
Þ sinhðx41

2uh
Þ
�

−
u2c

16GNu3h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðx21

2uh
Þ sinhðx43

2uh
Þ

sinhðx31
2uh

Þ sinhðx42
2uh

Þ

s �
x21 coth

�
x21
2uh

�
þ x43 coth

�
x43
2uh

�
−x32 coth

�
x32
2uh

�
− x41 coth

�
x41
2uh

��

−
u2c

32GNu2h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðx31

2uh
Þ sinhðx42

2uh
Þ

sinhðx21
2uh

Þ sinhðx43
2uh

Þ

s �
csch2

�
x31
2uh

�
þ csch2

�
x42
2uh

�
− csch2

�
x32
2uh

�
− csch2

�
x41
2uh

��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðx21

2uh
Þ sinhðx43

2uh
Þ

sinhðx31
2uh

Þ sinhðx42
2uh

Þ

s �
csch2

�
x21
2uh

�
þ csch2

�
x43
2uh

�
− csch2

�
x32
2uh

�
− csch2

�
x41
2uh

���
: ð4:33Þ

The first term in Eq. (4.33) is the EWCS between the two
disjoint intervals for the corresponding undeformed CFT2.
The rest of the terms (proportional to u2c and thus to μ)
describes the leading-order corrections to the EWCS due to
the TT̄ deformation. The third term becomes negligible
(compared to the second term) in the high-temperature
limit. The change in HEE for two disjoint intervals in
proximity due to the TT̄ deformation is given by [34]

δSðA∪BÞ

¼−
μc2π4

9β3

�
x32 coth

�
πx32
β

�
þx41 coth

�
πx41
β

��
: ð4:34Þ

The change in holographic OEE for two disjoint intervals
due to the TT̄ deformation may now be computed by
combining Eqs. (4.33) and (4.34) through Eq. (2.14).
Interestingly our holographic result matches exactly with
our earlier field theory computation in Eq. (4.11), in the
large central-charge limit together with small deformation
parameter and high-temperature limits, which serves as a
strong consistency check for our holographic construction.

2. Two adjacent intervals

We now consider two adjacent intervals A ¼ ½x1; x2� and
B ¼ ½x2; x3� with x1 < x2 < x3 as described in Sec. 4. 1. 2.
The configuration has been depicted in Fig. 2. The EWCS

Black Hole Interior

Horizon

FIG. 2. EWCS for two adjacent intervals in a TT̄ deformed
CFT2. Figure based on [42].
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for the corresponding bulk points Xðs1Þ; Xðs2Þ; Xðs3Þ is
given by [10]

EW ¼ 1

4GN
cosh−1

� ffiffiffi
2

pffiffiffi
v

p
�
; ð4:35Þ

where

v ¼ ξ−113
ξ−112 ξ

−1
23

; ξ−1ij ¼ −XðsiÞ · XðsjÞ: ð4:36Þ

As earlier the three points on the boundary may be
expressed in the global coordinates as Xð0; rc; xiÞ for
i ¼ 1; 2; 3. The corresponding EWCS may then be com-
puted from Eq. (4.35) as

EWðA∶BÞ ¼
1

4GN
log

�
4uh sinhðx212uh

Þ sinhðx32
2uh

Þ
uc sinhðx312uh

Þ
�
−

u2c
16GNu3h

�
x21 coth

�
x21
2uh

�
− x31 coth

�
x31
2uh

�
þ x32 coth

�
x32
2uh

��

þ u2c
16GNu2h

�
csch2

�
x21
2uh

�
− csch2

�
x31
2uh

�
þ csch2

�
x32
2uh

��
: ð4:37Þ

Similar to the disjoint configuration, the first term in
Eq. (4.37) is the EWCS between the two adjacent intervals
for the corresponding undeformed CFT2. The rest of the
terms (proportional to u2c and thus to μ) describe the
leading-order corrections for the EWCS due to the TT̄
deformation. The third term becomes negligible (compared
to the second term) in the high-temperature limit. The
change in HEE for two adjacent intervals due to the TT̄
deformation is given by [34]

δSðA ∪ BÞ ¼ −
�
μc2π4

9β3

�
x31 coth

�
πx31
β

�
: ð4:38Þ

The change in holographic OEE for two adjacent intervals
due to the TT̄ deformation may now be obtained from
Eqs. (2.14), (4.37), and (4.38), and is described by
Eq. (4.17), where as earlier we have used the holographic
dictionary. Once again we find exact agreement between
our holographic and field theory results (in the large
central-charge limit, along with small deformation param-
eter and high-temperature limits), which substantiates our
holographic construction.
Note that a limiting analysis of the EWCS for two

disjoint intervals for the undeformed CFT2 does not lead to
the corresponding adjacent result given by the first term in
Eq. (4.37). This mismatch is not surprising since for the
case of disjoint intervals the EWCS is given by a minimal
curve between two bulk geodesics whereas for adjacent
intervals it is a minimal curve between a bulk geodesic and
a boundary point. In this connection, we should not expect
the corrections due to the TT̄ deformations to have a well-
defined adjacent limit as well.

3. A single interval

Finally we consider the case of a single interval
A ¼ ½−l; 0� in a thermal TT̄ deformed holographic CFT2

(l > 0). As described in Sec. IVA 3 this necessitates
the introduction of two large but finite auxiliary intervals
B1 ¼ ½−L;−l� and B2 ¼ ½0; L� sandwiching the interval A
with B≡ B1 ∪ B2 (L ≫ l) [48]. The situation has been
outlined in Fig. 3.
We then compute the holographic OEE for this modified

configuration, and finally take the bipartite limit B → Ac

(implemented through L → ∞) to obtain the desired OEE
for the original configuration of the single interval A. The
EWCS between the intervals A and B ¼ B1 ∪ B2 may be
computed from the following relation [62–64]

ẼWðA∶BÞ ¼ EWðA∶B1Þ þ EWðA∶B2Þ; ð4:39Þ

where ẼWðA∶BÞ denotes an upper bound on the
EWCS between the intervals A and B. All subsequent

Black Hole Interior

Horizon

FIG. 3. EWCS for a single interval in a TT̄ deformed CFT2.
Figure based on [42].
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computations involving Eq. (4.39) should be interpreted
accordingly. Note that each term on the right-hand side of
Eq. (4.39) represents the EWCS of two adjacent inter-
vals which has already been computed in Sec. IV B 2.
The corrections to these terms may thus be read off from
Eq. (4.37) as follows:

δEWðA∶B1Þ ¼ −
u2c

16GNu3h

�
l coth

�
l
2uh

�

þ ðL − lÞ coth
�
L − l
2uh

�

− L coth

�
L
2uh

��
; ð4:40Þ

and

δEWðA∶B2Þ ¼ −
u2c

16GNu3h

�
l coth

�
l
2uh

�
þ L coth

�
L
2uh

�

− ðLþ lÞ coth
�
Lþ l
2uh

��
; ð4:41Þ

where we have already taken the limits of small deforma-
tion parameter and high temperature. The correction to the
HEE for a single interval is given as follows [34]:

δSðA ∪ AcÞ ¼ −
�
2 μc2π4L

9β3

�
coth

�
2πL
β

�
; ð4:42Þ

where the bipartite limit has already been implemented.
The correction to holographic OEE for a single interval
due to the TT̄ deformation may then be computed from
Eqs. (4.39)–(4.42) through Eq. (2.14) on effecting the
bipartite limit L → ∞ as follows:

δSoðA∶AcÞ ¼ −
μc2π4l
9β3

�
coth

�
πl
β

�
− 1

�

− lim
L→∞

�
μc2π4L
9β3

coth

�
2πL
β

��
; ð4:43Þ

where we have utilized the holographic dictionary as
earlier. Note that on taking the high-temperature limit
(β → 0), Eq. (4.22) reduces (the second part of the first

term becomes negligible as e−
2πl
β → 0) exactly to Eq. (4.43).

This once again serves as a robust consistency check for our
holographic construction.

We may understand the corrections to the thermal
entropy described in Eq. (4.24) from a holographic view-
point as well. Recall that the holographic entanglement
entropy receives the thermal contribution as the corre-
sponding RT surface wraps the black hole horizon [3].
Under the TT̄ deformation, the holographic screen is
pushed inside the bulk and the wrapping of the correspond-
ing minimal surface around the black hole horizon is now
smaller compared to the undeformed case. As a result, the
contribution to the thermal entropy decreases compared to
the undeformed case.

V. TT̄ DEFORMED FINITE SIZE CFT2
AND HOLOGRAPHY

A. OEE in a TT̄ deformed finite size CFT2

In this section we follow a similar prescription as in
Sec. IVA to formulate a perturbative expansion for the
OEE in a TT̄ deformed finite-size CFT2 of length L at zero
temperature. For this setup, the corresponding manifold
M describes an infinitely long cylinder of circumference
L with the length direction periodically compactified by
the relation x ∼ xþ L [47]. The cylindrical manifold M
for this configuration may be represented by the complex
coordinates described in Eq, (4.1) with the spatial coor-
dinate x∈ ð0; LÞ and the time coordinate τ∈ ð−∞;∞Þ
[47]. The cylinder M may be further described on
the complex plane C through the following conformal
map [47]

z ¼ e−
2πiw
L ; z̄ ¼ e

2πiw̄
L ; ð5:1Þ

where ðz; z̄Þ are the coordinates on the complex plane. The
relations in Eqs. (4.3) and (4.4) remain valid with β
effectively replaced by iL. With these modifications, the
expressions in Eqs. (3.1)–(3.3), and (3.5) may now be
applied to compute the OEE in a TT̄ deformed finite size
CFT2 at zero temperature.

1. Two disjoint intervals

As earlier we start with the mixed state of two disjoint
spatial intervals A ¼ ½x1; x2� and B ¼ ½x3; x4� in a TT̄
deformed finite size CFT2 of length L at zero temperature,
defined on the cylindrical manifold M described above
(x1 < x2 < x3 < x4). The first-order correction in the OEE
of two disjoint intervals in a TT̄ deformed finite size CFT2

may be obtained by substituting Eqs. (4.5)–(4.8) along with
Eq. (5.1) (β replaced by iL) into Eq. (3.5) as follows:
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δSoðA∶BÞ ¼
−μc2π4

18L4ðz1 − z3Þ2ðz2 − z4Þ2ðη − 1Þ ffiffiffi
η

p

×
Z
M

z2
�ðz2 − z3Þðz2 − z4Þððz − z1Þðz3 − z4Þ þ ðz1 − z3Þð2z − 3z1 þ z4Þ ffiffiffi

η
p Þ

ðz − z1Þ2

þ ðz1 − z3Þðz1 − z4Þð−ððz − z2Þðz3 − z4ÞÞ þ ð2z − 3z2 þ z3Þðz2 − z4Þ ffiffiffi
η

p Þ
ðz − z2Þ2

−
ðz1 − z4Þðz2 − z4Þððz1 − z2Þð−zþ z3Þ þ ð2zþ z2 − 3z3Þðz1 − z3Þ ffiffiffi

η
p Þ

ðz − z3Þ2

þ ðz1 − z3Þðz3 − z2Þððz1 − z2Þðz − z4Þ þ ð2zþ z1 − 3z4Þðz2 − z4Þ ffiffiffi
η

p Þ
ðz − z4Þ2

�
: ð5:2Þ

We now substitute z → e−
2πiðxþiτÞ

L into eq. (5.2) and integrate the resulting expression with respect to x to arrive at

δSoðA∶BÞ ¼
iμc2π3

36L3 ffiffiffi
η

p
Z

dτ

�
z1

ffiffiffi
η

p

e
2πð−ixþτÞ

L − z1
þ z2

ffiffiffi
η

p

e
2πð−ixþτÞ

L − z2
þ z3

ffiffiffi
η

p

e
2πð−ixþτÞ

L − z3
þ z4

ffiffiffi
η

p

e
2πð−ixþτÞ

L − z4

þ ðz1ðz3 − z4Þ þ ðz1 − z3Þðz1 þ z4Þ ffiffiffi
η

p Þ log½e2πð−ixþτÞ
L − z1�

ðz1 − z3Þðz1 − z4Þ

þ ðz2ðz4 − z3Þ þ ðz2 þ z3Þðz2 − z4Þ ffiffiffi
η

p Þ log½e2πð−ixþτÞ
L − z2�

ðz2 − z3Þðz2 − z4Þ

þ ððz2 − z1Þz3 þ ðz1 − z3Þðz2 þ z3Þ ffiffiffi
η

p Þ log½e2πð−ixþτÞ
L − z3�

ðz1 − z3Þðz3 − z2Þ

þ ððz2 − z1Þz4 þ ðz1 þ z4Þðz4 − z2Þ ffiffiffi
η

p Þ log½e2πð−ixþτÞ
L − z4�

ðz1 − z4Þðz4 − z2Þ
�
: ð5:3Þ

We observe that the first four terms on the right hand side of
Eq. (5.3) readily vanish on inserting the limits of integration
x ¼ 0 and x ¼ L. Since we have considered the system on a
constant time slice, we may take τj (j ¼ 1; 2; 3; 4) to be
zero for all boundary points, and the contributions of the
logarithmic functions become zero identically. Thus it is
observed that the resultant integrand for the τ integration in
Eq. (5.3) vanishes leading to no nontrivial first-order
correction to the OEE. This is in conformity with the
vanishing entanglement entropy for a finite sized TT̄
deformed CFT2 [32].

2. Two adjacent intervals

We now focus on the bipartite mixed state of two
adjacent intervals A ¼ ½x1; x2� and B ¼ ½x2; x3� in a TT̄
deformed finite size CFT2 of length L at zero temperature,
defined on the cylindrical manifold M described by
Eqs. (4.1) and (5.1) (x1 < x2 < x3). For this case,
Eqs. (3.5), (4.12), (4.13), and (4.14) may still be
employed along with the relation described in
Eq. (5.1), effectively replacing β by iL. The first-order
correction in OEE due to μ for two adjacent intervals is
then given by

δSoðA∶BÞ ¼ −
μc2π4

18L4

Z
M

z2

ðz− z1Þ2ðz− z2Þ2ðz− z3Þ2

×
h
z22z

2
3 − z1z2z3ðz2 þ z3Þ þ z21ðz22 − z2z3 þ z23Þ

þ z2ðz21 þ z22 − z2z3 þ z23 − z1ðz2 þ z3ÞÞ
− zðz21ðz2 þ z3Þ þ z2z3ðz2 þ z3Þ
þ z1ðz22 − 6z2z3 þ z23ÞÞ

i
: ð5:4Þ

Next we replace z → e−
2πiðxþiτÞ

L into Eq. (5.4) and sub-
sequently integrate with respect to x to obtain

δSoðA∶BÞ ¼
iμc2π3

36L3

Z
dτ

�
z1

e
2πð−ixþτÞ

L − z1
þ z2

e
2πð−ixþτÞ

L − z2

þ z3

e
2πð−ixþτÞ

L − z3
þ ðz21 − z2z3Þ log½e

2πð−ixþτÞ
L − z1�

ðz1 − z2Þðz1 − z3Þ

þ ðz22 − z1z3Þ log½e
2πð−ixþτÞ

L − z2�
ðz2 − z1Þðz2 − z3Þ

þ ðz23 − z2z1Þ log½e
2πð−ixþτÞ

L − z3�
ðz1 − z3Þðz2 − z3Þ

�
: ð5:5Þ
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Similar to the disjoint case, the first three terms on the right
hand side of Eq. (5.5) readily vanish when the limits of
integration x ¼ 0 and x ¼ L are inserted. As earlier, for a
constant time slice τj ¼ 0 (j ¼ 1; 2; 3), the logarithmic
functions also contribute nothing to the definite integral.
The resulting integrand for the τ integration in Eq. (5.5) thus
vanishes. Hence, the corresponding first-order correction in
the OEE of two adjacent intervals turns out to be zero.

3. A single interval

Finally we turn our attention to the bipartite mixed state
configuration of a single interval A ¼ ½x1; x2� in a TT̄

deformed finite size CFT2 of length L at zero temperature,
defined on the cylindrical manifold M given in Eqs. (4.1)
and (5.1) (x1 < x2). The construction of the relevant
partially transposed reduced density matrix for this con-
figuration is described in [47]. Once again we may utilize
Eqs. (4.18) and (4.19) with only two points z1 and z2,
subject to Eq. (5.1) (with the effect of iL replacing β), and a
two-point twist correlator as mentioned below in Eq. (5.7).
We have expressed the modified version of Eq. (4.19) as
applicable for the system under consideration for conven-
ience of the reader as follows:

Z
Mno

hTT̄iMno
¼ 1

no

Z
M

1

hσ2noðz1; z̄1Þσ̄2noðz2; z̄2Þi
�
π2cno
6L2

−
�
2πz
L

�
2X2
j¼1

�
hj

ðz − zjÞ2
þ 1

ðz − zjÞ
∂zj

��

×

�
π2cno
6L2

−
�
2πz̄
L

�
2X2
k¼1

�
h̄k

ðz̄ − z̄kÞ2
þ 1

ðz̄ − z̄kÞ
∂z̄k

��
hσ2noðz1; z̄1Þσ̄2noðz2; z̄2ÞiC; ð5:6Þ

where h1 ¼ h2 ¼ hð2Þno with h̄i ¼ hi (i ¼ 1; 2) [see
Eqs. (2.11) and (2.12)]. The corresponding two-point twist
correlator for this configuration is given by [47]

hσ2noðz1; z̄1Þσ̄2noðz2; z̄2Þi ¼
C12

jz1 − z2j2hno
; ð5:7Þ

where C12 is the relevant normalization constant. Following
a similar procedure like the earlier cases, the first-order

correction for the OEE of this setup may be given as
follows:

δSoðA∶BÞ¼−
μc2π4

18L4
ðz1−z2Þ2

Z
M

z2

ðz−z1Þ2ðz−z2Þ2
: ð5:8Þ

We then obtain the following expression by substituting

z → e−
2πiðxþiτÞ

L into Eq. (5.8) and integrating with respect to x

δSoðA∶BÞ¼
iμc2π3

36L3

Z
dτ

�
z1

e
2πð−ixþτÞ

L −z1
þ z2

e
2πð−ixþτÞ

L −z2
þz1þz2
z1−z2

�
log½e2πð−ixþτÞ

L −z1�− log½e2πð−ixþτÞ
L −z2�

��
: ð5:9Þ

Like the previous cases, we observe that the first two terms
in eq. (5.9) vanish on implementation of the limits of
integration x ¼ 0 and x ¼ L. As the system under consid-
eration is on a constant time slice τj ¼ 0 (j ¼ 1; 2), once
again the terms containing the logarithmic functions also
vanish. Again the resulting integrand for the τ integration in
eq. (5.9) vanishes, indicating the vanishing of the first-order
corrections of the OEE as earlier.

B. Holographic OEE in a TT̄ deformed finite size CFT2

The bulk dual of a TT̄ deformed finite size CFT2 of
length L at zero temperature is represented by a finite
cutoff AdS3 geometry expressed in global coordinates as
follows [1,2]:

ds2 ¼ R2ð− cosh2 ρdτ2 þ sinh2 ρdϕ2 þ dρ2Þ; ð5:10Þ

where ϕ ¼ 2πx=L. As earlier we embed this AdS3 geom-
etry in R2;2 as follows [10]:

ds2 ¼ ηABdXAdXB

¼ −dX2
0 − dX2

1 þ dX2
2 þ dX2

3; X2 ¼ −1: ð5:11Þ

The metric in Eq. (5.10) may be expressed in terms
of the embedding coordinates introduced in Eq. (5.11)
as follows:

X0ðτ;ϕ; ρÞ ¼ R cosh ρ sin τ;

X1ðτ;ϕ; ρÞ ¼ R cosh ρ cos τ;

X2ðτ;ϕ; ρÞ ¼ R sinh ρ cosϕ;

X3ðτ;ϕ; ρÞ ¼ R sinh ρ sinϕ: ð5:12Þ
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The finite cutoff of the AdS3 geometry is located at ρ ¼ ρc,
where

cosh ρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3L2

2 μcπ3

s
: ð5:13Þ

With the UV cutoff of the field theory given by ϵ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
μcπ=6

p
[see Eq. (4.25)], the relation in Eq. (5.13) may be

rewritten as

cosh ρc ¼
L
2πϵ

: ð5:14Þ

1. Two disjoint intervals

We begin with two disjoint spatial intervals A ¼ ½x1; x2�
and B ¼ ½x3; x4� on a cylindrical manifold M as detailed
in Sec. VA 1 (x1 < x2 < x3 < x4). Note that the EWCS

involving arbitrary bulk points Xðs1Þ; Xðs2Þ; Xðs3Þ; Xðs4Þ
for a TT̄ deformed finite size CFT2 is described by [10]

EW ¼ 1

4GN
cosh−1

�
1þ ffiffiffi

u
pffiffiffi
v

p
�
; ð5:15Þ

where

u¼ ξ−112 ξ
−1
34

ξ−113 ξ
−1
24

; v¼ ξ−114 ξ
−1
23

ξ−113 ξ
−1
24

; ξ−1ij ¼−XðsiÞ ·XðsjÞ: ð5:16Þ

The end points of the two disjoint intervals under consid-
eration on the boundary may be represented by the
embedding coordinates as Xð0;ϕi; ρcÞ for i ¼ 1; 2; 3; 4,
where ϕ1 < ϕ2 < ϕ3 < ϕ4 (Note that ϕi ¼ 2πxi=L). The
corresponding EWCS may then be computed from
Eq. (5.15) as

EWðA∶BÞ ¼
1

4GN
cosh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ sin2ðπx31L Þsinh2ρc�½1þ sin2ðπx42L Þsinh2ρc�
½1þ sin2ðπx32L Þsinh2ρc�½1þ sin2ðπx41L Þsinh2ρc�

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ sin2ðπx21L Þsinh2ρc�½1þ sin2ðπx43L Þsinh2ρc�
½1þ sin2ðπx32L Þsinh2ρc�½1þ sin2ðπx41L Þsinh2ρc�

s !
: ð5:17Þ

To extract the desired first-order corrections, we now
expand Eq. (5.17) in small ð1= cosh ρcÞ as follows:

EWðA∶BÞ ¼
1

4GN
cosh−1

�
1þ 2

sinðπx21L Þ sinðπx43L Þ
sinðπx32L Þ sinðπx41L Þ

�

þO½ϵ2�; ð5:18Þ

where we have utilized Eq. (5.14) to substitute ϵ. The first
term in Eq. (5.18) is the EWCS between the two disjoint
intervals for the corresponding undeformed CFT2. The rest
of the terms characterizing the corrections for the EWCS
due to the TT̄ deformation are second order and higher in ϵ
and thus negligible. The corresponding leading-order
corrections for the HEE due to the TT̄ deformation has
been shown to be zero [32]. Thus the leading-order
corrections to the holographic OEE of two disjoint intervals
in a TT̄ deformed finite size CFT2 is zero, which is in
complete agreement with our corresponding field theory
computations in the large central charge limit described in
Sec. VA 1.
The vanishing of the EWCS as well as the entanglement

entropy may be attributed to the fact that in TT̄ deformed
finite sized CFT2s, the lengths of the intervals do not

depend on the cutoff radius in Eq. (5.13). In contrast, for
thermal CFT2s the lengths of the intervals depend non-
trivially [cf. Eq. (4.27)] on the cutoff radius rc as long as
rh ≠ 0 (or, 1=β ≠ 0) [32]. We will discuss this issue further
in Sec. VI.

2. Two adjacent intervals

We now turn our attention to the case of two adjacent
intervals A ¼ ½x1; x2� and B ¼ ½x2; x3� (x1 < x2 < x3) as
described in Sec. VA 2. The bulk description of the end
points of the intervals A and B for a TT̄ deformed finite-size
CFT2 is given by Xð0;ϕi; ρcÞ for i ¼ 1; 2; 3, where ϕ1 <
ϕ2 < ϕ3 (ϕi ¼ 2πxi=L). The EWCS for this configuration
is described as follows [10]:

EW ¼ 1

4GN
cosh−1

� ffiffiffi
2

pffiffiffi
v

p
�
; ð5:19Þ

where

v ¼ ξ−113
ξ−112 ξ

−1
23

; ξ−1ij ¼ −XðsiÞ · XðsjÞ: ð5:20Þ
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We now utilize Eq. (5.19) to explicitly compute the EWCS as follows:

EWðA∶BÞ ¼
1

4GN
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½cosh2ðρcÞ − cosð2πx21L Þsinh2ðρcÞ�½cosh2ðρcÞ − cosð2πx32L Þsinh2ðρcÞ�

cosh2ðρcÞ − cosð2πx31L Þsinh2ðρcÞ

s �
: ð5:21Þ

We are now in a position to extract the leading-order
corrections to the EWCS from Eq. (5.21) by expanding in
small ð1= cosh ρcÞ as follows:

EWðA∶BÞ ¼
1

4GN
log

��
2L
πϵ

�
sinðπx21L Þ sinðπx32L Þ

sinðπx31L Þ
�

þO½ϵ2�; ð5:22Þ

where we have already substituted the relation in
Eq. (5.14). As earlier the first term on the right-hand side
of Eq. (5.22) describes the EWCS between the two adjacent
intervals for the corresponding undeformed CFT2. Again
the TT̄ correction terms are second order and higher in ϵ
and negligible. The leading-order corrections of the HEE
for this configuration due to the TT̄ deformation has been
demonstrated to be vanishing [32]. Hence, the leading-
order corrections to the holographic OEE for this case
vanishes, which once again is in conformity with our field
theory results in the large central-charge limit described in
Sec. VA 2.

3. A single interval

The bulk representation of the end points of a single
interval of length l may be given by Xð0; 0; ρcÞ and
Xð0; δϕ; ρcÞ, where δϕ ¼ 2πl

L . The EWCS for the given
configuration (same as the HEE for a single interval) may
be computed as

EWðA∶AcÞ

¼ 1

4GN
cosh−1

�
1þ 2sinh2ðρcÞsin2

�
πl
L

��
: ð5:23Þ

Once again Eq. (5.23) may be expanded for small
ð1= cosh ρcÞ to obtain the following expression for the
EWCS:

EWðA∶AcÞ ¼ 1

2GN
log

�
L
πϵ

sin

�
πl
L

��
þO½ϵ2�; ð5:24Þ

where we have used Eq. (5.14) to replace cosh ρc. Once
again the first term of Eq. (5.24) represents the EWCS of a
single interval for the corresponding undeformed CFT2,
while we have neglected the second- and higher-order
correction terms in ϵ. The corresponding corrections for the
HEE of a single interval has been shown to be zero [32].

Thus the leading-order corrections to the holographic OEE
for a single interval vanishes, demonstrating agreement
with our field theory calculations in the large central charge
limit detailed in Sec. VA 3.

VI. SUMMARY AND DISCUSSIONS

To summarize we have computed the OEE for different
bipartitemixed-state configurations in a TT̄ deformed finite-
temperature CFT2 with a small deformation parameter μ. In
this context we have developed a perturbative construction
to compute the first-order correction to the OEE for small
deformation parameter through a suitable replica technique.
This incorporates definite integrals of the expectation value
of the TT̄ operator over an no sheeted replica manifold. We
have been able to express these expectation values in terms
of appropriate twist-field correlators for the configurations
under consideration. Utilizing our perturbative construction
we have subsequently computed the OEE for the mixed-
state configurations described by two disjoint intervals, two
adjacent intervals, and a single interval in a TT̄ deformed
thermal CFT2.
Following the above we have computed the correspond-

ing EWCS in the dual bulk finite cutoff BTZ black hole
geometry for the above configurations utilizing an embed-
ding coordinate technique in the literature. Interestingly it
was possible to demonstrate that the first-order correction
to the sum of the EWCS and the corresponding HEE
matched exactly with the first-order correction to the CFT2

replica technique results for the OEE in the large central-
charge and high-temperature limit. This extends the holo-
graphic duality for the OEE proposed in the literature to TT̄
deformed thermal CFT2s.
Finally we have extended our perturbative construction to

TT̄ deformed finite size CFT2s at zero temperature.We have
computed the first-order corrections to the OEE for the
configurations mentioned earlier in such CFT2s in the large
central-charge limit. In all the cases we have been able to
show that the leading-order corrections vanish in the
appropriate limits. Quite interestingly it was possible to
demonstrate that the first-order corrections to the corre-
sponding bulk EWCS in the dual cutoff BTZ geometry were
also identically zero in a further validation of the extension
of the holographic duality for the OEE in the literature to TT̄
deformed finite size CFT2s at zero temperature.
There are several recurring features of our results. Note

that when the intervals are located along a compactified

BASU, BISWAS, DEY, PAUL, and SENGUPTA PHYS. REV. D 108, 126013 (2023)

126013-16



direction, there are no TT̄ corrections as the angular
separations of the subsystems are not affected by pushing
the holographic screen inside the bulk [65], as depicted in
Fig. 4. On the other hand, when this direction is non-
compact, the spatial extents of the subsystems become
dependent on the finite cutoff radius as depicted in Figs. 2,
1, and 3, and hence there will be appropriate TT̄ corrections
[65]. For thermal CFT2s, the time direction is compactified,
but the intervals are spatial and hence situated along the
spatial direction. Thus for thermal CFT2s our results

indicated corrections due to the TT̄ deformations. For
finite-size CFT2s, the space direction is compactified,
and the corresponding corrections vanish.
It will be instructive to develop similar constructions for

other entanglement measures such as entanglement of puri-
fication, balanced partial entanglement, reflected entropy etc.
for TT̄ deformed CFT2s. Also a covariant framework for
holographic entanglement in these theories along the lines of
the HRT construction is an important open issue.
Furthermore, it will be interesting to extend our analysis to
TT̄ deformations of thermal CFT2 with conserved charges.
These constitute exciting open problems for the future.
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APPENDIX: THE INTEGRALS
FOR THERMAL CFT2s

The detailed derivation of the integrals appearing in
Eqs. (4.9), (4.15), and (4.21) has been provided in this
appendix. Note that the corresponding domain of integra-
tion for all the configurations is the cylindrical manifoldM
characterized by the complex coordinates ðw; w̄Þ [see
Eqs. (4.1) and (4.2)].

1. Two disjoint intervals

The holomorphic part of the integral in Eq. (4.9) may be written as

−
μc2π4

ffiffiffi
η

p
18β4z21z32z41z43

Z
M

d2wðz2Þ
�
z32z42½z31ð2z− 3z1 þ z4Þ ffiffiffi

η
p þ z43ðz− z1Þ�

ðz− z1Þ2
þ z31z41½z42ð2z− 3z2 þ z3Þ ffiffiffi

η
p − z43ðz− z2Þ�

ðz− z2Þ2

−
z42z41½z31ð2zþ z2 − 3z3Þ ffiffiffi

η
p − z21ðz− z3Þ�

ðz− z3Þ2
−
z31z32½z42ð2zþ z1 − 3z4Þ ffiffiffi

η
p þ z21ðz− z4Þ�

ðz− z4Þ2
�

ðA1Þ

¼ −
μc2π4

ffiffiffi
η

p
18β4z21z32z41z43

Z
∞

0

dx
Z

β

0

dτe
4πðxþiτÞ

β

�
z32z42½z31ð2e

2πðxþiτÞ
β − 3z1 þ z4Þ ffiffiffi

η
p þ z43ðe

2πðxþiτÞ
β − z1Þ�

ðe2πðxþiτÞ
β − z1Þ2

þ z31z41½z42ð2e
2πðxþiτÞ

β − 3z2 þ z3Þ ffiffiffi
η

p − z43ðe
2πðxþiτÞ

β − z2Þ�
ðe2πðxþiτÞ

β − z2Þ2
−
z42z41½z31ð2e

2πðxþiτÞ
β þ z2 − 3z3Þ ffiffiffi

η
p − z21ðe

2πðxþiτÞ
β − z3Þ�

ðe2πðxþiτÞ
β − z3Þ2

−
z31z32½z42ð2e

2πðxþiτÞ
β þ z1 − 3z4Þ ffiffiffi

η
p þ z21ðe

2πðxþiτÞ
β − z4Þ�
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β − z4Þ2

�
: ðA2Þ

FIG. 4. Schematics of two disjoint intervals placed along the
compactified direction in a holographic TT̄ deformed CFT2. The
undashed (dashed) circle denotes the location of the holographic
screens before (after) the TT̄ deformation.
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The primitive function on indefinite integration with respect to τ turns out to be

−
iμc2π3

36β3
ffiffiffi
η

p
�ð ffiffiffi

η
p

z21 þ ð ffiffiffi
η

p − 1Þz1ðz43Þ − ffiffiffi
η

p
z3z4Þ log ð−z1 þ e

2πðxþiτÞ
β Þ

z31z41

þ ð ffiffiffi
η

p
z22 þ ð ffiffiffi

η
p − 1Þz2z34 − ffiffiffi

η
p

z3z4Þ log ð−z2 þ e
2πðxþiτÞ

β Þ
z32z42

−
ð ffiffiffi

η
p

z1z2 þ ð ffiffiffi
η

p − 1Þz1z3 þ z3ð− ffiffiffi
η

p
z2 þ z2 −

ffiffiffi
η

p
z3ÞÞ log ð−z3 þ e

2πðxþiτÞ
β Þ

z31z32

þ ðz4ð− ffiffiffi
η

p
z2 þ z2 þ ffiffiffi

η
p

z4Þ − z1ð ffiffiffi
η

p
z2 −

ffiffiffi
η

p
z4 þ z4ÞÞ log ð−z4 þ e

2πðxþiτÞ
β Þ

z41z42

�
: ðA3Þ

Due to the presence of branch points, the logarithmic functions necessitate careful treatment while implementing the
limits of integration τ ¼ 0 and τ ¼ β. The following relation outlines the contribution due to a branch point at
z ¼ zj [32,34]

log ðe2πðxþiτÞ
β − zjÞjτ¼β

τ¼0 ¼
	
2πi; for e

2πx
β > zj ⇔ x > β

2π log zj;

0; otherwise:
ðA4Þ

The branch cuts of the logarithmic functions change the limits of the x integrals as follows:Z
∞

−∞
dx →

Z
∞

β
2π log zj

dx; for j ¼ 1; 2; 3; 4:

We are now in a position to integrate over x and utilize the prescription described above to implement the limits of
integration to arrive at

μc2π3
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�
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��

z41
log

�
z3
z4

�1CA: ðA5Þ

The anti holomorphic part of the integral in Eq. (4.9) follows a similar analysis and produces the same result as the
holomorphic part.

2. Two adjacent intervals

The holomorphic part of the integral in Eq. (4.15) may be written as

Z
M
z2
�

1

ðz− z1Þ2
þ 1

ðz− z2Þ2
þ 1

ðz− z3Þ2
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dx
Z

β
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dτe
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β

�
1

ðe2πðxþiτÞ
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2
þ 1
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2
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2
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β − z3Þ

�
: ðA6Þ

We proceed in a similar manner to the disjoint configuration as described in Appendix A 1. The indefinite integration with
respect to τ leads to the following primitive function:

z1

e
2πðxþiτÞ

β − z1
þ z2

e
2πðxþiτÞ

β − z2
þ z3

e
2πðxþiτÞ

β − z3
þ ðz21 − z2z3Þ
ðz1 − z2Þðz1 − z3Þ

log ðe2πðxþiτÞ
β − z1Þ

þ ðz1z3 − z22Þ
ðz1 − z2Þðz2 − z3Þ

log ðe2πðxþiτÞ
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log ðe2πðxþiτÞ
β − z3Þ: ðA7Þ
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On implementation of the limits of integration τ ¼ 0 and τ ¼ β, the nonlogarithmic terms in the above expression vanish,
while the contributions of the logarithmic terms follow the relation in Eq. (A4). Due to the relation in Eq. (A4), the limits of
integration over x for each term in the integrand gets modified as follows:

Z
∞

−∞
dx →

Z
∞

β
2π log zj

dx; for j ¼ 1; 2; 3:

The integration over x may now be performed to arrive at

Z
M
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�
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�
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As earlier, the antiholomorphic part of the integral gives result identical to the holomorphic part.

3. A single interval

The holomorphic part of the integral in Eq. (4.21) is given by

Z
M

d2w
X4
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�
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−
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The indefinite integration over τ gives

iβ
2π

X4
j¼1

½Bj þ Cj log ðe
2πðxþiτÞ

β − zjÞ�; ðA10Þ

where

Bj ¼
zj

e
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; j ¼ 1; 2; 3; 4; ðA11Þ

and C1, C2, C3, and C4 are given as follows:
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Once again the nonlogarithmic terms described by Eq. (A11)
vanish on insertion of the limits of integration τ ¼ 0 and
τ ¼ β, whereas the logarithmic terms in Eq. (A10) contribute
according to the relation in Eq. (A4), which modifies the
limits of the integration over x as follows:

Z
∞

−∞
dx →

Z
∞

β
2π log zj

dx; j ¼ 1; 2; 3; 4: ðA13Þ

The integration over x for the integrand in Eq. (A10) may
now be performed with the modified limits described above
to arrive at

−
β2

2π

X4
j¼1

Cj log zj: ðA14Þ

The desired correction to the OEE of a single interval of
length l may now be obtained through the substitutions

fz1; z2; z3; z4g → fe−2πL
β ; e−

2πl
β ; 1; e

2πL
β g and subsequent

implementation of the bipartite limit L → ∞ as follows:

lim
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2f½e−2πl

β �
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�
Lβ coth

�
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��
: ðA15Þ

As before the antiholomorphic part of the integral produces
identical result to the holomorphic part.
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