PHYSICAL REVIEW D 108, 126011 (2023)
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Gravitational redshift can cause the distortion of photon wave packets; thus, the non-Markovian speedup
evolution of a photon system must be controlled by considering gravitational redshift. We analyze the non-
Markovian speedup dynamics of a photon system in the amplitude-damping channel or pure-dephasing
channel under the effect of gravitational redshift, which is modelled as a beam-splitter operation. We show
that the gravitational redshift weakens the non-Markovian dynamical behavior in both channels. For the
amplitude-damping channel, the gravitational redshift promotes further speedup evolution of a photon
system when the initial coherence of the system is nonzero. A stronger gravitational redshift and larger
initial coherence make improving the evolution speed of the photon system easier. For the pure-dephasing
channel, the non-Markovian dynamical behavior decreases owing to the gravitational redshift; however, the
evolution speed of the photon is not influenced by the gravitational redshift.
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I. INTRODUCTION

Recently, many theoretical models and experimental
schemes have been proposed to explore the quantum nature
of gravity, including the decoherence of massive particles
induced by gravity [1-3], testing of the quantum nature of
gravity via tabletop experiments [4], the interaction
between gravity and quantum coherence in the state of
light pluses propagating in curved spacetime [5], and non-
Markovian speedup evolution of massive particles medi-
ated by gravitational interaction [6,7]. The study of
quantum information under relativistic effects contributes
to our understanding of some key questions in quantum
mechanics [8]. Extensive research has explored the
influence of gravity on quantum states, particularly in
quantum communications and potential applications.
Some examples include photons in particular frequency
bands traversing interstellar distances independent of
initial-quantum-state decoherence [9,10], gravitational dis-
tortion of quantum communication [11], geometric phase
acquired as a wave packet propagates along a null
geodesic [12], and transformations on the photon states
induced by gravitational redshift [13]. Gravitational red-
shift is one of the main predictions of general relativity; it
has attracted research interest since its proposal [14—16],
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and its existence has been experimentally confirmed
[17-23]. Different studies have proposed the application
of gravitational redshift to astrophysics [24] and quantum
information-related tasks [8,25,26].

When a photon initially prepared by the sender at a given
frequency is transmitted through curved spacetime, the
receiver detects it at a different frequency owing to its
exposure to different local gravitational potentials. Thus,
gravitational redshift affects the realistic photon with a finite
bandwidth and extension. Recently, a new approach was
developed to investigate the impact of gravitational redshift
on the quantum states of photons. Photons were modeled as
wave packets of a quantum field propagating in curved
spacetime, and the relationship between the wave packets
generated by sender Alice and those detected by receiver Bob
was established [27-29]. The transformation of the wave
packet can be interpreted as a transformation in the structure
of the field mode. Moreover, the transformation of the field
mode structure can be considered as a change in basis within
the Hilbert space of the photon [30-33], which can be
achieved through a unitary rotation in the Hilbert space or
multimode mixing operation on the field operators [13,34].

In general, when a quantum system, such as a photon,
travels through curved spacetime, the effect of gravitational
redshift on the system should be considered. In practical
research, a quantum system should be treated as an open
quantum system that will inevitably be affected by the
environment [35]. If the Markovian approximation is used
to study the dynamics of an open quantum system, the
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information will flow continuously from the system to
the environment. However, a large separation between the
system and environment timescales can no longer be
assumed. Information may flow back from the environment,
and non-Markovian behavior may occur [36-39]. This
behavior has been investigated experimentally [40-42].
Various methods have been developed to measure this
backflow of information, including trace distance [43],
fidelity [44], the semigroup property [45], quantum Fisher
information (QFI) [46-50], entanglement [51], and quantum
mutual information [52].

According to [53], non-Markovian dynamics play a
significant role in accelerating the evolution of an open
quantum system. The maximal speed of the quantum-state
evolution can be defined by the quantum speed-limit time
(QSLT), which quantifies the minimal time required for a
quantum state to evolve from its initial state to its target
state [54—57]. For a closed system, the unified lower bound
of the QSLT is obtained through the Mandelstamm-Tamm
type and Margolus-Levitin type bounds [58-60]. However,
for an open system with nonunitary evolution, two quantum
speed limits have been derived based on generalized Bloch
vectors, which are applicable for almost all quantum states
[61,62]. Compared with the other methods [63—-65], the
bounds obtained using this method are simpler to compute
and can be experimentally obtained. Gravitational redshift
plays a crucial role in the gravitational effect. However,
research on the dynamics of a quantum system under the
influence of gravitational redshift is still lacking. The non-
Markovian speedup evolution of open quantum systems
can better maintain the robustness of quantum simulators
and computers against decoherence [66]. Gravitational
redshift can cause the distortion of photon wavepackets
and reduce fidelity [5,27-29]. Thus, the non-Markovian
speedup evolution of an open quantum system must be
controlled by considering gravitational redshift.

In this study, we primarily investigate the relation-
ship between the non-Markovian speedup dynamical
behavior of a photon system and gravitational redshift in
the amplitude-damping channel [34-39,57] and pure-
dephasing channel [54,67,68]. The gravitational redshift
is introduced by a beam-splitter operation for a photon with
the same optical mode at two different locations before and
after propagation [27-33]. To quantify the non-Markovian
speedup dynamics of the system, we employ the QSLT to
quantify the quantum-evolution maximal speed of the
system and define the boundary between no-speedup and
speedup quantum evolution. Additionally, a method based
on QFI [46,47] is used to quantify the non-Markovianity of
the open photon system. In Sec. II we introduce a canonical
transformation to represent the gravitational redshift. In
Sec. III the definitions of the non-Markovianity and QSLT of
an open system are provided, and the non-Markovian
speedup evolution of a photon system under two different
quantum noisy channels is investigated. The discussion and

conclusions are presented in Sec. I'V. Throughout the entire
text, the metric signature (—,+,+,+) and natural units
(h = c =G = 1) are employed.

II. GRAVITATIONAL REDSHIFT AS A
CANONICAL TRANSFORMATION

In this section, we first introduce the spacetime back-
ground. For convenience, we consider a nonrotating planet
and model the spacetime background outside it using
(3 + 1)-dimensional Schwarzschild spacetime [15], which
is both spherically symmetric and static. The Schwarzschild
vacuum metric g, is

1
gﬂy:diag(—f(r),m,rz,r2 sin9>, (1)
where f(r)=1-ry/r, ry=2M 1is the Schwarzschild
radius of the planet. We primarily consider the transmission
of the wavepacket from the Earth to a receiver at a particular
distance, and the main effect of gravity depends on the
Schwarzschild radius r,. Generally, a photon can be mod-
eled as a wavepacket with a frequency distribution denoted

as F g?o [27,28]. The annihilation operator of the photon

described by the different locations of observers is as
follows:

“+o00 .
o, (%) = /0 i@ e FE) (©Q)ag,,  (2)

where the subscripts K = A and B refer to the observers
Alice and Bob, respectively. Qg is the frequency of the
photon measured locally by the observer K at proper time

7x. We also introduce the peak frequency €, of the
(K)

frequency distribution F Qli

the canonical commutation relation

o The operator ag, satisfies

[&QK’ azz/,(] - 5(QK - Ql/() (3)

Awave packet F' gA >0 generated by the sender Alice at time 74

in location r, travels through curved spacetime, and it is
detected as F gi >0 by the receiver Bob who is at the location
r=rg>ryattimery (herery = At + /f(rg)/f(ra)za).
Using the relation between the annihilation operators dg,
and agq [27], we can obtain the relation between frequency

distributions F’ g?o in different reference frames,

®) .y — +L8) ) (|f(rp)
) (@) = f(rA)FQA,O( f(rA)szB). @)

Owing to the curvature of spacetime and the influence of
gravitational potential, the wave packet changes during its
propagation. In the cases we consider, rp > r,, the wave
packet frequency Qp measured by Bob is redshifted relative
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to the wave packet frequency Q, generated by Alice. If
Alice prepares a sharp frequency mode €2,, Bob detects it
with frequency Q5. The relation between Qp and €4 can be
obtained by solving the eigenvalue equation for the modes
considered [27,28], as follows:

2:%:
Qy

f(ra)
f(VB)’

(5)

which is the well-known formula of gravitational redshift
[16], and satisfies y > 1. As discussed in [27-33], photon
propagation between two different locations in curved
spacetime is similar to a beam-splitter operation performed
on the propagating photon. Notably, the operator in Eq. (2)
can be used to describe the same optical mode at two
different locations before and after the propagation. Thus,
the mode &, may be decomposed into the mode &,, and

orthogonal mode & :
a, cosfd e?sin@\ [ a,
(o) = (o o (30)
a’, —e '?sinf  cos0 a;
where the angle 0 and phase ¢ are obtained from the
overlap of two modes. The specific forms of overlap are
c0s0z) = | (1, |10,)] and g(x) = arg({1}, |1,,}), where
1,,) = @b,|0) and |1}, ) = a,|0). Note that the phase
@(y) is set to zero for convenience and without loss of
generality [33]. The quality of the channel is quantified by
the fidelity F = |®|?, with

+o0 *
0- A dQy PO (@) FY) (@), (7)

where O is the wave packet overlap between the distribu-
tions Fgg),o(QB) and F&?O(QB). 1 —|®]* indicates the
probability of photon loss. If the channel is perfect,
|©| = 1. This is equivalent to the following relation:
cos® =0 and sin’ = 1 — ©?, with € [0,7/2). Thus,
we can obtain the following: an increase in € implies an
enhancement of the gravitational redshift y, which leads to

a decrease in channel quality. As discussed in [27,28], we
(2-29)°

consider the Gaussian distribution F, (Q) = ﬁ e
(o is the wave packet width) of the wave packet Fq ().

From this calculation, we obtain the following:

2 e
cos = e Athe (8)
I 2
2 X

For typical communication with Qg = 700 THz and
o =1 MHz [27,28], if Bob is far from the Earth (y — 1 =
3.5 x 10719), the effect of gravity should be considered in

the photon propagation (%A«TS x 1073). When

7)o

Alice and Bob are in flat spacetime [f(ry) = f(rg) = 1]
or they are at the same height, the channel between Alice
and Bob is perfect and it will not be affected by gravita-
tional redshift (y = 1); thus, the fidelity cos”? @ = 1. When
the effect of gravitational redshift increases (rz > r,), the
fidelity of the channel decreases (cos@ < 1). Thus, when
6 = 0, no gravitational redshift occurs (perfect overlap),
and @ = /2 indicates the strongest gravitational-redshift
effect (complete mismatch). Therefore, in the following,
we use 6 to quantify the strength of the gravitational
redshift, and a larger € indicates a stronger gravitational
redshift.

III. NON-MARKOVIANITY AND QSLT
OF A QUANTUM SYSTEM

In this section, we will analyze the effect of gravitational
redshift on the non-Markovian speedup dynamics of a
photon system. The gravitational redshift is introduced
by Eq. (6). We first introduce the definitions of non-
Markovianity and QSLT.

The non-Markovianity quantifies the backflow of infor-
mation from the environment to the system. In this study,
we consider a physically intuitive characterization of non-
Markovianity by utilizing the average QFI flow [46,47].
Using QFI to locally characterize the non-Markovianity in
different channels is effective and can be realized via
quantum simulation [48]. The main objective is to quantify
the non-Markovianity by measuring the non-monotonic
change in QFI of the parameters encoded in quantum states
during their evolution. To quantify the information content
of all parameters a and ¢ encoded in the single-qubit mixed
state p, we use the QFI matrix,

o Fa(t) Fm,s(r))’

Fop(t)  Fy(t)

with F, (1) =Trlp(t)L3], Fy(1) = Tr[p(1)L3], and F oy (1) =
ITr[p(1)(L4Ly + LyL,)], where L, and L, are the sym-
metric logarithmic derivatives (SLD) for parameters @ and
¢, respectively. The parameters a and ¢ may be regarded as
the amplitude and phase information in the qubit states,
respectively. The traditional method to calculate the SLD
operator is to expand it in the eigenspace of density matrix
p [69]. The eigenvalues p; and eigenstates |y;) are then
obtained by the spectral decomposition of the density
matrix p = > Y, pilw;)(w;|, where N is the dimension
of density matrix p. Using the spectral-decomposition
form, the element of the SLD operator can be expressed

. 2pi—p, -
by L;; = d"p’[” i + ;Ijﬂi/) (0w ilw;) for i, j€[1,N], where

(0qwi] = 0,((w;|). Because the parameters are encoded in
the quantum states of the system, estimating the encoded
parameters in the quantum states necessitates obtaining the
evolutional density matrix of the system by solving the

©)
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master equation. For a single-qubit mixed state, the QFI
matrix can be expressed as F; = Tr[(d,0)(9,0)] +

@Tr@(dap)p(d,ﬁp)], where Det[p] is the determinant

of p [49,50]. Because L =L, and L}, = Ly, the QFI
matrix F() is Hermitian. We focus on the dynamic process
with time evolution ¢ and eliminate dependence on the
parameters a and ¢ by integrating the parameters « € [0, 7)
and ¢ €[0,27z) over a unit Bloch sphere with a uniform
distribution dQ = 4]—7[ sin adadd to obtain the averaged QFI
matrix,

(10)

R
Fo= < F o0

F acﬁ(t) >
F (lt/)(t) ’
with F,(t)= [F,(1)dQ, F,(t)= [F4(1)dQ, and F (1) =
[ Fy(1)dQ. Moreover, the averaged QFI matrix F/(t) now
depends only on time ¢t and quantum dynamics A,. In
Markovian dynamics, information is lost to the environ-
ment in one direction; thus, the information content of the
encoded parameters in the qubit state should not increase.
Therefore, the averaged QFI matrix F(¢) monotonically
decreases with time ¢ > 0. In others words, the derivative
matrix 4 F(t) is always nonpositive definite, and this can be
determined by calculating the eigenvalues of the Hermitian
matrix %F (1); the eigenvalues are nonpositive, denoted as
A1(2) and A,(¢). Thus, the violation of this monotonicity is
an indication of non-Markovianity [47]. A quantitative
measure of non-Markovianity may be defined as follows:

A(1)>0

where A() = max{4,(z),4,(¢)}. Compared with the other
methods, this method is advantageous because it does not
require the selection of the initial optimal state pair. Instead,
we must eliminate the dependence of the QFI matrix on
parameters via averaging. Furthermore, the QFI effectively
defines the accuracy of the parameter estimation using the
well-known Cramér-Rao inequality [49].

QSLT is defined to quantify the bound of the minimal
evolution time for an actual dynamical process from an
initial state p(0) to a target state p(7); 7 is set as the actual
evolution time of the dynamical process. This facilitates the
analysis of the maximum speed at which the dynamical
process evolves [53-57]. By setting a bound on the
minimum evolution time from any initial state p(0) to a
target state p(7), a suitable QSLT can be effectively defined
to describe the speedup evolution of the system dynamics
under gravitational redshift. This helps in analyzing the
maximum evolution speed of a quantum system. Campaioli
et al. [62] reproposed a new bound from a geometric
perspective using the method of states of geometric

distance in a generalized Bloch sphere. The QSLT is given
as follows:

_ 119(0) = p(®)l 1)

TQSL =~ ——

o (o)l

where [lp(t)]| =1 [§ dtllp(r)[| and [ X]l = /22, M7,
Here, M; are the singular values of X. The advantage of
this bound is tighter and easier to calculate for almost all
quantum-evolution processes. The physical interpretation
of 7qgy, is given as 7gg /7 = 1. The evolution speed of the
quantum state reaches its highest value and does not
increase further. However, for 7q4g /7 < 1, the dynamics
evolution of the quantum state may further speed up.
Moreover, the smaller the 7qg /7 value, the greater the
potential for the quantum speedup of system dynamics.
Next, we investigate the non-Markovian speedup evolution
of a photon system in two different channels under the
effect of gravitational redshift.

A. Amplitude-damping channel

First, we consider a photon system (with transition
frequency wg) interacting with a structured reservoir at
zero temperature. The initial state of the reservoir is
assumed to be in a vacuum state. The dynamics of the
photon system can be solved exactly [34-39,57]. The
Hamiltonian of the total system is H = wya'a+
Sy oebiby + > gi(biat 4 bia), where a (af) is the
annihilation (creation) operator for the photon mode, Bk
(by) is the annihilation (creation) operator for the field
mode k with frequency @y, and g; is the coupling constant
between the photon and reservoir with mode k. The
nonunitary generator of the reduced dynamics of the
system can be described as follows:

Vi ima b ain s
LE(p) =5 Qapa’ —alap, —pa‘a),  (13)

where y, is the time-dependent decay rate. With only one
excitation in the entire system, the structure of the reservoir
can be described by an effective Lorentzian spectral density

]( a)) 1 Yol

T 27 (wg—w)?+77
reservoir, and y, is the coupling strength. The initial state of
the photon system is set as follows: cos(a/2)|0) +
e'? sin(a/2)|1) with @ €0, z) and ¢ € [0, 27). By consid-
ering the gravitational redshift introduced by Eq. (6) and
tracing out the orthogonal mode, the state of the photon
system is reduced to

where A is the spectral width of the

e’ sinacos®

sin?(%)cos26
L 0=,

| . (14
red re " sinacos cos2(3)+sin2(§)sin29> (14)
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The reduced density of the photon system at time 7 is given
as follows:

p: (t):< sin?(%)cos? 0P, é\/P,e"‘/’sinacos9> (s)
red 1/Pie~sinacos® 1-sin®()cos’0P, )

where P, = e_ﬁ)dﬂyf’. Because the reservoir is described
by an effective Lorentzian spectral J(w), the specific
form of the time-dependent decay rate is given by y, =

yosinh(di/2) - with d = /2% — 2yoA. Furthermore,

d cosh(dt/2)+Asinh(dt/2)

the parameter P, can be analytically obtained as
P, = e #[cos(dt/2) + A/d sin(dt/2)]*. Typically, in the
weak-coupling regime (4 > 2y,), the dynamics of the
photon system is Markovian and undergoes irreversible
decay. In the strong-coupling regime (4 < 2y,), the behavior
of the photon system can be described by non-Markovian
dynamics, which involves information backflow from the
environment.

Referring to the definition of non-Markovianity based on
the QFI mentioned above, we first calculate the QFI of the
mixed state in Eq. (9) for parameters a and ¢, as follows:
F§ = P,cos’ 0, Flj = P, cos’ §sin” a, and the other values
are zero. By averaging the specific values of the initial state
parameters a and ¢, we can eliminate the dependence of the
QFI matrix on these parameters. Therefore, the non-
Markovianity is independent of a and ¢. The correspond-
ing averaged QFI matrix can be calculated as follows:

F£ (F“L 0 ) (16)
M = =r s
0 F%

and we calculated the -eigenvalues of the matrix
4 F%, denoted as A;(r) and (7). Furthermore, 1, =
max{2(r),A,(r)} was obtained as A, =<(P,cos’0).
Thus, the non-Markovianity based on the QFI can be
interpreted as follows:

Nép = / P cos?0dt. (17)
P,>0

We can clearly observe that the non-Markovianity
decreases as the gravitational redshift increases. When

a=m we have |p(z)—p(0)] =v2/(1 = P,)?cos*6,
llp(1)|| = v/2+/cos* 6P (1)*. Thus, the ratio of the QSLT

to the actual evolution time 7 is as follows:

0.8 1.0 T
00 (b) 6=0
E’ R A 0=n/8
§ 0.6 08F /s 0=rt/4
3 | £ 07 == =n/3
= 7
g 0.4 =. \-'o 0.6 -
g 0.5 E
2 02 04 ]
0.3} E
00 1 1 1
. 0.5 1.0 15 2.0
My, My,

FIG. 1. By considering different 6 values, (a) and (b) are the
non-Markovianity and QSLT as a function of parameter 1/y in
the amplitude-damping channel, respectively, where 7 = 60.

tost _ [lp(z) =p(O)] _ 1 (18)

t [Tlp(ollde — _2N& |
Jloldr - on

When the initial state of the system is an excited state [1) (1]
(that is, @ = ), we can obtain a concrete form of 7qg /7 in
Eq. (18). According to [53], Deffner and Lutz concluded that
the information backflow from the environment in the
dynamical process [from p(0) to p(z)] can lead to faster
quantum evolution, and hence, to a shorter QSLT. Therefore,
non-Markovian dynamics can improve the evolution speed
of quantum systems. By analyzing Eq. (18) in our model, we
observe that the QSLT is related to non-Markovianity, the
population of the initial excited state, and gravitational
redshift. Interestingly, with an increase in €, the non-

Markovianity (NéFI) gradually decreases, as shown in
L

2 QFI
cos® O(1-P(z))
Thus, 7¢g./7 remains unchanged. In this study, we use the
parameter 6 to quantify the effect of gravitational redshift. A
larger € value indicates a stronger gravitational-redshift
effect. Therefore, we observe that the enhancement of
gravitational redshift weakens the non-Markovian dynam-
ics, but it does not affect the QSLT [see Fig. 1(b)]. If the
system dynamic is Markovian (N(L2FI =0), 7gsL/7 = 1, the
evolution of the quantum state of the photon system cannot
be accelerated.

For a =z, the coherence, as measured by [;-norm
[70,71], of the initial state of the photon system is zero,
whereas for a < z, the initial coherence of the photon
system is nonzero. Next, we explore the effect of coherence
and gravitational redshift on the speedup evolution of the
system dynamics. A concrete form of 7qg /7 is given as
follows:

Fig. 1(a), whereas the ratio does not change.

ras 2= VPOV €l + (14 VT=ClooP (1 + VP,V cos’0

. (19)

T

J

P \/C(/)(>)2+(1+\/ 1-C(py)?)?>4P,cos0
t

= dt
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03 04 05 00 02 04 06 08 1.0
o/ Clr,)

00 01 02

FIG. 2. The QSLT of the dynamics of the photon system in the
amplitude-damping channel as a function of parameter 6 and the
initial coherence C(pg). This represents the non-Markovian-
dynamics regime A = 0.1y, and 7 = 60. (a) The phase diagram
of 7gg1./7 as a function of @ and C(py); (b) 7gsL./7 as a function of
C(py) with different 6 values.

where C(p,) = sina is the initial coherence of the photon
system. In Fig. 2, we present the QSLT as a function of the
gravitational redshift and initial coherence in non-
Markovian dynamics. When no gravitational-redshift effect
occurs (0 = 0), the QSLT decreases monotonically with an
increase in the initial coherence. In the case of an existing
gravitational-redshift effect (such as 6 = z/8), as shown in
Fig. 2(b), the QSLT also decreases monotonically with an
increase in the initial coherence. The value of the QSLT in
the case @ = z/8 is always smaller than that in the case
60 = 0. By further increasing the value of 6, the QSLT
further decreases. More interestingly, the larger the value of
0, the larger the value of C(pj), and the smaller the value of
Tgs/7, as shown in the blue region in Fig. 2(a). Thus, we
can conclude that the enhancement of the gravitational
redshift and initial coherence play a positive role in
improving the speedup evolution of the system in non-
Markovian dynamics. Note that the gravitational effect is
strongest when 6 = z/2; the QSLT reaches a minimum at
this point, and the initial coherence has no effect on the
QSLT at this point.

In the Markovian-dynamics regime (4 = 10y,), as shown
in Fig. 3, if 8 = 0 and we do not consider the influence of

T 'b T T T
® —0=0
.. - - - 0=r/8]
RN N -
RN 9—n/4_
N\ 0=n/3
© N
N .N 4
NN /
NN\ p
~ C LN
1 1 1

04 06 08 10
Clp,)

FIG. 3. The QSLT of the dynamics of the photon system in the
amplitude-damping channel as a function of parameter € and
initial coherence C(p,). This represents the Markovian-dynamics
regime A = 10y, and 7 = 10. (a) The phase diagram of zqg; /7 as
a function of @ and C(py); (b) 7qs1./7 as a function of C(py) with
different 6 values.

the gravitational effect, the QSLT will decrease monoton-
ically as the initial coherence increases. Furthermore, the
gravitational redshift is weak (such as 8 = z/8); therefore,
the QSLT is less than that in the case of 8 =0, and it
decreases with an increase in the gravitational redshift. This
result is similar to that in the non-Markovian-dynamics
regime. However, when the gravitational redshift increases
to @ = /4, the QSLT first decreases monotonically to a
minimum at C(p,) = 0.9 and then increases. In the case of
0 = /3, the QSLT reaches the same minimum at C(p,) =
0.7 and then increases, as shown in Fig. 3(b). Figure 3(a)
shows that an increase in the initial coherence increases the
evolution speed of the system dynamics as 6 < z/4.
However, the gravitational redshift continues to increase
until € > z/4; thus, the stronger the initial coherence, the
more difficult it becomes to improve the evolution speed of
the system dynamics. Such an improvement would require an
appropriate decrease in the initial coherence. This is consid-
erably different from the non-Markovian-dynamics regime.

B. Ohmic-like dephasing channel

In the following, we consider an interaction between
a photon system (with transition frequency @g) and
bosonic environment with the Hamiltonian H = wqa'a +
S ilowbiby + ata(giby + g;b))], where a (a') is the
annihilation (creation) operator for the photon mode, w;
is the kth field frequency of the environmental mode, and g,
is the coupling constant between the photon and reservoir
mode k. We assume that no correlation exists between the
system and environment at the beginning, and the envi-
ronment is initially in a zero-temperature vacuum state. The
dynamics of the system can be modeled as an exactly
solvable Ohmic-like dephasing model. The nonunitary
generator of the reduced dynamics of the system can be
described as follows [72]:
—(a'a)%p, - p(@'a)).  (20)

LP(p) =5 "atap,ata

The bosonic environment operator is a linearly coupled
sum of the coordinates of the harmonic-oscillator

continuum described by the spectral function J(®).
The time-dependent decay rate is written as y, =

J&° J(w) coth(hw/2K 3T )lco—smda} where T is the tem-
perature and Kjp is the Boltzmann constant. Here, we
assume that the spectral density of the environment modes
is described as Ohmic-like J(@) = 5 % e/ where w,
is the cutoff frequency and 7 is a dimensionless coupling
constant. By changing the values of the s-parameter, the
types of environments are divided into sub-Ohmic
(0 <s < 1), Ohmic (s =1), and super-Ohmic (s > 1).
Typically, when the reservoir spectrum is super-Ohmic,
the memory effects that lead to information backflow and
recoherence occur [67,68]. When the temperature 7 of the
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environment is zero, for > 0 and s > 0, the dephasing
rate can be written as y, = 5[l — M‘W]F(s -1),
(1+w2?)2

where I'(s — 1) is the Euler gamma function. As parameter
s tends to 1, the dephasing rate can be written as
7:(s =1) = nIn(1 + ©2*). Similarly, the initial state of
the quantum system is set to cos(a/2)|0) + e’ sin(a/2)|1)
with a € [0, ) and ¢ € [0, 27). The gravitational redshift is
introduced by the operation in Eq. (6), and the initial state
of the system is reduced as follows:

0 (0)= ( sin®(%)cos?0 le”sinacos®

! (1
red Te"”sinacos® cos?(%)+sin (%)sin29> 2!

Under the action of the nonunitary generator, the reduced
density of the system at time 7 is given as follows:

sin?(%)cos?¢

1,0 o 0
€'’ sinacosfq

pgd(t>_(1 —i i 220 in2(a 't2 )’ (22)

se~"Psinacosfq, cos*(§)+-sin*(%)sin’0

where ¢(f) = e77/?. Next, referring to the definition of
non-Markovianity in Eq. (11), we first evaluate the QFI for
parameters a and ¢, as follows:

O _
F(z_

Fg = g7 cos” Osin’ a, and the other values are zero. By
averaging the specific values of the state for parameters «

and ¢, the corresponding averaged QFI matrix can be
calculated as follows:

F,?,:(F‘? 0 ) (24)

0 Fy
The eigenvalues of the matrix %FA(?, can be obtained
and are denoted as A;(r) and A,(¢). Moreover, A, =
max{4;(1),A,(r)}, and we acquire 1, =34 (g7 cos’6).
Therefore, the non-Markovianity based the QFI can be
interpreted as follows:

4
NSFI—/ gq,qtcoszﬁdt. (25)
4,>0

Simultaneously, we calculate the singular values o; of
L (p,),denotedas 6, = 6, = |(§, cos @ sin @) /2|. Addition-

ally, [|p(z) = p(0)[| = lq(z) — ¢(0)|\/sin? a(1 + cos(20)) /2.
Thus, the QSLT can be reduced to

1.00 T T T T T T

004 T T T (a)l T 9:6 (b)
g R Y
§ § PR N 0=n/4 . 0=0
N\ == 0=
E / N 0=n/3 \l.-_‘ 000k - — - 9=m/8 ]
r ’ \ 17 St I AP 0=n/4
© ’ \ o
= 002 ) \ 1° — == 0=n/3
< 4 N 0.85} g
o ’ B\
-4 7 . L~ . R
T S
e N 0.80} g
0.00

R T TR 75 30 35 40 45 50
S S

FIG. 4. Considering different parameter values of 6, (a) and

(b) show the non-Markovianity and QSLT of a photon in an

Ohmic-like dephasing channel as a function of parameter s,

respectively, with 7 = 60.

cos? O((=2 + g?)(1 + cosa) + 2g? cosa — g?(—1 + cos @) cos(26))
2(=1+ ¢7)(1 + cos @) — 4sin*(%) sin” & '

lq(z) — q(0)] '

IR (26)

TQSL/T =

Similarly, we plotted the non-Markovianity and QSLT, as
shown in Fig. 4. Figure 4(a) shows that if the effect of
gravitational redshift is considered, the non-Markovianity
decreases as the gravitational redshift increases in the super-
Ohmic case (s > 2). However, the QSLT in Fig. 4(b) is not
affected by the gravitational redshift, as shown in Eq. (26),
and it is independent of the initial coherence of the system.
Notably, for the pure-dephasing channel, the non-Markovian
dynamical behavior is reduced by the gravitational redshift,
but the evolution speed of the photon is not influenced by the
gravitational redshift.

IV. CONCLUSION

Gravitational effects are inevitable as photons propagate
in curved spacetime [5,12]; thus, the process of photon
propagation may be viewed as a lossy channel. The use
of a beam-splitter operation introduces the gravitational
redshift through a canonical transformation [27,28,31,33].
Moreover, gravitational effects have an impact on quantum
communications in space. In this study, we investigated the
non-Markovian speedup evolution of a photon system
undergoing amplitude-damping and pure-dephasing chan-
nels under the effect of gravitational redshift. For the
amplitude-damping channel, the quantum-evolution speed
of the photon is related to non-Markovianity, gravitational
redshift, and the initial coherence of the photon system.
When the system is initially excited, the enhancement of
gravitational redshift weakens the non-Markovian dynami-
cal behavior, but does not affect the quantum evolution
speed of the photon system. However, if the initial coherence
of the system is nonzero, improving the non-Markovian
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speedup dynamics of the photon system is easier with a
stronger gravitational redshift and larger initial coherence.
Moreover, in the Markovian dynamics, a stronger gravita-
tional redshift and larger initial coherence may increase
the QSLT.

For the pure-dephasing channel, we also observed that
the introduction of the gravitational redshift weakens the
non-Markovian dynamical behavior, but it does not affect
the quantum-evolution speed of the photon system. Unlike
the amplitude-damping channel, the QSLT under a gravi-
tational redshift is independent of the initial coherence of
the photon system in this channel.

To explain the above results of this study, we consider
that the gravitational effect can lead to the distortion of
photon wave packets, and the canonical transformation in
Eq. (6) describes a lossy channel reflecting the probability
of photon loss. The loss of the quantum coherence of the
system in such a lossy channel may be aggravated [73].

Therefore, a photon propagating in curved spacetime is
affected by the gravitational effect, and the decoherence of
a photon may be aggravated. This explains why the non-
Markovian dynamics of a photon system may be weakened
by the introduction of gravitational redshift in both chan-
nels. In addition, a canonical transformation [29,30,32]
may still quantitatively introduce the gravitational redshift
for a rotating planet, and the resulting conclusions are
similar to those discussed above.
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