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Gravitational redshift can cause the distortion of photon wave packets; thus, the non-Markovian speedup
evolution of a photon system must be controlled by considering gravitational redshift. We analyze the non-
Markovian speedup dynamics of a photon system in the amplitude-damping channel or pure-dephasing
channel under the effect of gravitational redshift, which is modelled as a beam-splitter operation. We show
that the gravitational redshift weakens the non-Markovian dynamical behavior in both channels. For the
amplitude-damping channel, the gravitational redshift promotes further speedup evolution of a photon
system when the initial coherence of the system is nonzero. A stronger gravitational redshift and larger
initial coherence make improving the evolution speed of the photon system easier. For the pure-dephasing
channel, the non-Markovian dynamical behavior decreases owing to the gravitational redshift; however, the
evolution speed of the photon is not influenced by the gravitational redshift.
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I. INTRODUCTION

Recently, many theoretical models and experimental
schemes have been proposed to explore the quantum nature
of gravity, including the decoherence of massive particles
induced by gravity [1–3], testing of the quantum nature of
gravity via tabletop experiments [4], the interaction
between gravity and quantum coherence in the state of
light pluses propagating in curved spacetime [5], and non-
Markovian speedup evolution of massive particles medi-
ated by gravitational interaction [6,7]. The study of
quantum information under relativistic effects contributes
to our understanding of some key questions in quantum
mechanics [8]. Extensive research has explored the
influence of gravity on quantum states, particularly in
quantum communications and potential applications.
Some examples include photons in particular frequency
bands traversing interstellar distances independent of
initial-quantum-state decoherence [9,10], gravitational dis-
tortion of quantum communication [11], geometric phase
acquired as a wave packet propagates along a null
geodesic [12], and transformations on the photon states
induced by gravitational redshift [13]. Gravitational red-
shift is one of the main predictions of general relativity; it
has attracted research interest since its proposal [14–16],

and its existence has been experimentally confirmed
[17–23]. Different studies have proposed the application
of gravitational redshift to astrophysics [24] and quantum
information-related tasks [8,25,26].
When a photon initially prepared by the sender at a given

frequency is transmitted through curved spacetime, the
receiver detects it at a different frequency owing to its
exposure to different local gravitational potentials. Thus,
gravitational redshift affects the realistic photon with a finite
bandwidth and extension. Recently, a new approach was
developed to investigate the impact of gravitational redshift
on the quantum states of photons. Photons were modeled as
wave packets of a quantum field propagating in curved
spacetime, and the relationship between the wave packets
generated by senderAlice and those detected by receiverBob
was established [27–29]. The transformation of the wave
packet can be interpreted as a transformation in the structure
of the field mode. Moreover, the transformation of the field
mode structure can be considered as a change in basis within
the Hilbert space of the photon [30–33], which can be
achieved through a unitary rotation in the Hilbert space or
multimode mixing operation on the field operators [13,34].
In general, when a quantum system, such as a photon,

travels through curved spacetime, the effect of gravitational
redshift on the system should be considered. In practical
research, a quantum system should be treated as an open
quantum system that will inevitably be affected by the
environment [35]. If the Markovian approximation is used
to study the dynamics of an open quantum system, the
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information will flow continuously from the system to
the environment. However, a large separation between the
system and environment timescales can no longer be
assumed. Information may flow back from the environment,
and non-Markovian behavior may occur [36–39]. This
behavior has been investigated experimentally [40–42].
Various methods have been developed to measure this
backflow of information, including trace distance [43],
fidelity [44], the semigroup property [45], quantum Fisher
information (QFI) [46–50], entanglement [51], and quantum
mutual information [52].
According to [53], non-Markovian dynamics play a

significant role in accelerating the evolution of an open
quantum system. The maximal speed of the quantum-state
evolution can be defined by the quantum speed-limit time
(QSLT), which quantifies the minimal time required for a
quantum state to evolve from its initial state to its target
state [54–57]. For a closed system, the unified lower bound
of the QSLT is obtained through the Mandelstamm-Tamm
type and Margolus-Levitin type bounds [58–60]. However,
for an open system with nonunitary evolution, two quantum
speed limits have been derived based on generalized Bloch
vectors, which are applicable for almost all quantum states
[61,62]. Compared with the other methods [63–65], the
bounds obtained using this method are simpler to compute
and can be experimentally obtained. Gravitational redshift
plays a crucial role in the gravitational effect. However,
research on the dynamics of a quantum system under the
influence of gravitational redshift is still lacking. The non-
Markovian speedup evolution of open quantum systems
can better maintain the robustness of quantum simulators
and computers against decoherence [66]. Gravitational
redshift can cause the distortion of photon wavepackets
and reduce fidelity [5,27–29]. Thus, the non-Markovian
speedup evolution of an open quantum system must be
controlled by considering gravitational redshift.
In this study, we primarily investigate the relation-

ship between the non-Markovian speedup dynamical
behavior of a photon system and gravitational redshift in
the amplitude-damping channel [34–39,57] and pure-
dephasing channel [54,67,68]. The gravitational redshift
is introduced by a beam-splitter operation for a photon with
the same optical mode at two different locations before and
after propagation [27–33]. To quantify the non-Markovian
speedup dynamics of the system, we employ the QSLT to
quantify the quantum-evolution maximal speed of the
system and define the boundary between no-speedup and
speedup quantum evolution. Additionally, a method based
on QFI [46,47] is used to quantify the non-Markovianity of
the open photon system. In Sec. II we introduce a canonical
transformation to represent the gravitational redshift. In
Sec. III the definitions of the non-Markovianity andQSLTof
an open system are provided, and the non-Markovian
speedup evolution of a photon system under two different
quantum noisy channels is investigated. The discussion and

conclusions are presented in Sec. IV. Throughout the entire
text, the metric signature ð−;þ;þ;þÞ and natural units
ðℏ ¼ c ¼ G ¼ 1Þ are employed.

II. GRAVITATIONAL REDSHIFT AS A
CANONICAL TRANSFORMATION

In this section, we first introduce the spacetime back-
ground. For convenience, we consider a nonrotating planet
and model the spacetime background outside it using
(3þ 1)-dimensional Schwarzschild spacetime [15], which
is both spherically symmetric and static. The Schwarzschild
vacuum metric gμν is

gμν ¼ diag

�
−fðrÞ; 1

fðrÞ ; r
2; r2 sin θ

�
; ð1Þ

where fðrÞ ¼ 1 − rs=r, rs ¼ 2M is the Schwarzschild
radius of the planet. We primarily consider the transmission
of the wavepacket from the Earth to a receiver at a particular
distance, and the main effect of gravity depends on the
Schwarzschild radius rs. Generally, a photon can be mod-
eled as a wavepacket with a frequency distribution denoted

as FðKÞ
ΩK;0

[27,28]. The annihilation operator of the photon
described by the different locations of observers is as
follows:

âΩK;0
ðτKÞ ¼

Z þ∞

0

dΩK e−iΩKτKFðKÞ
ΩK;0

ðΩKÞâΩK
; ð2Þ

where the subscripts K ¼ A and B refer to the observers
Alice and Bob, respectively. ΩK is the frequency of the
photon measured locally by the observer K at proper time
τK. We also introduce the peak frequency ΩK;0 of the

frequency distribution FðKÞ
ΩK;0

. The operator âΩK
satisfies

the canonical commutation relation

½âΩK
; â†Ω0

K
� ¼ δðΩK −Ω0

KÞ: ð3Þ

Awave packetFðAÞ
ΩA;0

generated by the sender Alice at time τA
in location rA travels through curved spacetime, and it is

detected as FðBÞ
ΩB;0

by the receiver Bob who is at the location

r ¼ rB > rA at time τB (here τB ¼ Δτ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ=fðrAÞ

p
τA).

Using the relation between the annihilation operators âΩA

and âΩB
[27], we can obtain the relation between frequency

distributions FðKÞ
ΩK;0

in different reference frames,

FðBÞ
ΩB;0

ðΩBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ
fðrAÞ

4

s
FðAÞ
ΩA;0

� ffiffiffiffiffiffiffiffiffiffiffi
fðrBÞ
fðrAÞ

s
ΩB

�
: ð4Þ

Owing to the curvature of spacetime and the influence of
gravitational potential, the wave packet changes during its
propagation. In the cases we consider, rB > rA, the wave
packet frequencyΩB measured by Bob is redshifted relative
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to the wave packet frequency ΩA generated by Alice. If
Alice prepares a sharp frequency mode ΩA, Bob detects it
with frequencyΩB. The relation betweenΩB andΩA can be
obtained by solving the eigenvalue equation for the modes
considered [27,28], as follows:

χ2 ¼ ΩB

ΩA
¼

ffiffiffiffiffiffiffiffiffiffiffi
fðrAÞ
fðrBÞ

s
; ð5Þ

which is the well-known formula of gravitational redshift
[16], and satisfies χ > 1. As discussed in [27–33], photon
propagation between two different locations in curved
spacetime is similar to a beam-splitter operation performed
on the propagating photon. Notably, the operator in Eq. (2)
can be used to describe the same optical mode at two
different locations before and after the propagation. Thus,
the mode â0ω0

may be decomposed into the mode âω0
and

orthogonal mode â⊥:
�
â0ω0

â0⊥

�
¼

�
cos θ eiφ sin θ

−e−iφ sin θ cos θ

��
âω0

â⊥

�
; ð6Þ

where the angle θ and phase φ are obtained from the
overlap of two modes. The specific forms of overlap are
cos θðχÞ ¼ jh10ω0

j1ω0
ij and φðχÞ ¼ argðh10ω0

j1ω0
iÞ, where

j1ω0
i ¼ â†ω0

j0i and j10ω0
i ¼ â0†ω0

j0i. Note that the phase
φðχÞ is set to zero for convenience and without loss of
generality [33]. The quality of the channel is quantified by
the fidelity F ¼ jΘj2, with

Θ ¼
Z þ∞

0

dΩB F
ðBÞ�
ΩB;0

ðΩBÞFðAÞ
ΩA;0

ðΩBÞ; ð7Þ

where Θ is the wave packet overlap between the distribu-

tions FðBÞ
ΩB;0

ðΩBÞ and FðAÞ
ΩA;0

ðΩBÞ. 1 − jΘj2 indicates the
probability of photon loss. If the channel is perfect,
jΘj ¼ 1. This is equivalent to the following relation:
cos θ ¼ Θ and sin2 θ ¼ 1 − Θ2, with θ∈ ½0; π=2Þ. Thus,
we can obtain the following: an increase in θ implies an
enhancement of the gravitational redshift χ, which leads to
a decrease in channel quality. As discussed in [27,28], we

consider the Gaussian distribution FΩ0
ðΩÞ ¼ 1ffiffiffiffiffiffiffi

2πσ2
4
p e−

ðΩ−Ω0Þ2
4σ2

(σ is the wave packet width) of the wave packet FΩ0
ðΩÞ.

From this calculation, we obtain the following:

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1
χ2
þ χ2

s
e
−
ðχ−1Þ2Ω2

B;0
4ð1þχ4Þσ2 : ð8Þ

For typical communication with ΩB;0 ¼ 700 THz and
σ ¼ 1 MHz [27,28], if Bob is far from the Earth (χ − 1 ¼
3.5 × 10−10), the effect of gravity should be considered in

the photon propagation (
ðχ−1Þ2Ω2

B;0

4ð1þχ4Þσ2 ∼ 7.5 × 10−3). When

Alice and Bob are in flat spacetime [fðrAÞ ¼ fðrBÞ ¼ 1]
or they are at the same height, the channel between Alice
and Bob is perfect and it will not be affected by gravita-
tional redshift (χ ¼ 1); thus, the fidelity cos2 θ ¼ 1. When
the effect of gravitational redshift increases (rB > rA), the
fidelity of the channel decreases (cos θ < 1). Thus, when
θ ¼ 0, no gravitational redshift occurs (perfect overlap),
and θ ¼ π=2 indicates the strongest gravitational-redshift
effect (complete mismatch). Therefore, in the following,
we use θ to quantify the strength of the gravitational
redshift, and a larger θ indicates a stronger gravitational
redshift.

III. NON-MARKOVIANITY AND QSLT
OF A QUANTUM SYSTEM

In this section, we will analyze the effect of gravitational
redshift on the non-Markovian speedup dynamics of a
photon system. The gravitational redshift is introduced
by Eq. (6). We first introduce the definitions of non-
Markovianity and QSLT.
The non-Markovianity quantifies the backflow of infor-

mation from the environment to the system. In this study,
we consider a physically intuitive characterization of non-
Markovianity by utilizing the average QFI flow [46,47].
Using QFI to locally characterize the non-Markovianity in
different channels is effective and can be realized via
quantum simulation [48]. The main objective is to quantify
the non-Markovianity by measuring the non-monotonic
change in QFI of the parameters encoded in quantum states
during their evolution. To quantify the information content
of all parameters α and ϕ encoded in the single-qubit mixed
state ρ, we use the QFI matrix,

FðtÞ ¼
�

FαðtÞ FαϕðtÞ
FαϕðtÞ FϕðtÞ

�
; ð9Þ

with FαðtÞ¼Tr½ρðtÞL2
α�, FϕðtÞ ¼ Tr½ρðtÞL2

ϕ�, and FαϕðtÞ ¼
1
2
Tr½ρðtÞðLαLϕ þ LϕLαÞ�, where Lα and Lϕ are the sym-

metric logarithmic derivatives (SLD) for parameters α and
ϕ, respectively. The parameters α and ϕmay be regarded as
the amplitude and phase information in the qubit states,
respectively. The traditional method to calculate the SLD
operator is to expand it in the eigenspace of density matrix
ρ [69]. The eigenvalues pi and eigenstates jψ ii are then
obtained by the spectral decomposition of the density
matrix ρ ¼ P

N
i¼1 pijψ iihψ ij, where N is the dimension

of density matrix ρ. Using the spectral-decomposition
form, the element of the SLD operator can be expressed

by Lij ¼ ∂αpi
pi

δij þ 2ðpi−pjÞ
piþpj

h∂αψ ijψ ji for i; j∈ ½1; N�, where
h∂αψ ij ¼ ∂αðhψ ijÞ. Because the parameters are encoded in
the quantum states of the system, estimating the encoded
parameters in the quantum states necessitates obtaining the
evolutional density matrix of the system by solving the
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master equation. For a single-qubit mixed state, the QFI
matrix can be expressed as Fαϕ ¼ Tr½ð∂αρÞð∂ϕρÞ� þ
1

Det½ρ�Tr½ρð∂αρÞρð∂ϕρÞ�, where Det½ρ� is the determinant

of ρ [49,50]. Because L†
α ¼ Lα and L†

ϕ ¼ Lϕ, the QFI
matrix FðtÞ is Hermitian. We focus on the dynamic process
with time evolution t and eliminate dependence on the
parameters α and ϕ by integrating the parameters α∈ ½0; πÞ
and ϕ∈ ½0; 2πÞ over a unit Bloch sphere with a uniform
distribution dΩ ¼ 1

4π sin αdαdϕ to obtain the averaged QFI
matrix,

F̄ðtÞ ¼
�

F̄αðtÞ F̄αϕðtÞ
F̄αϕðtÞ F̄ϕðtÞ

�
; ð10Þ

with F̄αðtÞ¼
R
FαðtÞdΩ, F̄ϕðtÞ¼

R
FϕðtÞdΩ, and F̄αϕðtÞ ¼R

FαϕðtÞdΩ. Moreover, the averaged QFI matrix F̄ðtÞ now
depends only on time t and quantum dynamics Λt. In
Markovian dynamics, information is lost to the environ-
ment in one direction; thus, the information content of the
encoded parameters in the qubit state should not increase.
Therefore, the averaged QFI matrix F̄ðtÞ monotonically
decreases with time t ≥ 0. In others words, the derivative
matrix d

dt F̄ðtÞ is always nonpositive definite, and this can be
determined by calculating the eigenvalues of the Hermitian
matrix d

dt F̄ðtÞ; the eigenvalues are nonpositive, denoted as
λ1ðtÞ and λ2ðtÞ. Thus, the violation of this monotonicity is
an indication of non-Markovianity [47]. A quantitative
measure of non-Markovianity may be defined as follows:

NQFI ¼
Z
λðtÞ>0

λðtÞdt; ð11Þ

where λðtÞ ¼ maxfλ1ðtÞ; λ2ðtÞg. Compared with the other
methods, this method is advantageous because it does not
require the selection of the initial optimal state pair. Instead,
we must eliminate the dependence of the QFI matrix on
parameters via averaging. Furthermore, the QFI effectively
defines the accuracy of the parameter estimation using the
well-known Cramér-Rao inequality [49].
QSLT is defined to quantify the bound of the minimal

evolution time for an actual dynamical process from an
initial state ρð0Þ to a target state ρðτÞ; τ is set as the actual
evolution time of the dynamical process. This facilitates the
analysis of the maximum speed at which the dynamical
process evolves [53–57]. By setting a bound on the
minimum evolution time from any initial state ρð0Þ to a
target state ρðτÞ, a suitable QSLT can be effectively defined
to describe the speedup evolution of the system dynamics
under gravitational redshift. This helps in analyzing the
maximum evolution speed of a quantum system. Campaioli
et al. [62] reproposed a new bound from a geometric
perspective using the method of states of geometric

distance in a generalized Bloch sphere. The QSLT is given
as follows:

τQSL ¼ kρð0Þ − ρðτÞkhs
k ˙ρðtÞk

; ð12Þ

where k ˙ρðtÞk ¼ 1
τ

R
τ
0 dtk ˙ρðtÞk and kXkhs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i M

2
i

p
.

Here, Mi are the singular values of X. The advantage of
this bound is tighter and easier to calculate for almost all
quantum-evolution processes. The physical interpretation
of τQSL is given as τQSL=τ ¼ 1. The evolution speed of the
quantum state reaches its highest value and does not
increase further. However, for τQSL=τ < 1, the dynamics
evolution of the quantum state may further speed up.
Moreover, the smaller the τQSL=τ value, the greater the
potential for the quantum speedup of system dynamics.
Next, we investigate the non-Markovian speedup evolution
of a photon system in two different channels under the
effect of gravitational redshift.

A. Amplitude-damping channel

First, we consider a photon system (with transition
frequency ω0) interacting with a structured reservoir at
zero temperature. The initial state of the reservoir is
assumed to be in a vacuum state. The dynamics of the
photon system can be solved exactly [34–39,57]. The
Hamiltonian of the total system is H ¼ ω0â†âþP

k ωkb̂
†
kb̂k þ

P
k gkðb̂kâ† þ b̂†kâÞ, where â ðâ†Þ is the

annihilation (creation) operator for the photon mode, b̂k
ðb̂†kÞ is the annihilation (creation) operator for the field
mode k with frequency ωk, and gk is the coupling constant
between the photon and reservoir with mode k. The
nonunitary generator of the reduced dynamics of the
system can be described as follows:

LL
t ðρtÞ ¼

γt
2
ð2âρtâ† − â†âρt − ρtâ†âÞ; ð13Þ

where γt is the time-dependent decay rate. With only one
excitation in the entire system, the structure of the reservoir
can be described by an effective Lorentzian spectral density
JðωÞ ¼ 1

2π
γ0λ

ðω0−ωÞ2þλ2
, where λ is the spectral width of the

reservoir, and γ0 is the coupling strength. The initial state of
the photon system is set as follows: cosðα=2Þj0i þ
eiϕ sinðα=2Þj1i with α∈ ½0; πÞ and ϕ∈ ½0; 2πÞ. By consid-
ering the gravitational redshift introduced by Eq. (6) and
tracing out the orthogonal mode, the state of the photon
system is reduced to

ρLredð0Þ¼
�

sin2ðα
2
Þcos2θ 1

2
eiϕ sinαcosθ

1
2
e−iϕ sinαcosθ cos2ðα

2
Þþsin2ðα

2
Þsin2θ

�
: ð14Þ
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The reduced density of the photon system at time t is given
as follows:

ρLredðtÞ¼
�

sin2ðα
2
Þcos2θPt

1
2

ffiffiffiffiffi
Pt

p
eiϕsinαcosθ

1
2

ffiffiffiffiffi
Pt

p
e−iϕsinαcosθ 1−sin2ðα

2
Þcos2θPt

�
; ð15Þ

where Pt ¼ e−
R

t

0
dt0γt0 . Because the reservoir is described

by an effective Lorentzian spectral JðωÞ, the specific
form of the time-dependent decay rate is given by γt ¼

2λγ0 sinhðdt=2Þ
d coshðdt=2Þþλ sinhðdt=2Þ, with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 2γ0λ

p
. Furthermore,

the parameter Pt can be analytically obtained as
Pt ¼ e−λt½cosðdt=2Þ þ λ=d sinðdt=2Þ�2. Typically, in the
weak-coupling regime (λ > 2γ0), the dynamics of the
photon system is Markovian and undergoes irreversible
decay. In the strong-coupling regime (λ < 2γ0), the behavior
of the photon system can be described by non-Markovian
dynamics, which involves information backflow from the
environment.
Referring to the definition of non-Markovianity based on

the QFI mentioned above, we first calculate the QFI of the
mixed state in Eq. (9) for parameters α and ϕ, as follows:
FL
α ¼ Pt cos2 θ, FL

ϕ ¼ Pt cos2 θ sin2 α, and the other values
are zero. By averaging the specific values of the initial state
parameters α and ϕ, we can eliminate the dependence of the
QFI matrix on these parameters. Therefore, the non-
Markovianity is independent of α and ϕ. The correspond-
ing averaged QFI matrix can be calculated as follows:

FL
M ¼

�
F̄L
α 0

0 F̄L
ϕ

�
; ð16Þ

and we calculated the eigenvalues of the matrix
d
dt F

L
M, denoted as λ1ðtÞ and λ2ðtÞ. Furthermore, λt ¼

maxfλ1ðtÞ; λ2ðtÞg was obtained as λt ¼ d
dt ðPt cos2 θÞ.

Thus, the non-Markovianity based on the QFI can be
interpreted as follows:

NL
QFI ¼

Z
Ṗt>0

Ṗtcos2θdt: ð17Þ

We can clearly observe that the non-Markovianity
decreases as the gravitational redshift increases. When
α ¼ π, we have kρðτÞ − ρð0Þk ¼ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − PtÞ2cos4θ
p

,
kρ̇ðtÞk ¼ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos4 θṖðtÞ4
p

. Thus, the ratio of the QSLT
to the actual evolution time τ is as follows:

τQSL
τ

¼ kρðτÞ − ρð0ÞkR
τ
0 kρ̇ðtÞkdt

¼ 1
2NL

QFI

cos2θð1−PðτÞÞ þ 1
: ð18Þ

When the initial state of the system is an excited state j1ih1j
(that is, α ¼ π), we can obtain a concrete form of τQSL=τ in
Eq. (18). According to [53],Deffner andLutz concluded that
the information backflow from the environment in the
dynamical process [from ρð0Þ to ρðτÞ] can lead to faster
quantumevolution, and hence, to a shorterQSLT. Therefore,
non-Markovian dynamics can improve the evolution speed
of quantum systems. By analyzing Eq. (18) in ourmodel, we
observe that the QSLT is related to non-Markovianity, the
population of the initial excited state, and gravitational
redshift. Interestingly, with an increase in θ, the non-
Markovianity (NL

QFI) gradually decreases, as shown in

Fig. 1(a), whereas the ratio
2NL

QFI

cos2 θð1−PðτÞÞ does not change.

Thus, τQSL=τ remains unchanged. In this study, we use the
parameter θ to quantify the effect of gravitational redshift. A
larger θ value indicates a stronger gravitational-redshift
effect. Therefore, we observe that the enhancement of
gravitational redshift weakens the non-Markovian dynam-
ics, but it does not affect the QSLT [see Fig. 1(b)]. If the
system dynamic is Markovian (NL

QFI ¼ 0), τQSL=τ ¼ 1, the
evolution of the quantum state of the photon system cannot
be accelerated.
For α ¼ π, the coherence, as measured by l1-norm

[70,71], of the initial state of the photon system is zero,
whereas for α < π, the initial coherence of the photon
system is nonzero. Next, we explore the effect of coherence
and gravitational redshift on the speedup evolution of the
system dynamics. A concrete form of τQSL=τ is given as
follows:

τQSL
τ

¼
2
���ð1 − ffiffiffiffiffi

Pt
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðρ0Þ2 þ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Cðρ0Þ2

p
Þ2ð1þ ffiffiffiffiffi

Pt
p Þ2cos2θ

q ���
R
τ
0

����Ṗt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðρ0Þ2þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Cðρ0Þ2

p
Þ24Ptcos2θ

Pt

r ����dt
; ð19Þ

FIG. 1. By considering different θ values, (a) and (b) are the
non-Markovianity and QSLT as a function of parameter λ=γ0 in
the amplitude-damping channel, respectively, where τ ¼ 60.

NON-MARKOVIAN SPEEDUP DYNAMICS OF A PHOTON … PHYS. REV. D 108, 126011 (2023)

126011-5



where Cðρ0Þ ¼ sin α is the initial coherence of the photon
system. In Fig. 2, we present the QSLT as a function of the
gravitational redshift and initial coherence in non-
Markovian dynamics. When no gravitational-redshift effect
occurs (θ ¼ 0), the QSLT decreases monotonically with an
increase in the initial coherence. In the case of an existing
gravitational-redshift effect (such as θ ¼ π=8), as shown in
Fig. 2(b), the QSLT also decreases monotonically with an
increase in the initial coherence. The value of the QSLT in
the case θ ¼ π=8 is always smaller than that in the case
θ ¼ 0. By further increasing the value of θ, the QSLT
further decreases. More interestingly, the larger the value of
θ, the larger the value of Cðρ0Þ, and the smaller the value of
τQSL=τ, as shown in the blue region in Fig. 2(a). Thus, we
can conclude that the enhancement of the gravitational
redshift and initial coherence play a positive role in
improving the speedup evolution of the system in non-
Markovian dynamics. Note that the gravitational effect is
strongest when θ ¼ π=2; the QSLT reaches a minimum at
this point, and the initial coherence has no effect on the
QSLT at this point.
In the Markovian-dynamics regime (λ ¼ 10γ0), as shown

in Fig. 3, if θ ¼ 0 and we do not consider the influence of

the gravitational effect, the QSLT will decrease monoton-
ically as the initial coherence increases. Furthermore, the
gravitational redshift is weak (such as θ ¼ π=8); therefore,
the QSLT is less than that in the case of θ ¼ 0, and it
decreases with an increase in the gravitational redshift. This
result is similar to that in the non-Markovian-dynamics
regime. However, when the gravitational redshift increases
to θ ¼ π=4, the QSLT first decreases monotonically to a
minimum at Cðρ0Þ ¼ 0.9 and then increases. In the case of
θ ¼ π=3, the QSLT reaches the same minimum at Cðρ0Þ ¼
0.7 and then increases, as shown in Fig. 3(b). Figure 3(a)
shows that an increase in the initial coherence increases the
evolution speed of the system dynamics as θ < π=4.
However, the gravitational redshift continues to increase
until θ > π=4; thus, the stronger the initial coherence, the
more difficult it becomes to improve the evolution speed of
the system dynamics. Such an improvement would require an
appropriate decrease in the initial coherence. This is consid-
erably different from the non-Markovian-dynamics regime.

B. Ohmic-like dephasing channel

In the following, we consider an interaction between
a photon system (with transition frequency ω0) and
bosonic environment with the Hamiltonian H ¼ ω0â†âþP

k½ωkb̂
†
kb̂k þ â†âðgkb̂k þ g�kb̂

†
kÞ�, where â ðâ†Þ is the

annihilation (creation) operator for the photon mode, ωk
is the kth field frequency of the environmental mode, and gk
is the coupling constant between the photon and reservoir
mode k. We assume that no correlation exists between the
system and environment at the beginning, and the envi-
ronment is initially in a zero-temperature vacuum state. The
dynamics of the system can be modeled as an exactly
solvable Ohmic-like dephasing model. The nonunitary
generator of the reduced dynamics of the system can be
described as follows [72]:

LO
t ðρtÞ ¼

γt
2
½2â†âρtâ†â − ðâ†âÞ2ρt − ρtðâ†âÞ2�: ð20Þ

The bosonic environment operator is a linearly coupled
sum of the coordinates of the harmonic-oscillator
continuum described by the spectral function JðωÞ.
The time-dependent decay rate is written as γt ¼R∞
0 JðωÞ cothðℏω=2KBTÞ 1−cosðωtÞω2 dω, where T is the tem-
perature and KB is the Boltzmann constant. Here, we
assume that the spectral density of the environment modes
is described as Ohmic-like JðωÞ ¼ η ωs

ωs−1
c

eð−ω=ωcÞ, where ωc

is the cutoff frequency and η is a dimensionless coupling
constant. By changing the values of the s-parameter, the
types of environments are divided into sub-Ohmic
(0 < s < 1), Ohmic (s ¼ 1), and super-Ohmic (s > 1).
Typically, when the reservoir spectrum is super-Ohmic,
the memory effects that lead to information backflow and
recoherence occur [67,68]. When the temperature T of the

FIG. 2. The QSLT of the dynamics of the photon system in the
amplitude-damping channel as a function of parameter θ and the
initial coherence Cðρ0Þ. This represents the non-Markovian-
dynamics regime λ ¼ 0.1γ0 and τ ¼ 60. (a) The phase diagram
of τQSL=τ as a function of θ and Cðρ0Þ; (b) τQSL=τ as a function of
Cðρ0Þ with different θ values.

FIG. 3. The QSLT of the dynamics of the photon system in the
amplitude-damping channel as a function of parameter θ and
initial coherence Cðρ0Þ. This represents the Markovian-dynamics
regime λ ¼ 10γ0 and τ ¼ 10. (a) The phase diagram of τQSL=τ as
a function of θ and Cðρ0Þ; (b) τQSL=τ as a function of Cðρ0Þ with
different θ values.
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environment is zero, for t > 0 and s > 0, the dephasing
rate can be written as γt ¼ η½1 − cos½ðs−1Þ arctanðωctÞ�

ð1þω2
ct2Þ

s−1
2

�Γðs − 1Þ,
where Γðs − 1Þ is the Euler gamma function. As parameter
s tends to 1, the dephasing rate can be written as
γtðs ¼ 1Þ ¼ η lnð1þ ω2

ct2Þ. Similarly, the initial state of
the quantum system is set to cosðα=2Þj0i þ eiϕ sinðα=2Þj1i
with α∈ ½0; πÞ and ϕ∈ ½0; 2πÞ. The gravitational redshift is
introduced by the operation in Eq. (6), and the initial state
of the system is reduced as follows:

ρOredð0Þ¼
�

sin2ðα
2
Þcos2θ 1

2
eiϕ sinαcosθ

1
2
e−iϕ sinαcosθ cos2ðα

2
Þþsin2ðα

2
Þsin2θ

�
: ð21Þ

Under the action of the nonunitary generator, the reduced
density of the system at time t is given as follows:

ρOredðtÞ¼
�

sin2ðα
2
Þcos2θ 1

2
eiϕsinαcosθqt

1
2
e−iϕsinαcosθqt cos2ðα2Þþsin2ðα

2
Þsin2θ

�
; ð22Þ

where qðtÞ ¼ e−γt=2. Next, referring to the definition of
non-Markovianity in Eq. (11), we first evaluate the QFI for
parameters α and ϕ, as follows:

FO
α ¼ cos2 θðð−2þ q2t Þð1þ cos αÞ þ 2q2t cos α − q2t ð−1þ cos αÞ cosð2θÞÞ

2ð−1þ q2t Þð1þ cos αÞ − 4 sin2ðα
2
Þ sin2 θ : ð23Þ

FO
ϕ ¼ q2t cos2 θ sin2 α, and the other values are zero. By

averaging the specific values of the state for parameters α
and ϕ, the corresponding averaged QFI matrix can be
calculated as follows:

FO
M ¼

�
F̄O
α 0

0 F̄O
ϕ

�
: ð24Þ

The eigenvalues of the matrix d
dt F

O
M can be obtained

and are denoted as λ1ðtÞ and λ2ðtÞ. Moreover, λt ¼
maxfλ1ðtÞ; λ2ðtÞg, and we acquire λt ¼ 2

3
d
dt ðq2t cos2 θÞ.

Therefore, the non-Markovianity based the QFI can be
interpreted as follows:

NO
QFI ¼

Z
q̇t>0

4

3
qtq̇t cos2 θdt: ð25Þ

Simultaneously, we calculate the singular values σi of
LO
t ðρtÞ, denoted asσ1 ¼ σ2 ¼ jðq̇t cos θ sin αÞ=2j.Addition-

ally, kρðτÞ− ρð0Þk ¼ jqðτÞ−qð0Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 αð1þ cosð2θÞÞ=2

p
.

Thus, the QSLT can be reduced to

τQSL=τ ¼
jqðτÞ − qð0ÞjR

τ
0 jq̇tjdt

: ð26Þ

Similarly, we plotted the non-Markovianity and QSLT, as
shown in Fig. 4. Figure 4(a) shows that if the effect of
gravitational redshift is considered, the non-Markovianity
decreases as the gravitational redshift increases in the super-
Ohmic case (s > 2). However, the QSLT in Fig. 4(b) is not
affected by the gravitational redshift, as shown in Eq. (26),
and it is independent of the initial coherence of the system.
Notably, for the pure-dephasing channel, the non-Markovian
dynamical behavior is reduced by the gravitational redshift,
but the evolution speed of the photon is not influenced by the
gravitational redshift.

IV. CONCLUSION

Gravitational effects are inevitable as photons propagate
in curved spacetime [5,12]; thus, the process of photon
propagation may be viewed as a lossy channel. The use
of a beam-splitter operation introduces the gravitational
redshift through a canonical transformation [27,28,31,33].
Moreover, gravitational effects have an impact on quantum
communications in space. In this study, we investigated the
non-Markovian speedup evolution of a photon system
undergoing amplitude-damping and pure-dephasing chan-
nels under the effect of gravitational redshift. For the
amplitude-damping channel, the quantum-evolution speed
of the photon is related to non-Markovianity, gravitational
redshift, and the initial coherence of the photon system.
When the system is initially excited, the enhancement of
gravitational redshift weakens the non-Markovian dynami-
cal behavior, but does not affect the quantum evolution
speed of the photon system.However, if the initial coherence
of the system is nonzero, improving the non-Markovian

FIG. 4. Considering different parameter values of θ, (a) and
(b) show the non-Markovianity and QSLT of a photon in an
Ohmic-like dephasing channel as a function of parameter s,
respectively, with τ ¼ 60.
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speedup dynamics of the photon system is easier with a
stronger gravitational redshift and larger initial coherence.
Moreover, in the Markovian dynamics, a stronger gravita-
tional redshift and larger initial coherence may increase
the QSLT.
For the pure-dephasing channel, we also observed that

the introduction of the gravitational redshift weakens the
non-Markovian dynamical behavior, but it does not affect
the quantum-evolution speed of the photon system. Unlike
the amplitude-damping channel, the QSLT under a gravi-
tational redshift is independent of the initial coherence of
the photon system in this channel.
To explain the above results of this study, we consider

that the gravitational effect can lead to the distortion of
photon wave packets, and the canonical transformation in
Eq. (6) describes a lossy channel reflecting the probability
of photon loss. The loss of the quantum coherence of the
system in such a lossy channel may be aggravated [73].

Therefore, a photon propagating in curved spacetime is
affected by the gravitational effect, and the decoherence of
a photon may be aggravated. This explains why the non-
Markovian dynamics of a photon system may be weakened
by the introduction of gravitational redshift in both chan-
nels. In addition, a canonical transformation [29,30,32]
may still quantitatively introduce the gravitational redshift
for a rotating planet, and the resulting conclusions are
similar to those discussed above.
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