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Understanding axial charge dynamics driven by changes in Chern-Simons number densities is a key
aspect in understanding the chiral magnetic effect in heavy-ion collisions. Most phenomenological
simulations assume that a large amount of axial charge is produced in the initial stages and that axial charge
is conserved throughout the simulation. Within an (expanding) homogeneous holographic plasma, we
investigate the real-time axial charge relaxation dynamics and their impact on the chiral magnetic current.
Moreover, we discuss the real-time interplay of the non-Abelian and the Abelian chiral anomaly in the
presence of a strong magnetic field. In the expanding plasma, the Chern-Simons diffusion rate and thus the
axial charge relaxation rate are time dependent due to the decaying magnetic field. We quantify the changes
in the late time falloffs and establish a horizon formula for the chiral magnetic current.
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I. INTRODUCTION

The QCD vacuum exhibits a periodic structure, where
the minima correspond to distinct Chern-Simons numbers
that describe the topology of the gauge fields. An instanton
or sphaleron transition [1,2] between such energy-
degenerate vacuum sectors is followed by a change of
chirality of the chiral fermions. The generation of chirality
is a P- and CP-odd effect as was argued in [3–6]. Even
though the vacuum sectors are energy degenerate they are
topologically distinct. The tunneling probability from one
vacuum to a topologically distinct vacuum state, which is
described by an instanton transition, is highly suppressed at
finite temperature. However, at very high energies (for
example in the initial stages of heavy ion collisions, where
the quark-gluon plasma is formed [7,8]) we can cross the
barrier(s) with a sphaleron transition to a different ground
state. These transitions generate axial charge by activating
the gluonic part of the axial anomaly which flips the
chirality of some of the fermions and the final state is
chirally imbalanced. In an external magnetic field, which

aligns the spins of the chiral fermions, a change of chirality is
followed by a change in the direction of momentum leading
to charge separation.When there is an imbalance between the
numbers of left- and right-handed fermions, this gives rise to
an electric current alignedwith themagnetic field direction—
the chiral magnetic effect (CME) [9,10].
The CME was first measured in condensed matter experi-

ments [11–14]. In the context of heavy ion collisions,
extensive experimental searches were conducted over a
decade at RHIC and the LHC by ALICE and CMS
culminating in the specialized RHIC experiment—the isobar
runs. This experiment utilized isobar nuclei collisions of
Zr þ Zr and Ruþ Ru. While expecting similar collision
geometries, larger magnetic fields and thus chiral magnetic
currents were anticipated in Ruþ Ru due to higher electric
charges in Ru.
Following data collection from the RHIC isobar run, the

STAR collaboration’s analysis [15] reported no CME signal
based on the predefined criteria. However, differences in
collision geometry between Zr and Ru, which were not part
of the predefined criteria of the isobar blind analysis,
prompted a reevaluation of the isobar data through an
updated analysis [16,17]. Key uncertainties influencing
CME physics in the isobar run include the initial state
uncertainty in collisions, affecting the heavy ion shape and
proton/neutron distributions. Discrepancies in collision
geometry impact the definition of centrality and charged
hadron multiplicities. The charge distribution within nuclei
also influences the generated magnetic field’s magnitude,
extent, and temporal evolution during plasma lifetime.
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The goal of this work is to incorporate Chern-Simons
diffusion dynamics into real-time simulations of the chiral
magnetic current at strong coupling. The resulting axial
charge dynamics is usually neglected in the literature and a
chirality imbalance is simply introduced by means of an
axial “chemical potential.” Since chemical potentials are an
equilibrium concept it is not straightforward to treat non-
conserved quantities on the same footing. In particular, the
divergence of the axial current is given by [18–22]

∂mJmA ¼ ϵijkl
�

Nf

16π2
trðGijGklÞ þ

Nc
P

f q
2
f

32π2
FijFkl

þ NcNf

96π2
F5
ijF

5
kl

�
; ð1:1Þ

where the first term is caused by the non-Abelian anomaly
chiral anomaly and the second term and third term are due
to the Abelian chiral anomaly. Integrating the topological

charge density qðxÞ ¼ Nfϵ
ijkl

32π2
trðGijGklÞ, where Gij is the

color field strength, we get the topological winding number
QW ¼ R

d4xqðxÞ, which characterizes the different vacua.
The topological charge density is related to the axial charge
relaxation rate by

dn5
dt

¼ −2q ¼ −
2ΓCS

χ5T
n5 ¼ −

n5
τsph

; ð1:2Þ

where the factor τsph is related to the relaxation time of
topological charge fluctuations [18] and χ5 is the axial
susceptibility. The last two equalities in Eq. (1.2) are linear
response expressions which are valid at late times close to
equilibrium. The axial charge relaxation time is related to
the Chern-Simons diffusion rate ΓCS and given by

τsph ¼
χ5T
2ΓCS

: ð1:3Þ

Equation (1.3) relates the Chern-Simons diffusion rate ΓCS
to the axial susceptibility χ5 and sphaleron rate τsph (which
is related to the axial charge relaxation rate). The Chern-
Simons diffusion and axial charge relaxation rate are both
accessible in the homogeneous limit, i.e., at zero wave
vector. Moreover, since the Uð1ÞA symmetry is explicitly
broken by the dynamical non-Abelian gauge fields, the
chiral magnetic wave [23] is gapped in the homogeneous
limit and axial charge relaxation is incorporated in the
homogeneous dynamics.1

Important insight into the topological dynamics were
achieved in terms of classical statistical simulations
[24–27] featuring the non-Abelian anomaly. On the holo-
graphic side, out-of-equilibrium simulation of the CME
([28–30]) in an infinite, static plasma were first performed
in [31–33] (probe limit) and [34,35] (including backreac-
tion). This was recently extended to an expanding plasma in
[36].2 In holography, the axial charge relaxation and Chern-
Simons diffusion rate were discussed in [19,20,42–54]. In
this work, we will generalize the results to include both the
Abelian chiral anomaly and the non-Abelian anomaly aswell
as strong (external) Abelian magnetic fields and dynamical
non-Abelian gauge fields. The appropriate holographic
model, to incorporate the dynamical gauge field contribu-
tions due to thedynamical gluons is the so-calledStückelberg
model where the non-Abelian gluon dynamics is coupled to
the axial gauge field via a θ term—rendering the axial gauge
field massive [44,55–57]. The Stückelberg (pseudo)scalar is
the holographic analogof the θ term inQCD. In thiswork,we
use the minimal bottom-up model developed in [44],3 where
the axial current is nonconserved and acquires an anomalous
dimension.
In heavy-ion collisions, the plasma starts expanding

rapidly after the collision. In order to make connection to
phenomenology, we extend our results for the static plasma
in Sec. II A to an expanding plasma in Sec. II B. In the
expanding plasma, the energy density, axial charge density,
and magnetic field decay due to the dilution. In particular,
some models in magnetohydrodynamics indicate that—at
late times—the magnetic field decays inversely proportional
to the proper time B ∼ τ−1 [61–65]. If we assume that the
axial charge is conserved, then we expect the axial charge
density in our holographic plasma to decay similarly
(n5 ∼ τ−1). This also impacts the CME that is within
linearized hydrodynamics proportional to the axial charge
density dividedby the susceptibility and themagnetic fieldB,
suggesting a decay proportional to ∼τ−4=3. These expres-
sions are only valid if the axial charge is conserved. As we
will show in Sec. III F the decaywill be accelerated due to the
explicit breaking of theUð1ÞA. The crucial question becomes
whether the chiral magnetic current has enough time to build
up sufficiently in magnitude during the plasma phase to
manifest as measurable signal. Our model aims to address
this comprehensively.
The outline of the paper is the following. In Sec. II, we

review the holographic model used for the simulations. We
then study an infinite, static plasma where we investigate
the influence of Abelian and non-Abelian anomalies and
the magnetic field on the axial charge relaxation time in

1Instead of the pair of propagating sound modes, we observe
one diffusive hydrodynamic mode [associated with the unbroken
Uð1ÞV symmetry] and a gapped pseudodiffusive mode [associ-
ated with the explicitly broken Uð1ÞA] which governs the
relaxation of axial charge.

2Note that there is also an extensive list of holographic
works on the axial CME where a Uð1ÞA symmetry instead of
the Uð1ÞA × Uð1ÞV symmetry is considered [37–41].

3For other works using the Stückelberg model see for example
[42,58–60].
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Sec. III A. In Sec. III B, we incorporate axial charge
generation and measure the real-time CME response to
it. Moreover, we perform a parameter scan. Finally, in
Secs. III E and III F, we study the dynamics in an expanding
plasma as it is phenomenologically relevant for heavy-ion
collisions. The conclusions are outlined in Sec. IV.

II. HOLOGRAPHIC MODEL

We study the real-time dynamics of the chiral magnetic
effect including axial charge relaxation due to Chern-
Simons diffusion dynamics. We consider the minimal
model established in [44], which includes all the basic
ingredients. In particular, it contains an axial gauge field A
and a vector gauge field V dual to the Abelian axial and
vector currents. The effect of the Uð1Þ3A and Uð1ÞA ×
Uð1Þ2V anomalies is reproduced via a Chern-Simons term
with appropriate coefficients. The gluonic contribution to
the chiral anomaly are introduced by making the axial
gauge field massive via the Stückelberg mechanism. Thus,
the holographic action is given by

S ¼ 1

2κ25

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

4
ðF2 þ F2

ð5ÞÞ

−
m2

s

2
ðAμ − ∂μθÞ2 þ

α

3
ϵμνρστðAμ − ∂μθÞ

× ð3FνρFστ þ Fð5Þ
νρ F

ð5Þ
στ Þ

�
þ SGHY þ Sct; ð2:1Þ

where SGHY is theGibbons-Hawking-York boundary term to
make the variational problem well defined, L is the anti–de
Sitter (AdS) radius, κ25 is the Newton constant, α the Chern-
Simons coupling and ms the mass of the gauge field. The
Levi-Civita tensor is defined as ϵμνρστ ¼ ϵðμνρστÞ= ffiffiffiffiffiffi−gp

.
The Stückelberg field is denoted as θ, whereas the field
strengths are defined as F ¼ dV and Fð5Þ ¼ dA. The
coupling θðxμÞ couples the operator TrfG ∧ G̃g (i.e. to
gluons living on a D3 brane) thus playing the role of the θ
angle (see Sec. IVof [45]). Note that the gluon field strength
does not appear explicitly in our holographic model but is
mediated through the coupling θ. The axial gauge field
couples to the axion through themass termandhence thedual
axial current is nonconserved due to the non-Abelian
anomaly. Moreover, the axial gauge field couples to the
vector gauge field through the Chern-Simons term, which
accounts for the Abelian anomaly. The holographic renorm-
alization of this model was done in [44] and the counterterm
action (with restriction Δ < 1

3
4) reads

Sct ¼
Z
∂M

d4x
ffiffiffiffiffi
jγj

p �
Δ
2
ðAi − ∂

iθÞðAi − ∂iθÞ

−
1

4ðΔþ 2Þ ∂iðA
i − ∂

iθÞ∂jðAj − ∂
jθÞ

þ 1

8Δ
F5ijF5

ij −
1

4
FijFij logðuÞ

�
; ð2:2Þ

where Δ≡ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

p
. ∂M is the boundary of space-

time M, γ is the determinant of the induced metric in ∂M.
Latin indices refer to the boundary coordinates.
The equations of motion derived from (2.1) read

m2
s∇μðAμ − ∂

μθÞ ¼ 0;

∇νFνμ þ 2αϵμνρστFνρF
ð5Þ
στ ¼ 0;

∇νF
νμ
ð5Þ −m2

sðAμ − ∂
μθÞ þ αϵμνρστðFνρFστ þ Fð5Þ

νρ F
ð5Þ
στ Þ ¼ 0;

Gμν −
6

L2
gμν −

1

2
FμρFν

ρ þ 1

8
ðF2 þ F2

ð5ÞÞgμν −
1

2
Fð5Þ
μρ F

ð5Þρ
ν

−
m2

s

2
ðAμ − ∂μθÞðAν − ∂νθÞ þ

m2
s

4
ðAα − ∂αθÞ2gμν ¼ 0:

ð2:3Þ
Each expectation value of the dual field theory shall be

extracted following the holographic prescription, i.e.,
varying the renormalized on-shell action with respect to
the boundary value of the dual field. The one-point
functions are given by

2κ25hJiVi ¼ nρ
ffiffiffiffiffi
jγj

p
ðFiρ þ 4αϵρijklðAj − ∂jθÞFklÞ þ…

���
∂M

;

ð2:4Þ

2κ25hJiAi ¼ fðxρÞ
ffiffiffiffiffi
jγj

p
ðFiρ

5 nρ þ ΔðAi − ∂
iθÞÞ þ…

���
∂M

;

ð2:5Þ

where the dots indicate terms that vanish when evaluated at
the boundary. nρ is the (outward pointing) normal vector to
∂M. It is assumed that the boundary is defined by
xρ ¼ constant, where xρ is the radial coordinate. The
prefactor fðxρÞ is the variation of the i − th component
of the axial gauge field with respect to its non-normalizable
mode. That means, if A behaves as A ∼ ANNu−Δ þ
higher orders in u near the boundary, then we have
fðxρÞ ¼ u−Δ plus higher orders which do not contribute
to the expectation value.

A. Static plasma

Let us first discuss the setup in a static plasma in detail
which will allow us to skip most of the details in the case of
an expanding plasma. We switch on a constant and
homogeneous magnetic field B. In the static case, the
system is symmetric under shifts of the three-dimensional

4This range for Δ minimizes the number of counterterms. For
Δ → 1, the number of counterterms diverges, so that the model is
no longer renormalizable. See [44] for more details.
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spatial coordinates, which we denote by ðx; y; zÞ, and hence
the metric functions will only depend on the radial and
temporal coordinates u and v, respectively. The magnetic
field breaks the SOð3Þ rotational invariance down to SOð2Þ
causing anisotropy even at equilibrium. Taking B to point
in the zth direction preserves rotational invariance in the x-y
plane. In infalling Eddington-Finkelstein coordinates our
ansatz is [66,67]

ds2¼−fðv;uÞdv2−2L2

u2
dudv

þΣðv;uÞ2ðeξðv;uÞðdx2þdy2Þþe−2ξðv;uÞdz2Þ; ð2:6Þ

where f, Σ, and ξ are undetermined functions of u and v.
The boundary is located at u ¼ 0. We further demand that
the metric asymptotes to AdS5:

lim
u→0

f ¼ L2

u2
; lim

u→0
Σ ¼ L

u
; lim

u→0
ξ ¼ 0: ð2:7Þ

The chiral magnetic current builds up in the presence of a
magnetic field and chiral imbalance. The chiral imbalance is
introduced switching on the temporal component of the axial
gauge field A.5 The chiral magnetic current is parallel to the
magnetic field, so it will also be aligned in the z direction and
a consistent solution requires switching on the z component
of the vector gauge field V. Finally, the Stückelberg field θ
needs also be switched on. To sum up, we write

A ¼ −Atðv; uÞdv; θ ¼ θðv; uÞ;

V ¼ B
2
ðxdy − ydxÞ þ Vzðv; uÞdz: ð2:8Þ

We do not source the currents in the dual field theory, which
amounts to setting the leading modes of the gauge fields in
the near boundary expansion to zero. Then, the asymptotic
solution to the equations of motion reads

A ≃ θ̇0ðvÞ þ uΔ
�
q5ðvÞu2 þ

2þ Δ
3þ Δ

q̇5ðvÞu3 þOðu4Þ
�
;

V ≃ u2V2ðvÞ þOðu3Þ;
θ ≃ θ0ðvÞ þOðu3þΔÞ þOðu5Þ;

ξ ≃ u4
�
ξ4 −

B2

12
log u

�
þOðu5Þ;

Σ ≃
1

u
þ λðvÞ þOðu5Þ;

f ≃
�
1

u
þ λðvÞ

�
2

− 2λ̇ðvÞ þ u2
�
f2 þ

B2

6
log u

�
þOðu3Þ:

ð2:9Þ

Powers of unΔ for integer n appear at higher order in the
expansion for all fields due to mixing. The coefficients n5,
V2, andf2 are related to the expectationvalues of operators in
the dual field theory. The expectation value θ4 of the axion
field is read off from the orderu4. It is proportional to the time
derivative of the source ofV, which is zero in our ansatz. The
source for the axion θ0 is a remnant of gauge invariance and
may be set to zero without loss of generality.
Substituting the asymptotic expansions into Eqs. (2.4)

and (2.5) gives

JCME ≡ 2κ25hJzi ¼ 2V2ðvÞ; ð2:10Þ

n5 ≡ 2κ25hJt5i ¼ 2ð1þ ΔÞq5ðvÞ; ð2:11Þ

which correspond to the chiral magnetic current and the axial
charge, respectively. Note that the scaling dimension of the
axial current in the dual theory is 3þ Δ. As a consequence,
having Δ > 1 renders the dual QFT is nonrenormalizable.
This fact goes hand in hand with footnote 4.
In general Δ will be a noninteger causing noninteger

powers ofu in the near boundary expansion. This, alongwith
the presence of six undetermined fields makes the numerical
problem harder to deal with. We can simplify the problem
considerably by taking into account the conditions relevant
for the quark gluon plasma phenomenology. In particular,
high estimations of axial charge n5 reach only up to n5=s ∼
0.1 (see for instance [68,69]), where s is the entropy density
of the plasma. With this in mind, we take the small axial
charge limit: n5 → ϵn5. In our ansatz this amounts to

A ¼ −ϵAtðv; uÞdv; θ ¼ ϵθðv; uÞ;
V ¼ B

2
ðx dy − y dxÞ þ ϵVzðv; uÞdz; ð2:12Þ

and then solve the equations at zeroth and first order in ϵ. In
Appendix A, we show that the error caused by this approxi-
mation is small by comparing the small charge evolution to
the full result (at Δ ¼ 0). In the nonexpanding case, the
zeroth order equations

ξ02 þ 2ðu2Σ0Þ0
u2Σ

¼ 0;

3Σ0

Σ
f0 þ

�
6Σ02

Σ2
−
3

2
ξ02

�
f þ 1

2

B2e−2ξ

u4Σ4
−
12

u4
¼ 0;

fξ00 þ
�
f0

f
þ 3Σ0

Σ
þ 2

u

�
fξ0 þ 1

3

B2e−2ξ

u4Σ4
¼ 0;

f00 þ
�
4Σ0

Σ
þ 2

u

�
f0 þ

�
2Σ02

Σ2
−
1

2
ξ02

�
f −

B2e−2ξ

6u4Σ4
−
12

u4
¼ 0;

ð2:13Þ

are solved by a static background configuration for the
metric. We denoted derivatives with respect to the radial

5We work in the radial gauge, namely the radial components of
both gauge fields are set to zero.
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coordinate u with a prime. The scale L has been set to 1. To
find the background configuration, we have to solve for the
metric fields ðf; ξ;ΣÞwith appropriate boundary conditions.
In particular, we demand AdS5 asymptotics and the presence
of a regular horizon which we choose to be at uh ¼ 1. Since
the background is staticwemay unambiguously compute the
temperature of the black hole, which matches that of the dual
field theory.

T ¼ 1

2π

�
−
u2

2
∂uf

�����
uh

: ð2:14Þ

The four equations are not independent, the last one is
implied by the first three equations and their radial deriva-
tives. Note that the background is static and takes into
account the presence of the magnetic field but is uncharged.
Einstein’s equations at first order in ϵ are trivially satisfied,
corrections appear at order ϵ2 and are neglected at linear
order. Thematter equations ofmotion however are nontrivial
at first order in ϵ:

A00
t þ

�
3Σ0

Σ
þ 2

u

�
A0
t −

ΔðΔþ 2Þ
u2

θ0 þ 8αB
u2Σ3

V 0
z ¼ 0;

Ȧ0
t þ

ΔðΔþ 2Þ
u2

ðAt − θ̇ þ u2fθ0Þ þ 8αB
u2Σ3

V̇z ¼ 0;

V̇ 0
z þ V̇z

�
Σ0

2Σ
þ ξ0

�
−
1

2
u2fV 0

z

�
f0

f
þ Σ0

Σ
þ 2ξ0 þ 2

u

�

−
1

2
u2fV 00

z −
4αB
e2ξΣ

A0
t ¼ 0;

θ̇0 þ θ̇
3Σ0

2Σ
−
1

2
u2fθ00 −

1

2
u2fθ0

�
f0

f
þ 3Σ0

Σ
þ 2

u

�

þ 1

2
A0
t þ

3Σ0

2Σ
At ¼ 0:

We denote time derivatives with an overdot. The previous
equations are not independent, in particular the time deriva-
tive of the first one is implied by the other three equations and
their radial derivatives. Thus, the first equation may be
regarded as a constraint on the initial data. The metric fields
ðf;Σ; ξÞ are those obtained solving the Einstein’s equations
at zero order in ϵ. Recall that these fields contain the
information regarding the magnetic field. We linearize the
matter fields ðAt; Vz; θÞ to first order in ϵ, which means that
wemay rescale all fields by the same amount and we still get
a valid solution. These rescalings will later play an important
role when we discuss the initial state.
A valid initial state is specified by giving a profile to two

of the three matter fields. In particular, we shall start with a
trivial profile for Vz: Vzð0; uÞ ¼ 0; and with Atð0; uÞ ¼
n5ð0Þu2þΔ þ 2þΔ

3þΔ q̇5ð0Þu3þΔ. The initial profile for θ is
obtained solving the constraint equation, i.e., the equation
without time derivatives. Physically this corresponds to a
nonequilibrium state in which there is no chiral magnetic

current and there may be some amount of axial charge
whose initial time evolution is captured by q̇5ð0Þ.

B. Expanding plasma

In this section we detail the ansatz for a boost invariant
expanding plasma which is phenomenologically more
relevant than the case of the static plasma. In order to be
consistent with the notation of the last section, we chose the
magnetic field to point in the z direction and the plasma is
expanding along the η̂ direction. At the conformal boun-
dary, we demand that the boundary metric is of the form
[36,70–73]

lim
u→0

L2

u2
ds2 ¼ −dτ2 þ τ2dη̂2 þ dy2 þ dz2; ð2:15Þ

which can be achieved by making the following ansatz

ds2¼−fðτ;uÞdv2−2L2

u2
dudτ

þΣðτ;uÞ2ðe−ξ1ðτ;uÞ−ξ2ðτ;uÞdξ2þeξ1ðτ;uÞdy2þeξ2ðτ;uÞdz2Þ:
ð2:16Þ

To recover the metric (2.15) at the boundary, we impose
(at u ¼ 0)

f ¼ L2

u2
; Σ ¼ τ1=3

L4=3u
; ξ1 ¼ ξ2 ¼ −

2

3
log

�
τ

L

�
:

ð2:17Þ

The ansatz for the matter fields is the same as in Eq. (2.12).
Note that due to the expansion of the plasma the magnetic
field and axial charge (at Δ ¼ 0) decay with 1=τ due to
dilution. As we will see, in this work the relaxation of the
axial charge is modified at finite Δ. Similar to the static
case, we solve the equations of motion to first order in ϵ.
The main difference is that the background is time
dependent due to the expansion of the plasma and the
energy density (and hence temperature), longitudinal and
transverse pressure, magnetic field, and axial charge decay
with time.
In order to relate our parameters to three-flavor QCD, we

follow our matching procedure outlined in [34,35,74]. In
the infinite plasma, the entropy density is proportional to
the area of the black hole horizon ABH

s ¼ ABH

4GNVolðR3Þ ¼
2π

κ25

�
L
uh

�
3

¼ 2π4L3

κ25
T3; ð2:18Þ

where uh is the black hole horizon. Similarly, the expand-
ing background asymptotes to the Bjorken expanding
plasma at very late (proper) time whose gravitational dual
was introduced in [75,76]. The dual geometry may be
viewed as a black hole whose horizon is moving away from
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a boundary observer. As discussed in [77,78], the asymp-
totic Bjorken geometry may be mapped onto a static black
hole with metric

ds2 ¼ π2T2
0L

2

ρ

�
−fðρÞ τ

2
0

t20
dt2 þ 4

9
t2
τ20
t20
dη2 þ 3

2

t0
t
dx2⊥

�

þ L2

4fðρÞ
dρ2

ρ2
; ð2:19Þ

where fðρÞ ¼ 1 − ρ2; ρ is a mix of the original radial
coordinate and proper time, ðt=t0Þ ¼ 3=2ðτ=τ0Þ2=3 and the
subscript zero refers to the initial values of the respective
quantities. The entropy associated with (2.19) reads
s ¼ 2π4L3T3

0=κ
2
5. Note that even though in the Bjorken

expanding plasma the temperature is proper time depen-
dent, the entropy density per invariant volume is constant in
time [75,76,79,80]. On the field theory side, recall that the
Stefan-Boltzmann value of the entropy density sSB is

sSB ¼ 4

�
νb þ

7

4
νf

�
π2T3

90
; ð2:20Þ

where νb¼ 2ðN2
c−1Þ and νf ¼ 2NcNf with Nc ¼ 3 ¼ Nf.

Moreover, the axial anomaly of three-flavor QCD is
given by

AQCD ¼ Nc

32π2
2

�
4

9
þ 1

9
þ 1

9

�
¼ 1

8π2
: ð2:21Þ

The Stefan-Boltzmann value is only reached at asymptoti-
cally high temperatures. Thus, we take the relative factor of
3=4 which arises in the match of the black hole entropy of
gravitational models to N ¼ 4 super-Yang-Mills plasma
(at infinite ’t-Hooft coupling) [81]. Taking 3sSB=4 ¼ sBH,
yields the matching conditions for Newton’s constant and
the Chern-Simons coupling

α

2κ25
¼ 1

8π2
; κ25 ¼

24π2

19
: ð2:22Þ

Note that the choice of α depends on the value of Newton’s
constant and we chose the parameters so that they resemble
the physics of three-flavor QCD. Our choice of α ¼ 6=19
does not correspond to the same value for the strength of
the anomaly as in [36] due to different choices for κ25.

III. NUMERICAL RESULTS

In this section we start our discussion, with the infinite,
static plasma by solving the Eq. (2.3) numerically. First, we
discuss the so-called quasinormal modes which capture the
late time behavior of the system close to equilibrium. We
continue by discussing the explicit temporal evolution of
the chiral magnetic current in the static plasma in the small

charge limit, with emphasis on the Δ dependence. Finally,
we extend our discussion to an expanding plasma which is
relevant for heavy-ion collision phenomenology.
We solve the equations of motion numerically with a

pseudo-spectral methods in the radial direction [82]6 and a
fourth order Runge Kutta scheme for the time evolution.

A. Quasinormal modes

The quasinormal modes (QNMs) for the unbroken
Uð1ÞV × Uð1ÞA symmetry (ms ¼ 0) were first computed
in [32,33]. In this section, we focus on the effect of finite
ms. At finite ms, the Uð1ÞA symmetry is explicitly broken
and axial charge is no longer conserved. The chiral
magnetic wave [23] is no longer a propagating sound wave
but at small momenta (and in particular zero momentum)
the dynamics is purely diffusive as shown in Appendix A of
[42] or [44] (probe limit). The mode formerly associated
with axial charge conservation acquires a gap in the
imaginary part while the mode associated with vector
charge conservation is still a (diffusive) hydrodynamic
mode. Above a certain critical momentum the symmetry
is restored and the chiral magnetic wave starts propagating.
The gap ωgap ¼ −iΓ at zero momentum in the imaginary
part determines the relaxation time of axial charge on which
we will focus on in the following.
In the left panel of Fig. 1, we show the dependence of the

axial charge relaxation time on the strength of the non-
Abelian anomaly governed by the mass ms. As is evident,
the nonconservation becomes stronger for increasing ms
and axial charge has a shorter life time. Let us discuss the
effect of B in the relaxation time. The black curve
corresponds to a small magnetic field (B=T2 ¼ 0.01) and
the results for α ¼ 0 and α ¼ 6=19 are not distinguishable
by eye in this plot. The green and red curves correspond to a
stronger magnetic field (B=T2 ¼ 2.96). The green curve
corresponds to α ¼ 0 and Γ=T increases for stronger
magnetic fields. For the red curve, α ¼ 6=19 and Γ=T
decreases for the stronger magnetic field. In the right panel
of Fig. 1, we depict the dependence of the axial charge
relaxation time on the Abelian anomaly at fixed
m2

sL2 ¼ 0.04, B=T2 ¼ 0.02 (blue), and B=T2 ¼ 2.96
(red). Contrasting to the left panel, increasing the strength
of the Abelian anomaly “protects” axial charge for B=T2 ¼
2.96 hence increasing its lifetime. The behavior of the blue
curve is qualitatively similar but on a smaller overall scale.
In [42], we show the dependence of the axial charge
relaxation time on B=T2 at fixed α and msL. For α≲ 0.15
increasing the magnetic field shortens the lifetime of axial
charge. However, if α≳ 0.15 increasing B=T2 protects
axial charge and it is relaxing slower. In this work, we
explicitly show that the real-time evolution follows the

6See also Appendix A of [83] for a summary applied to a
similar setup as our holographic model.
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QNM prediction at late times (see Appendix B). Moreover,
we will show that in the case of the expanding plasma
(where the magnetic field decays with time) axial charge
relaxation accelerates at late times (since weaker magnetic
fields imply fast charge relaxation for α > 0.15).

B. Static plasma dynamics

We first discuss the qualitative features of the chiral
magnetic current and axial charge as we explore the
parameter space ðB; T; α;ΔÞ and then provide new results
concerning LHC and RHIC-like simulations.
In order to solve the system of four equations (2.15) we

need to provide an initial state which satisfies the constraint
equation. One unambiguous way of specifying the initial
state is to choose two profiles Að0; uÞ and Vð0; uÞ and then
solve the constraint equation initially to find θð0; uÞ. The
profiles [Atð0; uÞ, Vzð0; uÞ] contain the information regard-
ing the initial axial charge and chiral magnetic current
which can be read off according to Eqs. (2.10) and (2.11).
Note that the equilibrium solution to Eq. (2.15) is trivial,
which means that both axial charge and chiral magnetic
current are identically zero. However, we know that axial
charge may be generated in the initial stages of the collision
and we may distinguish two qualitatively different scenar-
ios: (A) axial charge is generated before we start the
holographic simulation or (B) axial charge generations
start simultaneously with the holographic simulation. In the
first case, we should start with some nonzero amount of
axial charge in the system and we implement that in the
initial state by choosing Atð0; uÞ ¼ n5ð0Þu2þΔ; in the
second case we have vanishing initial charge and we
assume that q̇5ð0Þ ≠ 0, so that Atð0; uÞ ¼ 2þΔ

3þΔ q̇5ð0Þu3þΔ,

which triggers the generation of axial charge.7 In both cases
we assume that there is no chiral magnetic current initially
and we work with Vzð0; uÞ ¼ 0. It is useful to bear in mind
that given a solution to Eq. (2.15), we get a different
solution rescaling (At; Vz; θ) by the same amount. In
particular this will rescale the value of n5ð0Þ in (A) or
the value of q̇5ð0Þ in (B). As a consequence, the qualitative
features must be the same for simulations with different
values of n5ð0Þ or q̇5ð0Þ, respectively. Nonetheless, we
stress that the result is only valid for small values of n5.

C. Parameter space: Qualitative features

The chiral magnetic current in a static plasma without the
Stückelberg field (i.e., ms ¼ Δ ¼ 0) was studied in [34].
There, we discussed that a physically sensitive value for the
anomaly coefficient is α ¼ 6

19
[see also the discussion

leading to Eq. (2.22)]. However, we observed that quali-
tative differences are amplified for bigger values of α and so
we fix α ¼ 1.5 for this section. Finally, we display
simulations where we vary the dimensionless parameter
B=T2, ranging from ∼1 to ∼10. Since our solutions come
from a linear system, we fix rescalings by normalizing both
vector current and axial charge to the peak value of axial
charge.

FIG. 1. Left: dependence of the axial charge relaxation rate Γ on the strength of the non-Abelian anomaly for two different values of
the magnetic field. The black curve corresponds to B=T2 ¼ 0.01. The two curves for α ¼ 0 and α ¼ 6=19 are indistinguishable by eye.
The green (α ¼ 0) and red (α ¼ 6=19) curve correspond to B=T2 ¼ 2.96. Note that the Γ=T of the green curve is larger than that of the
black curve. Right: dependence of the axial charge relaxation rate on the strength of the Abelian anomaly α ¼ 6=19 at fixed
m2

sL2 ¼ 0.04, and B=T2 ¼ 0.02 (blue) and B=T2 ¼ 2.96 (red).

7We could have instead chosen a state where q̇5ð0Þ ¼ 0 but the
second (or nth) derivative is different from zero and this would
also lead to axial charge generation. The results for these
alternative initial states are qualitatively similar to the ones
presented here. The choice q̇5ð0Þ ≠ 0 is further supported by
the fact that axial charge obeys a first order differential equation.
See also [84] for the equation that drives axial charge generation.

REAL-TIME DYNAMICS OF AXIAL CHARGE AND CHIRAL … PHYS. REV. D 108, 126010 (2023)

126010-7



The results for α ¼ 1.5 are shown in Fig. 9 in
Appendix C. We find that higher values of Δ result into
faster dissipation, since Δ measures the nonconservation of
the axial charge. Moreover, dissipation is more significant
for lower magnetic fields as we already expected from the
QNM results of the previous section. The chiral magnetic
current and axial charge display oscillatory behavior, which
is more prominent as the magnetic field is increased. For
the chiral magnetic current the presence/absence of oscil-
lations is independent of the value of Δ while for the axial
charge they are amplified as we increase Δ.
Let us now briefly discuss the results for α ¼ 6

19
. As

expected, higher values of Δ yield faster dissipation. The
oscillatory behavior is absent even for the strongest
magnetic field. Actually, in [32,33] it was shown that
the quasinormal modes are controlled by αB, so the small
value of α puts us into the parameter space where
oscillations are absent (for the considered magnetic fields).
As for the initial response, it can be checked numerically
that the chiral magnetic current reacts (slightly) faster (in
dimensionless units) when the magnetic field increases.
In Table I, we characterize the time it takes for the chiral

magnetic current and axial charge density to reach their
maximum value. At fixedΔ, we see that the chiral magnetic
current peaks faster if we increase the strength of the
magnetic field while the opposite is true for the axial charge
density which peaks slower at larger values of the magnetic
field. If we fix B=T2 and increase Δ, then we see that the
chiral magnetic current and the axial charge density peak
faster.
Finally, in Appendix B, we explicitly demonstrate that

the exponential late time falloffs match the QNM frequen-
cies as expected.

D. Results for RHIC and LHC parameters

We now perform simulations with parameters relevant for
the quark-gluon plasma. We shall work with the estimated
value of α ¼ 6

19
[34]. The value of Δ is not known but it is

expected to be small. We take here a conservative approach
and display results for two distinct values: Δðm2

s ¼
1=499Þ ≃ 0.001 and Δð ffiffiffi

2
p

=3Þ ≃ 0.11. As initial states, we
again use (A) having a finite axial charge initially and zero
chiral magnetic current current: Vzð0; uÞ ¼ 0, Atð0; uÞ ¼
n5ð0Þu2þΔ and (B) having initially zero axial charge and

chiral magnetic current but nonzero time derivative for the
axial charge: Vzð0; uÞ ¼ 0, Atð0; uÞ ¼ 2þΔ

3þΔ q̇5ð0Þu3þΔ.
In order to choose sensitive parameters for the plasma

conditions at both RHIC and LHC we follow [85], which
gives a centrality dependence of magnetic field peak
and axial charge density normalized to entropy density
for Au − Au collisions at

ffiffiffi
s

p ¼ 200 GeV. We reproduce it
in Table II for RHIC parameters and in Table III for LHC
parameters.8 We proceed now to elucidate the meaning of
Bmax and T0.
In [85] the time evolution of the magnetic field is

parametrized as

TABLE I. Time (in dimensionless units v̄≡ vϵ1=4L ) at which chiral magnetic current J finds its peak value for initial states A and B and
axial charge J5 finds its peak value for initial state B. We fixed α ¼ 6

19
.

Δ 0.001 0.05 0.29

B
T2 0.99 2.98 5.04 7.19 10.72 0.99 2.98 5.04 7.19 10.72 0.99 2.98 5.04 7.19 10.72

v̄JAmax
2.3 2.2 2.1 2.0 1.8 2.2 2.1 2.0 1.9 1.7 1.9 1.9 1.8 1.7 1.6

v̄JBmax
2.5 2.4 2.3 2.1 2.0 2.3 2.3 2.2 2.1 2.0 2.1 2.1 2.0 2.0 1.9

v̄JB
5;max

1.75 1.76 1.77 1.78 1.80 1.63 1.63 1.65 1.66 1.70 1.38 1.39 1.41 1.44 1.50

TABLE II. Data for Au − Au collisions in RHIC at energyffiffiffi
s

p ¼ 200 GeV. The first three rows are taken from [85]. The
subscript sim indicates the value at the initial time of our
simulation τRHICsim ¼ 0.3 fm=c.

Centrality bin 10–20% 20–30% 30–40% 40–50%

ðn5=sÞ0 0.065 0.078 0.095 0.119
T0ðGeVÞ 0.341 0.329 0.312 0.294
eBmaxðm2

πÞ 2.34 3.1 3.62 4.01
TsimðGeVÞ 0.429 0.414 0.393 0.370
eBsimðm2

πÞ 1.87 2.48 2.90 3.20

TABLE III. Data for Pb − Pb collisions in LHC at energyffiffiffi
s

p ¼ 5.02 TeV. The subscript sim indicates the value at the
initial time of our simulation τLHCsim ¼ 0.1 fm=c.

Centrality bin 10–20% 20–30% 30–40% 40–50%

ðn5=sÞ0 0.039 0.045 0.059 0.075
T0ðGeVÞ 0.48 0.47 0.43 0.40
eBmaxðm2

πÞ 59.2 78.5 91.7 101.6
TsimðGeVÞ 0.87 0.85 0.78 0.73
eBsimðm2

πÞ 2.28 3.02 3.53 3.91

8We thank Shuzhe Shi for providing us with the magnetic field
for LHC collisions, in particular Pb − Pb collisions atffiffiffi
s

p ¼ 5.02 TeV, (estimations done with the optical Glauber
model) at different centralities as well as the temperatures for
both LHC and RHIC.
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BðτÞ ¼ Bmax

1þ τ2=τ2B
; ð3:1Þ

where τB is the lifetime of themagnetic field. As discussed in
[34], wemay take τRHICB ¼ 0.6 fm=c and τLHCB ¼ 0.02 fm=c.
The value of temperature corresponds to the equilibration
time,whichmay be taken to τ0 ¼ 0.6 fm=c for both cases.At
late times, in the Bjorken regime, temperature evolves
according to

TðτÞ ¼ T0

�
τ0
τ

�
1=3

: ð3:2Þ

Values of axial charge n5 at different initial temperature may
be obtained using the scaling relation

ðn5=sÞLHC ¼
�
TRHIC

TLHC

�
3=2

ðn5=sÞRHIC: ð3:3Þ

Notice that the valueBmax is obtained at τ ¼ 0, whereas T0 is
obtained at τ0. In order to obtain a consistent picture we use
Eqs. (3.1) and (3.2) to obtain both B and T at some

intermediate time between the plasma formation9 and the
equilibration time. In particularwe choose τRHICsim ¼ 0.3 fm=c
and τLHCsim ¼ 0.1 fm=c. This finally reproduces the values
Bsim andTsim found in both Tables II and III. Lastly, thevalue
of axial charge is taken to be the peak value. We obtain
multiplying n5=s by the black hole entropy, which has been
already matched to the expected entropy of the plasma [34].
We stress that in this section the plasma is nonexpanding

and neither temperature nor magnetic field evolve in this
setup. Similarly, our ansatz is homogeneous and it is
therefore not possible to simulate genuine off-centered
collisions. The values displayed in both tables are meant to
give representative parameters for the simulation and may
serve as a guide for future studies with more refined
holographic setups. In the next section, we present phe-
nomenologically more realistic simulations with an
expanding plasma where temperature and magnetic field
decrease over time.
The results for RHIC and LHC-like simulations are

displayed in Figs. 2 and 10 (Appendix C), respectively.

FIG. 2. Solid lines correspond to initial state (A) whereas dashed lines correspond to state (B). Left: chiral magnetic effect and Right:
axial charge for simulations with RHIC-like parameters as a function of centrality. We set α ¼ 6

19
as well as Δ ¼ 0.001 (top) and

Δ ¼ 0.11, respectively. The labeling refers to data in Table II applies to both solid and dashed lines in a correlated manner.

9See [86] for an estimation of the plasma formation time.
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In both cases increasing Δ leads to stronger charge
dissipation. The vector current obtained from states (A)
and (B) are roughly indistinguishable for small values of Δ,
whereas for higher values the overall amplitude differs up
to a factor of 3=4. After the peak, axial charge decays
according to the quasinormal mode behavior outlined in the
previous section. In both figures the parameters corre-
sponding to bigger centralities result into larger chiral
magnetic current (compared to the peak value of axial
charge).10 The reason is that the ratio B=T2 is also higher
for these cases. The vector current and axial charge in LHC-
like simulations build up faster than in RHIC-like simu-
lations. From the previous section we know that the buildup
time is roughly constant in dimensionless units. Turning the
result into dimensionful units accounts for the difference at
different energies.
Remarkably, the CME obtained for LHC-like parameters

is smaller by a factor of 3 compared to RHIC-like
simulations in dimensionless units. In other words, we
would need nLHC5 ≃ 3nRHIC5 for both signals to be roughly
equal in amplitude. The explanation lies in the much shorter
lifetime of the magnetic field at LHC as compared to RHIC.
One could argue that choosing an earlier time for the LHC
simulation would result into a higher magnetic field and
consequently larger chiral magnetic current, however, as
discussed previously, it is not clear that any plasma has
formed before τ ¼ 0.1 fm=c at LHC. Indeed, estimates of
the axial charge in the literature [36,87] seem to give
nLHC5 ≃ 3nRHIC5 .
The precise value of the chiral magnetic current is to be

taken as crude estimation, since (among other things) the
magnetic field is static in this setup. However, this is again
in line with the statement that the chiral magnetic effect is
favored at RHIC, a similar conclusion to [34]. This result is
seemingly different from what we will obtain in the next
section (and what was also obtained in [36]) where lower
temperatures lead to less CME signal. The difference in the
results are the different treatment in the lifetime of the
magnetic field and its decay with time (in one simulation
we fix the initial data assuming a decay of ∼1=ð1þ τ2=τ2BÞ
and then keep B static. In the expanding plasma simulation
the magnetic field decays as ∼1=τ and thus the two
simulations are not really comparable).

E. Expanding plasma dynamics: Initial parameters

In order to perform simulations for phenomenologically
relevant parameters, we connect our holographic simula-
tion to hydrodynamics. We stress that the following
equations and approximations are only used to approximate
initial conditions for our holographic simulation. The
holographic computation is valid beyond Bjorken

hydrodynamics and the time evolution of the (holographic)
energy density is determined by the bulk equations of
motion. We aim to derive a flow parameter at late times
which we can use to express our quantities in dimensionless
units. We normalize our quantities to the late time flow
parameter and also a posteriori adjust the initial conditions
that lead to the desired late time behavior. Neglecting the
magnetization of the plasma, the evolution of the energy
density in the Bjorken regime reduces to [63,64,71,88,89]

∂τ

�
ϵþ bðτÞ2

2

�
þ 4

3

ϵ

τ
−
4

3

η

τ2
þ bðτÞ2

τ
¼ 0: ð3:4Þ

In a (strong) magnetic field, the viscosity η is of course not a
scalar quantity but a tensor [40,90]. However, for simplicity
we treat it as a scalar which is valid for B ≪ T2. Using
η=s¼1=ð4πÞ, 4=3ϵ¼ 4p¼ sT≈4=3cT4,11 and bðτÞ¼B=τ,
we find

∂τϵþ
4

3

ϵ

τ
¼ 4

9cπτ2
ϵ3=4 ð3:5Þ

with solution

ϵðτÞ ¼ ðc1=4 − 6πc1τ2=3Þ4
1296π4τ4

; ð3:6Þ

which scales like ϵ ∼ c41=τ
4=3 þ � � � at late times. The con-

stant c1 is determined by connecting to the expression
known from ideal Bjorken hydrodynamics ϵ ∼ ϵ∞ðτ∞τ Þ4=3 þ
Oð1=τ2Þ, i.e., c1 ¼ ϵ1=4∞ τ1=3∞ .
We choose our initial parameters as follows. From lattice

QCD [91] or from the equation of state for conformal
fluids, we know that the energy density is related to the
temperature by ϵ ¼ 3p ¼ 3=4sT ¼ 19π2

16
T4 for tempera-

tures around T ¼ 300–350 MeV. This fixes the constant
c in Eq. (3.6) as c ¼ 19π2=16. In RHIC collisions with
beam energy

ffiffiffi
s

p ¼ 200 GeV the parameters commonly
used in hydrodynamic simulations are B ¼ m2

π for the
magnetic field strength and T0 ¼ 300 MeV for temper-
ature. Together with initial time τ0 ∼ 0.6 fm [68] the initial
conditions yield the dimensionless quantities ϵB=B2 ≈ 247

and τ0ϵ
1=4
0 ≈ 1.69. In addition to this, we consider a slightly

lower and higher beam energy as indicated in Table IV. In
our holographic simulations, we can go beyond (Bjorken)
hydrodynamics and start our simulations at an earlier
initial time.

10We stress that the peak value of axial charge also depends on
centrality. According to the data in Tables II and III, the peak
value of axial charge also increases as a function of centrality.

11These equations hold for conformal theories at zero charge—
recall that we neglect the backreaction of the charge density onto
the evolution of the energy momentum tensor—and if we neglect
the susceptibilities that appear in the equation of state due
to the magnetic field, which are negligible at late times. More-
over, the constant c defines the normalization of energy density to
temperature.
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In order to connect to the hydrodynamic simulations, we
adjust our initial parameter according to the following
procedure: Starting from a fixed initial state with vanishing
axial charge, chiral magnetic current, and dynamical
pressure at a fixed initial time ðτL ¼ 0.2Þ we determine
ε∞ by fitting the late time behavior to Eq. (3.6). We then
adjust the initial magnetic field B and energy density ε on
the holographic side until we find an ε∞ that satisfies the
two dimensionless ratios ε∞=B2 and τε1=4∞ as indicated in
Table IV. Fixing the initial data in this way is similar to the
procedure outlined in [70]. By determining the initial data
by adjusting ε∞ in Eq. (3.6), we connect to a Bjorken hydro
simulation that runs through our desired initial values (even
though the energy density in our simulation does not go
through those parameter pairs since the holographic com-
putation is beyond Bjorken hydrodynamics at early times).
It has also the advantage that we can normalize our
quantities to time-independent quantities.

F. Expanding plasma: Numerical results

In Fig. 3, we depict the simulation for the axial charge
and chiral magnetic current corresponding to the

ffiffiffi
s

p ¼
200 GeV initial data outlined in Table IV. The massms that
governs the nonconservation of axial charge increases from
black to red resulting in a faster decaying axial charge and
smaller CME signal. At late times andΔ ¼ 0, we expect the

axial charge density and the magnetic field to decrease like
∼1=τ due to dilution. At late times and small B=T2, the
axial susceptibility we can use n5 ∼ χ5μ5 ∼ z−2h μ5 þ
OðB=T2Þ (and T ∼ z−1h ∼ τ−1=3 at late times). Hence, the
chiral magnetic current should fall off as hJCMEi ∼
αBn5=χ5 ∼ 1=τ4=3. At finite ms the falloffs of n5 and
hJCMEi are accelerated due to the nonconservation.
The late time falloffs of the axial charge can no longer be

fitted by n5 ∼ e−Γτ=τ but the exponent in the denominator
and the argument of the exponential are modified. In
particular, the axial charge density decays faster than
1=τ. Since the chiral magnetic current is reliant on axial
charge its late time falloff is also accelerated. We show the
falloff in the left plot of Fig. 5.
In the case of Δ ¼ 1.25 × 10−7, the fits to a function of

the form AeBτþC=ττD are

hJCMEi=ϵ3=4∞ ∼ 0.0026=τ1.35e0.74=τ−10
−5τ;

Avð1Þ ∼ 0.304=τ0.34e0.74=τ−10
−5τ;

n5=ϵ
ð3þΔÞ=4
∞ ∼ 0.390=τ1.00e0.0038=τ−10

−5τ:

The power law scalings match closely what we expect for
the Δ ¼ 0. In the case of Δ ¼ 0.3, the fits are

hJCMEi=ϵ3=4∞ ∼ 0.017=τ2.27e1.88=τ−0.069τ;

Avð1Þ ∼ 1.64=τ1.33e2.77=τ−0.066τ;

n5=ϵ
ð3þΔÞ=4
∞ ∼ 2.37=τ2.00e2.54=τ−0.068τ:

The power law scalings are seemingly modified.
One reason for this could be that the charge relaxation

rate, which is the factor in the exponent, increases as the
magnetic field decreases (for the value of α that we chose in
this work; see Fig. 1 of [42]). In particular, in [42], we show
by considering the QNMs around a static background
that Γ ∼ c1 − c2B2. Naïvely, this leads to a decay of the
form e−Γτ ∼ e−ðc1τ−c2b2=τÞ (for α ¼ 6=19). Moreover, the

TABLE IV. Initial data expanding plasma simulation where we
assumed on the hydro side that the values for B and T are for
τini ¼ 0.6 fm.

Beam energy
ffiffiffi
s

p ¼ 175 GeV
ffiffiffi
s

p ¼ 200 GeV
ffiffiffi
s

p ¼ 250 GeV

T0 289 MeV 300 MeV 316 MeV
B 0.875m2

π m2
π 1.25m2

π

nmax
5 =s1þΔ=3 0.875 × 0.065 0.065 1.25 × 0.065

ϵB=B2 279 247 194

τ0ϵ
1=4
0

1.63 1.69 1.78

FIG. 3. Axial charge density (left) and chiral magnetic current (right) as a function of time corresponding to the
ffiffiffi
s

p ¼ 200 GeV initial
conditions. The coupling ms increases from blue (Δ ¼ 1.25 × 10−7) to red (Δ ¼ 0.3).
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FIG. 4. Axial charge density (left) and chiral magnetic current (right) as a function of time corresponding to the
ffiffiffi
s

p ¼ 250 GeV (red),ffiffiffi
s

p ¼ 200 GeV (black), and
ffiffiffi
s

p ¼ 150 GeV (blue) initial conditions. The coupling Δ ¼ 0.118 is fixed.

FIG. 5. Left: time evolution of hJCMEi=ϵ3=4∞ (blue), n5=e=ϵ
3=4þΔ=4
∞ (black), and Avð1Þ (purple). The dashed lines correspond to

Δ ¼ 1.2510−7 and the solid lines to Δ ¼ 0.3. The red lines are the fits outlined in the main text. Right: double logarithmic plot depicting
the late time behavior of the chiral magnetic current for different Δ (black lines). The green dashed lines are formula (3.7) for the
corresponding values. The plots are for the

ffiffiffi
s

p ¼ 200 GeV initial conditions.

FIG. 6. Build up times (time to the peak) for the axial charge density (left) and chiral magnetic current (right). The inset shows the
difference of build up time as a function of Δ compared to the smallestΔ. The build up times decrease for increasingΔ. The plots are for
the

ffiffiffi
s

p ¼ 200 GeV initial conditions.
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anomalous dimension increases withms (Δ) but we normal-
ize our quantities to the time independent quantity ϵ∞.
At finite Δ, we were able to establish a horizon formula

which correctly reproduces the chiral magnetic current

hJCMEi ¼
24π2

19κ25

α

3ð1 − ΔÞAvðτ; 1ÞBðτÞ; ð3:7Þ

where the first factor in the product is 1, Avðτ; 1Þ is the
horizon value of the temporal component of the axial
gauge field. Note that since we impose that Avðτ; 0Þ ¼ 0
the horizon value may play the role of an axial chemical
potential and a relative factor of 3 also appears in the
discussion of covariant and consistent anomaly. The
remarkable agreement can be seen in the right side of
Fig. 5.
In Fig. 4, we show the dependence of axial charge and

chiral magnetic current on the collision energy at a small,
fixed mass ms. The three different initial conditions out-
lined in Table IV correspond to

ffiffiffi
s

p ¼ 250 GeV (red),ffiffiffi
s

p ¼ 200 GeV (black), and
ffiffiffi
s

p ¼ 150 GeV, respectively.
Furthermore, we fixed the peaks of the axial charge to the
values in the table so that the peak decreases with
decreasing the collision energy. The maximum is reached
at slightly earlier times for smaller collision energies.
Moreover, the chiral magnetic current, which is mostly
driven by the magnetic field and axial charge decreases
since both decrease with the collision energy.
The dependence of the maximum on the strength of the

non-Abelian anomaly is further detailed in Fig. 6, which
shows the time where the axial charge and chiral magnetic
current peak as well as the time difference between the
peaks as a function of the mass ms. Increasing the mass (or
in other words Δ), axial charge and current peak at earlier
times. For small enough ms (or equivalently Δ) the
decrease is linear in Δ as shown by the insets.
Moreover, the relative time between the peak of chiral
magnetic current and the peak of axial charge increase with
Δ which means that the maximum of the axial charge
moves to earlier times faster. We detail the fits in Table V.

IV. CONCLUSIONS

We investigated the real-time dynamics of axial charge
due to the non-Abelian anomaly and its impact on the chiral
magnetic current in detail.

In the first part of the paper, we focused on a static
plasma. The axial charge relaxation rate, which is related to
the Chern-Simons diffusion rate (see also [42]) is deter-
mined by the lowest QNM.More precisely it is given by the
gap in the imaginary part at zero wave vector. We showed
that the axial charge relaxation rate increases for increasing
strength of the non-Abelian anomaly ms and decreases for
increasing strength of the Abelian anomaly α. Moreover,
for α > 0.15, the axial charge relaxation rate decreases for
stronger magnetic fields. Since the axial charge relaxation
dynamics is governed by the gap of the QNM at zero wave
vector, we can investigate its dynamics in a homogeneous
simulation. In explicit time evolution of the static plasma,
we first performed a parameter scan. We verified that larger
values of ms lead to faster axial charge relaxation. At large
values of α and sufficiently strong magnetic fields, we
observe oscillations in the chiral magnetic current and axial
charge density. In the case of the axial charge density the
oscillations are amplified for increasing ms. Moreover,
chiral magnetic current and axial charge density peak faster
for increasing ms (at fixed B=T2 and α). If we vary B=T2 at
fixedms and α, then the chiral magnetic current peaks faster
for stronger magnetic fields while the axial charge density
peaks slower (since the axial charge relaxation rate
decreases with increasing the magnetic field). We then
considered simulations with initial conditions mimicking
the initial conditions of hydrodynamic simulations of RHIC
and LHC collisions. For the static plasma, we find that the
CME obtained for LHC-like parameters is smaller by a
factor of 3 compared to RHIC-like simulations in dimen-
sionless units.
In the second part of the paper, we considered an

expanding plasma in which the magnetic field falls off
with the inverse proper time (and also the energy density,
temperature and pressures are decreasing due to dilution).
We performed simulations for different ms with param-
eters mimicking collision energies of

ffiffiffi
s

p ¼ 250 GeV,ffiffiffi
s

p ¼ 200 GeV, and
ffiffiffi
s

p ¼ 150 GeV, respectively. The
chiral magnetic current decreases to the lower collision
energies due to smaller peak values of the axial charge
density. In the case of an expanding plasma, the Chern-
Simons diffusion rate and hence the axial charge relax-
ation rate are time dependent due to the falloff of the
magnetic field. For the value of the Abelian anomaly that
we considered, the axial charge relaxation rate increases
for decreasing magnetic field and axial charge relaxation
is accelerated at later times (since the magnetic field
decays as 1=τ). The modified relaxation dynamics also
impacts the chiral magnetic current which relies on the
axial charge and hence is decaying faster. We were able to
express the late time decay of the chiral magnetic current
in terms of the horizon value of the temporal component of
the axial gauge field Avðτ; 1Þ, the magnetic field, the
strength of the Abelian anomaly α and the strength of the
non-Abelian anomaly ms. Thus, Avðτ; 1Þ mimics the role

TABLE V. Change in build up time (time of the peak) with
respect to the smallest Δ as a function of Δ for Δ ≪ 1.

Beam energy in [GeV]:
ffiffiffi
s

p ¼ 175
ffiffiffi
s

p ¼ 200
ffiffiffi
s

p ¼ 250

δτpeakn5 ϵ1=4∞ 0.836Δ1.00 0.838Δ1.00 0.841Δ1.00

δτpeakCMEϵ
1=4
∞ 0.218Δ1.00 0.215Δ1.00 0.207Δ1.00

ðδτpeakCME − τδpeakn5 Þϵ1=4∞ 0.618Δ1.00 0.623Δ1.00 0.634Δ1.00
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of an axial chemical potential in our system out of
equilibrium with the explicitly broken Uð1ÞA symmetry.
We showed that the chiral magnetic current and axial

charge density peak faster for increasing Δ (the decrease in
time to the peak is linear in Δ for small Δ). Since the
decrease is faster in case of the axial charge density the
difference in peak times of axial charge density and axial
current increases. Note that the axial charge density reaches
its peak faster and the chiral magnetic current lags.
The first valuable extension of our work would be to

consider a finite size system in a box and study interplay of
expansion and topological transitions driving the system
out of equilibrium. Note that finite volume effects on the
CME dynamics were discussed in [92].
Furthermore, it would be intriguing to explore the time

dependence of the energy density on the hydrodynamic
side (3.4) considering all potential transport effects arising
from strong magnetic fields. This can be achieved by
extending the hydrodynamic theory presented in [40] to
encompass Uð1ÞV ×Uð1ÞA. Note that the holographic time
evolution on which our results are based already includes
all possible transport effects since the energy density
evolves according to the bulk equations of motion which
capture the full field theory out-of-equilibrium dynamics.
Additionally, investigating the impact of dynamical

(Abelian) magnetic fields along the lines of [93–95] would
be of great interest in the light of recent developments in
magnetohydrodynamics [96–98].
In the context of realistic heavy-ion collisions, where the

plasma undergoes rapid expansion, we have focused on
studying the homogeneous dynamics of the topological
axial charge. To enhance our understanding, it would be
highly valuable to expand this analysis to include spatial
dynamics as for example presented in [42], which would
allow making the magnetic field time dependent.
In view of the beam energy, it would be valuable to

perform an energy scan in holography focusing on low
temperatures. However, our current holographic model is
limited to sufficiently high temperatures in the plasma

phase (around T ∼ 300 MeV), as we have not incorporated
a realistic behavior of the entropy density close to the QCD
phase transition. To explore dynamics at lower temper-
atures, it may be beneficial to employ more sophisticated
holographic models for QCD such as V-QCD (see [99] for a
recent review).
In future publications, we intend to address some of

these intriguing questions.
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APPENDIX A: SMALL CHARGE
APPROXIMATION

We have claimed that this approximation is to be trusted
only when charge is small. To be precise, it has to be small
compared to the other scales in the problem, e.g., temper-
ature, magnetic field, etc. It suffices that it is small
compared to one of them so that we can expand around
the dimensionless ratio of charge and that particular scale.
Let us discuss the dimensionless ratio n5=T3þΔ. In holog-
raphy, temperature appears in the combination 2πT, so it
seems reasonable to guess that the approximation is valid
so long as n5

ð2πTÞ3þΔ ≲ 0.5. We proceed now to verify this

intuition numerically. The full backreacted system has been

FIG. 7. Comparison of vector current q ¼ 1 and relative error for B ¼ 0.02 (left) and B ¼ 1 (right).
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solved forΔ ¼ 0 in [34] so we may compare an exact result
with our approximation. Two examples are shown in Fig. 7,
corresponding to n5=ð2πTÞ3 ¼ f0.15; 0.14g and B=T2 ¼
f0.228; 10.76g; respectively. In both cases the relative error
is below 5%, confirming our expectations. We will later see
that the parameters chosen lie in the small charge regime.

APPENDIX B: QNMs AND LATE TIME
BEHAVIOR

In this appendix, we explicitly show that the chiral
magnetic current and axial charge density falloff exponen-
tially at late times in the static plasma. Furthermore, by

FIG. 8. Left: chiral magnetic effect. Right: axial charge. Both: dashed lines correspond to the lowest quasinormal mode. Simulations
are for fixed B=T2 ¼ 10.09 and Δ ¼ 0.05. In the initial state, we impose JiniCME ¼ nini5 ¼ 0 and q̇ini5 ¼ 1.

FIG. 9. Left: chiral magnetic effect. Right: axial charge for simulations with α ¼ 1.5 for Δ ¼ 0.001 (top) and Δ ¼ 0.05 (bottom),
respectively. Solid lines correspond to initial state (A) whereas dashed lines correspond to state (B). Solid lines are normalized with
respect to the maximum value of n5, whereas dashed lines are normalized to the initial value of n5.
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overlaying the falloff with the lowest QNM we verify that
the exponential falloff is indeed governed by the lowest
QNM which describes the axial charge relaxation. An
example of this is depicted in Fig. 8. The figures shows that
the chiral magnetic current and the axial charge density
decay exponentially in time (in the static plasma) due to the
explicit breaking of the axial Uð1Þ.

APPENDIX C: ADDITIONAL FIGURES
PERTAINING TO THE STATIC SIMULATIONS

The results for simulations with α ¼ 1.5 are shown in
Fig. 9. The dashed and solid lines correspond to initial
states (A) or (B), respectively. Each plot is done at a fixed
value of Δ, which increases from top to bottom, and within
each plot we study the magnetic field dependence. We
show the evolution in dimensionless time, i.e., time
normalized to energy density vϵ1=4L . Clearly, higher values
ofΔ result into faster dissipation, in agreement with the fact
that Δ measures the degree of nonconservation of the axial
current. On top of that, dissipation is more significant for
lower magnetic fields. Besides, both observables (vector

current and axial charge) display oscillatory behavior,
which is more prominent as the magnetic field is increased.
These features are well described by the quasinormal
modes computed in Sec. III A. The presence/absence of
oscillations seems to be independent of the value of Δ for
the vector current. On the contrary, oscillations in axial
charge become more important as we increase the value
of Δ.
In addition to that, we observe two interesting phenom-

ena concerning the initial time response. The first of them
is the initial time response of the axial charge seems to be
insensitive to the magnetic field, that is all curves overlap
initially. This is linked to the fact that during an arguably
short time, the behavior of the axial charge is solely
dictated by the initial state given by hand. In particular, for
the initial state (A), the axial charge develops a plateau
before dissipation kicks in, whereas initial state (B) it
follows a linear behavior. The duration of either of them is
roughly the same: vϵ1=4L ∼ 0.5 This is clearly an artifact of
the initial state, for instance in (A) we are setting
Atð0; uÞ ¼ n5ð0Þu2þΔ, which is tantamount to demanding
that the time derivatives of n5 vanish, as these enter the

FIG. 10. Left: chiral magnetic effect. Right: Axial charge for simulations with LHC-like parameters as a function of centrality. We set
α ¼ 6

19
as well as Δ ¼ 0.001 (top) and Δ ¼ 0.11, respectively. Solid lines correspond to initial state (B) whereas dashed lines correspond

to state (A). The labeling refers to data in Table III and it applies to both solid and dashed lines in a correlated manner.
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asymptotic expansion at higher orders in u. This shows
that the evolution of axial charge is initially strongly
dependent on the assumptions made. However, the quali-
tative features discussed are expected to be valid for
generic out of equilibrium12 initial states which lead to
sufficiently small nmax

5 , approximately n5 ≤ 0.5ðπTÞ3þΔ.
The second phenomenon we would like to highlight is
precisely the time response of the vector current: it builds
up faster as we increase the magnetic field. The same
behavior was found in [34]. Roughly, the explanation is
that at high magnetic fields, the gap between the lowest
and first Landau levels increases and the fermions remain
in the lowest Landau level. Then the physics becomes
effectively 1þ 1 dimensional and there is an operator
relation between the vector current and axial charge,

implying that the response should be instantaneous. We
refer the reader to [34] for a more detailed discussion.
Both initial states are qualitatively similar. The most

remarkable differences are that in (A) the vector current
reacts faster than in (B) for the same magnetic field, and
that in (A) the amplitude of the oscillations is significantly
bigger. The first difference is explained by the fact that the
vector current takes some time to react to changes in the
axial charge, thus in (B) the axial charge has to build up and
then the vector current responds, whereas in (A) there is
some initial charge and the vector current may develop
accordingly.
A final comment on the initial state dependence/

independence concerns “sharp” initial states. As shown
in [67], even for “sharp” initial states, the effect of the
nonlinearities (which we are neglecting here by linearizing
the equations) is expected to be small, thus not modifying
our discussion. The response of the chiral magnetic current
also becomes less dependent on the initial state as we
decrease the value of the Chern-Simons coupling α.

[1] Larry D. McLerran, Emil Mottola, and Mikhail E.
Shaposhnikov, Sphalerons and axion dynamics in high
temperature QCD, Phys. Rev. D 43, 2027 (1991).

[2] Guy D. Moore and Marcus Tassler, The sphaleron rate in
SU(N) gauge theory, J. High Energy Phys. 02 (2011) 105.

[3] Dmitri Kharzeev, R. D. Pisarski, and Michel H. G. Tytgat,
Possibility of spontaneous parity violation in hot QCD,
Phys. Rev. Lett. 81, 512 (1998).

[4] D. Kharzeev, A. Krasnitz, and R. Venugopalan, Anomalous
chirality fluctuations in the initial stage of heavy ion
collisions and parity odd bubbles, Phys. Lett. B 545, 298
(2002).

[5] Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J.
Warringa, The effects of topological charge change in heavy
ion collisions: “Event by event P and CP violation”, Nucl.
Phys. A803, 227 (2008).

[6] D. Kharzeev andA. Zhitnitsky, Charge separation induced by
P-odd bubbles in QCD matter, Nucl. Phys. A797, 67 (2007).

[7] Edward V. Shuryak, What RHIC experiments and theory tell
us about properties of quark-gluon plasma?, Nucl. Phys.
A750, 64 (2005).

[8] Edward Shuryak, Physics of strongly coupled quark-gluon
plasma, Prog. Part. Nucl. Phys. 62, 48 (2009).

[9] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J.
Warringa, The chiral magnetic effect, Phys. Rev. D 78,
074033 (2008).

[10] Dam T. Son and Piotr Surowka, Hydrodynamics with
triangle anomalies, Phys. Rev. Lett. 103, 191601 (2009).

[11] Qiang Li, Dmitri E. Kharzeev, Cheng Zhang, Yuan Huang,
I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch,
G. D. Gu, and T. Valla, Observation of the chiral magnetic
effect in ZrTe5, Nat. Phys. 12, 550 (2016).

[12] Cai-Zhen Li, Li-Xian Wang, Haiwen Liu, Jian Wang, Zhi-
Min Liao, and Da-Peng Yu, Giant negative magnetoresist-
ance induced by the chiral anomaly in individual cd3as2
nanowires, Nat. Commun. 6, 10137 (2015).

[13] Jun Xiong, Satya K Kushwaha, Tian Liang, Jason W
Krizan, Max Hirschberger, and Wudi Wang, Evidence for
the chiral anomaly in the Dirac semimetal Na3Bi, Science
350, 413 (2015).

[14] Xiaochun Huang, Lingxiao Zhao, Yujia Long, Peipei Wang,
Dong Chen, Zhanhai Yang, Hui Liang, Mianqi Xue,
Hongming Weng, Zhong Fang, Xi Dai, and Genfu Chen,
Observation of the chiral-anomaly-induced negative mag-
netoresistance in 3d weyl semimetal taas, Phys. Rev. X 5,
031023 (2015).

[15] Mohamed Abdallah et al. (STAR Collaboration), Search for
the chiral magnetic effect with isobar collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV by the STAR Collaboration at the BNL relativistic
heavy ion collider, Phys. Rev. C 105, 014901 (2022).

[16] Dmitri E. Kharzeev, Jinfeng Liao, and Shuzhe Shi, Impli-
cations of the isobar-run results for the chiral magnetic
effect in heavy-ion collisions, Phys. Rev. C 106, L051903
(2022).

[17] Roy A. Lacey and Niseem Magdy, Scaling properties of the
Δγ correlator and their implication for detection of the chiral
magnetic effect in heavy-ion collisions, arXiv:2206.05773.

[18] Anping Huang, Shuzhe Shi, Shu Lin, Xingyu Guo, and
Jinfeng Liao, Counting topological windings of gauge fields
With chiral magnetic effect, Phys. Rev. D 107, 034012
(2023).

[19] Ioannis Iatrakis, Shu Lin, and Yi Yin, Axial current
generation by P-odd domains in QCD matter, Phys. Rev.
Lett. 114, 252301 (2015).

12At equilibrium the solution is trivially zero and there are no
features to be discussed.

REAL-TIME DYNAMICS OF AXIAL CHARGE AND CHIRAL … PHYS. REV. D 108, 126010 (2023)

126010-17

https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1007/JHEP02(2011)105
https://doi.org/10.1103/PhysRevLett.81.512
https://doi.org/10.1016/S0370-2693(02)02630-8
https://doi.org/10.1016/S0370-2693(02)02630-8
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2007.10.001
https://doi.org/10.1016/j.nuclphysa.2004.10.022
https://doi.org/10.1016/j.nuclphysa.2004.10.022
https://doi.org/10.1016/j.ppnp.2008.09.001
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevC.105.014901
https://doi.org/10.1103/PhysRevC.106.L051903
https://doi.org/10.1103/PhysRevC.106.L051903
https://arXiv.org/abs/2206.05773
https://doi.org/10.1103/PhysRevD.107.034012
https://doi.org/10.1103/PhysRevD.107.034012
https://doi.org/10.1103/PhysRevLett.114.252301
https://doi.org/10.1103/PhysRevLett.114.252301


[20] Ioannis Iatrakis, Shu Lin, and Yi Yin, The anomalous
transport of axial charge: Topological vs non-topological
fluctuations, J. High Energy Phys. 09 (2015) 030.

[21] Shu Lin, Li Yan, and Gui-Rong Liang, Axial charge
fluctuation and chiral magnetic effect from stochastic
hydrodynamics, Phys. Rev. C 98, 014903 (2018).

[22] Gui-Rong Liang, Jinfeng Liao, Shu Lin, Li Yan, and Miao
Li, Chiral magnetic effect in isobar collisions from stochas-
tic hydrodynamics, Chin. Phys. C 44, 094103 (2020).

[23] Dmitri E. Kharzeev and Ho-Ung Yee, Chiral magnetic
wave, Phys. Rev. D 83, 085007 (2011).

[24] Sören Schlichting and Sayantan Sharma, Chiral instabilities
& the fate of chirality imbalance in non-Abelian plasmas,
Phys. Rev. Lett. 131, 102303 (2023).

[25] M. Mace, S. Schlichting, and R. Venugopalan, Off-
equilibrium sphaleron transitions in the Glasma, Phys.
Rev. D 93, 074036 (2016).

[26] Niklas Müller, Sören Schlichting, and Sayantan Sharma,
Chiral magnetic effect and anomalous transport from real-
time lattice simulations, Phys. Rev. Lett. 117, 142301
(2016).

[27] Mark Mace, Niklas Mueller, Sören Schlichting, and
Sayantan Sharma, Non-equilibrium study of the chiral
magnetic effect from real-time simulations with dynamical
fermions, Phys. Rev. D 95, 036023 (2017).

[28] Ho-Ung Yee, Holographic Chiral Magnetic Conductivity, J.
High Energy Phys. 11 (2009) 085.

[29] Antti Gynther, Karl Landsteiner, Francisco Pena-Benitez,
and Anton Rebhan, Holographic anomalous conductivities
and the chiral magnetic effect, J. High Energy Phys. 02
(2011) 110.

[30] Karl Landsteiner, Eugenio Megias, and Francisco Pena-
Benitez, Frequency dependence of the chiral vortical effect,
Phys. Rev. D 90, 065026 (2014).

[31] Shu Lin and Ho-Ung Yee, Out-of-equilibrium chiral mag-
netic effect at strong coupling, Phys. Rev. D 88, 025030
(2013).

[32] Martin Ammon, Sebastian Grieninger, Amadeo Jimenez-
Alba, Rodrigo P. Macedo, and Luis Melgar, Holographic
quenches and anomalous transport, J. High Energy Phys. 09
(2016) 131.

[33] Sebastian Grieninger, Holographic quenches and anoma-
lous transport, arXiv:1711.08422.

[34] Jewel K. Ghosh, Sebastian Grieninger, Karl Landsteiner,
and Sergio Morales-Tejera, Is the chiral magnetic effect fast
enough?, Phys. Rev. D 104, 046009 (2021).

[35] Sebastian Grieninger and Sergio Morales-Tejera, Far from
equilibrium chiral magnetic effect in strong magnetic fields
from holography, EPJ Web Conf. 258, 10007 (2022).

[36] Casey Cartwright, Matthias Kaminski, and Bjoern Schenke,
Energy dependence of the chiral magnetic effect in expand-
ing holographic plasma, Phys. Rev. C 105, 034903 (2022).

[37] Michael Haack, Debajyoti Sarkar, and Amos Yarom, Prob-
ing anomalous driving, J. High Energy Phys. 04 (2019) 034.

[38] Martin Ammon, Julian Leiber, and Rodrigo P. Macedo,
Phase diagram of 4D field theories with chiral anomaly from
holography, J. High Energy Phys. 03 (2016) 164.

[39] Martin Ammon, Matthias Kaminski, Roshan Koirala, Julian
Leiber, and Jackson Wu, Quasinormal modes of charged

magnetic black branes & chiral magnetic transport, J. High
Energy Phys. 04 (2017) 067.

[40] Martin Ammon, Sebastian Grieninger, Juan Hernandez,
Matthias Kaminski, Roshan Koirala, Julian Leiber, and
Jackson Wu, Chiral hydrodynamics in strong external
magnetic fields, J. High Energy Phys. 04 (2021) 078.

[41] Casey Cartwright, Entropy production far from equilibrium
in a chiral charged plasma in the presence of external
electromagnetic fields, J. High Energy Phys. 01 (2021) 041.

[42] Sebastian Grieninger and Dmitri E. Kharzeev, Spacetime
dynamics of chiral magnetic currents in a hot non-Abelian
plasma, Phys. Rev. D 108, 126004 (2023).

[43] U. Gürsoy, I. Iatrakis, E. Kiritsis, F. Nitti, and A. O’Bannon,
The Chern-Simons diffusion rate in improved holographic
QCD, J. High Energy Phys. 02 (2013) 119.

[44] Amadeo Jimenez-Alba, Karl Landsteiner, and Luis Melgar,
Anomalous magnetoresponse and the Stückelberg axion in
holography, Phys. Rev. D 90, 126004 (2014).

[45] Umut Gürsoy and Aron Jansen, (Non)renormalization of
anomalous conductivities and holography, J. High Energy
Phys. 10 (2014) 092.

[46] Tara Drwenski, Umut Gursoy, and Ioannis Iatrakis, Thermo-
dynamics and CP-odd transport in holographic QCD with
finite magnetic field, J. High Energy Phys. 12 (2016) 049.

[47] Amadeo Jimenez-Alba, Karl Landsteiner, Yan Liu, and Ya-
Wen Sun, Anomalous magnetoconductivity and relaxation
times in holography, J. High Energy Phys. 07 (2015) 117.

[48] Francesco Bigazzi, Aldo L. Cotrone, and Flavio Porri,
Universality of the Chern-Simons diffusion rate, Phys.
Rev. D 98, 106023 (2018).

[49] A. D. Gallegos and Umut Gürsoy, Dynamical gauge fields
and anomalous transport at strong coupling, J. High Energy
Phys. 05 (2019) 001.

[50] Ben Craps, Carlos Hoyos, Piotr Surowka, and Pieter Taels,
Chern-Simons diffusion rate in a holographic Yang-Mills
theory, J. High Energy Phys. 11 (2012) 109; 02 (2013) 87.

[51] Yanyan Bu, Chern-Simons diffusion rate in anisotropic
plasma at strong coupling, Phys. Rev. D 89, 086003 (2014).

[52] Viktor Jahnke, Anderson Seigo Misobuchi, and Diego
Trancanelli, Chern-Simons diffusion rate from higher cur-
vature gravity, Phys. Rev. D 89, 107901 (2014).

[53] Dam T. Son and Andrei O. Starinets, Minkowski space
correlators in AdS=CFT correspondence: Recipe and ap-
plications, J. High Energy Phys. 09 (2002) 042.

[54] De-fu Hou and Shu Lin, Fluctuation and dissipation of axial
charge from massive quarks, Phys. Rev. D 98, 054014
(2018).

[55] Igor R. Klebanov, Peter Ouyang, and Edward Witten, A
gravity dual of the chiral anomaly, Phys. Rev. D 65, 105007
(2002).

[56] Juan Martin Maldacena and Carlos Nunez, Towards the
large N limit of pure N ¼ 1 superYang-Mills, Phys. Rev.
Lett. 86, 588 (2001).

[57] Pascal Anastasopoulos, M. Bianchi, E. Dudas, and E.
Kiritsis, Anomalies, anomalous U(1)’s and generalized
Chern-Simons terms, J. High Energy Phys. 11 (2006) 057.

[58] Eugenio Megías, Thermodynamics of AdS5 black holes:
Holographic QCD and Stückelberg model, J. Phys. Conf.
Ser. 1416, 012022 (2019).

GRIENINGER and MORALES-TEJERA PHYS. REV. D 108, 126010 (2023)

126010-18

https://doi.org/10.1007/JHEP09(2015)030
https://doi.org/10.1103/PhysRevC.98.014903
https://doi.org/10.1088/1674-1137/44/9/094103
https://doi.org/10.1103/PhysRevD.83.085007
https://doi.org/10.1103/PhysRevLett.131.102303
https://doi.org/10.1103/PhysRevD.93.074036
https://doi.org/10.1103/PhysRevD.93.074036
https://doi.org/10.1103/PhysRevLett.117.142301
https://doi.org/10.1103/PhysRevLett.117.142301
https://doi.org/10.1103/PhysRevD.95.036023
https://doi.org/10.1088/1126-6708/2009/11/085
https://doi.org/10.1088/1126-6708/2009/11/085
https://doi.org/10.1007/JHEP02(2011)110
https://doi.org/10.1007/JHEP02(2011)110
https://doi.org/10.1103/PhysRevD.90.065026
https://doi.org/10.1103/PhysRevD.88.025030
https://doi.org/10.1103/PhysRevD.88.025030
https://doi.org/10.1007/JHEP09(2016)131
https://doi.org/10.1007/JHEP09(2016)131
https://arXiv.org/abs/1711.08422
https://doi.org/10.1103/PhysRevD.104.046009
https://doi.org/10.1051/epjconf/202225810007
https://doi.org/10.1103/PhysRevC.105.034903
https://doi.org/10.1007/JHEP04(2019)034
https://doi.org/10.1007/JHEP03(2016)164
https://doi.org/10.1007/JHEP04(2017)067
https://doi.org/10.1007/JHEP04(2017)067
https://doi.org/10.1007/JHEP04(2021)078
https://doi.org/10.1007/JHEP01(2021)041
https://doi.org/10.1103/PhysRevD.108.126004
https://doi.org/10.1007/JHEP02(2013)119
https://doi.org/10.1103/PhysRevD.90.126004
https://doi.org/10.1007/JHEP10(2014)092
https://doi.org/10.1007/JHEP10(2014)092
https://doi.org/10.1007/JHEP12(2016)049
https://doi.org/10.1007/JHEP07(2015)117
https://doi.org/10.1103/PhysRevD.98.106023
https://doi.org/10.1103/PhysRevD.98.106023
https://doi.org/10.1007/JHEP05(2019)001
https://doi.org/10.1007/JHEP05(2019)001
https://doi.org/10.1007/JHEP11(2012)109
https://doi.org/10.1007/JHEP02(2013)087
https://doi.org/10.1103/PhysRevD.89.086003
https://doi.org/10.1103/PhysRevD.89.107901
https://doi.org/10.1088/1126-6708/2002/09/042
https://doi.org/10.1103/PhysRevD.98.054014
https://doi.org/10.1103/PhysRevD.98.054014
https://doi.org/10.1103/PhysRevD.65.105007
https://doi.org/10.1103/PhysRevD.65.105007
https://doi.org/10.1103/PhysRevLett.86.588
https://doi.org/10.1103/PhysRevLett.86.588
https://doi.org/10.1088/1126-6708/2006/11/057
https://doi.org/10.1088/1742-6596/1416/1/012022
https://doi.org/10.1088/1742-6596/1416/1/012022


[59] Nishal Rai and Eugenio Megias, Anomalous conductivities
in the holographic Stuckelberg model, J. High Energy Phys.
06 (2023) 215.

[60] Matteo Baggioli, Yanyan Bu, and Vaios Ziogas, U(1) quasi-
hydrodynamics: Schwinger-Keldysh effective field theory
and holography, J. High Energy Phys. 09 (2023) 019.

[61] Wei-Tian Deng and Xu-Guang Huang, Event-by-event
generation of electromagnetic fields in heavy-ion collisions,
Phys. Rev. C 85, 044907 (2012).

[62] Li Yan and Xu-Guang Huang, Dynamical evolution of a
magnetic field in the preequilibrium quark-gluon plasma,
Phys. Rev. D 107, 094028 (2023).

[63] Shi Pu, Victor Roy, Luciano Rezzolla, and Dirk H. Rischke,
Bjorken flow in one-dimensional relativistic magnetohy-
drodynamics with magnetization, Phys. Rev. D 93, 074022
(2016).

[64] Victor Roy, Shi Pu, Luciano Rezzolla, and Dirk Rischke,
Analytic Bjorken flow in one-dimensional relativistic mag-
netohydrodynamics, Phys. Lett. B 750, 45 (2015).

[65] Irfan Siddique, Ren-jie Wang, Shi Pu, and Qun Wang,
Anomalous magnetohydrodynamics with longitudinal boost
invariance and chiral magnetic effect, Phys. Rev. D 99,
114029 (2019).

[66] Paul M. Chesler and Laurence G. Yaffe, Numerical solution
of gravitational dynamics in asymptotically anti-de Sitter
spacetimes, J. High Energy Phys. 07 (2014) 086.

[67] John F. Fuini and Laurence G. Yaffe, Far-from-equilibrium
dynamics of a strongly coupled non-Abelian plasma with
non-zero charge density or external magnetic field, J. High
Energy Phys. 07 (2015) 116.

[68] Shuzhe Shi, Jinfeng Liao, and Miklos Gyulassy, Global
constraints from RHIC and LHC on transport properties of
QCD fluids in CUJET/CIBJET framework, Chin. Phys. C
43, 044101 (2019).

[69] Anping Huang, Yin Jiang, Shuzhe Shi, Jinfeng Liao, and
Pengfei Zhuang, Out-of-equilibrium chiral magnetic effect
from chiral kinetic theory, Phys. Lett. B 777, 177 (2018).

[70] Paul M. Chesler and Laurence G. Yaffe, Boost invariant
flow, black hole formation, and far-from-equilibrium dy-
namics in N ¼ 4 supersymmetric Yang-Mills theory, Phys.
Rev. D 82, 026006 (2010).

[71] Renato Critelli, Romulo Rougemont, and Jorge Noronha,
Holographic Bjorken flow of a hot and dense fluid
in the vicinity of a critical point, Phys. Rev. D 99,
066004 (2019).

[72] Romulo Rougemont, Jorge Noronha, Willians Barreto,
Gabriel S. Denicol, and Travis Dore, Violation of energy
conditions and entropy production in holographic Bjorken
flow, Phys. Rev. D 104, 126012 (2021).

[73] Romulo Rougemont and Willians Barreto, Holographic
entropy production in a Bjorken expanding hot and dense
strongly coupled quantum fluid, Phys. Rev. D 106, 126023
(2022).

[74] Sebastian Grieninger and Ashish Shukla, Second order
equilibrium transport in strongly coupled N ¼ 4 super-
symmetric SUðNcÞ Yang-Mills plasma via holography, J.
High Energy Phys. 08 (2021) 108.

[75] Romuald A. Janik and Robert B. Peschanski, Asymptotic
perfect fluid dynamics as a consequence of Ads/CFT, Phys.
Rev. D 73, 045013 (2006).

[76] Romuald A. Janik and Robert B. Peschanski, Gauge/gravity
duality and thermalization of a boost-invariant perfect fluid,
Phys. Rev. D 74, 046007 (2006).

[77] Sebastian Grieninger and Ismail Zahed, Out-of-equilibrium
photon production and electric conductivity in a holographic
Bjorken expanding plasma, Phys. Rev. D 107, 046017
(2023).

[78] Keun-Young Kim, Sang-Jin Sin, and Ismail Zahed, Diffu-
sion in an expanding plasma using AdS=CFT, J. High
Energy Phys. 04 (2008) 047.

[79] Michal P. Heller, Romuald A. Janik, and Przemyslaw
Witaszczyk, The characteristics of thermalization of boost-
invariant plasma from holography, Phys. Rev. Lett. 108,
201602 (2012).

[80] Michal P. Heller, Romuald A. Janik, and Przemyslaw
Witaszczyk, A numerical relativity approach to the initial
value problem in asymptotically Anti–de Sitter spacetime
for plasma thermalization—an ADM formulation, Phys.
Rev. D 85, 126002 (2012).

[81] S. S. Gubser, Igor R. Klebanov, and A.W. Peet, Entropy and
temperature of black 3-branes, Phys. Rev. D 54, 3915
(1996).

[82] John P. Boyd, Chebyshev and Fourier Spectral Methods
(Dover Publications Inc., New York, 2003).

[83] Sebastian Grieninger, Non-equilibrium dynamics in holog-
raphy, Ph.D. thesis, Jena U., 2020.

[84] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J.
Warringa, Real-time dynamics of the chiral magnetic effect,
Phys. Rev. Lett. 104, 212001 (2010).

[85] Shuzhe Shi, Yin Jiang, Elias Lilleskov, and Jinfeng Liao,
Anomalous chiral transport in heavy ion collisions from
anomalous-viscous fluid dynamics, Ann. Phys. (Amster-
dam) 394, 50 (2018).

[86] Sheng-Qin Feng, Lei Pei, Fei Sun, Yang Zhong, and Zhong-
Bao Yin, Estimation of the chiral magnetic effect consid-
ering the magnetic field response of the QGP medium, Chin.
Phys. C 42, 054102 (2018).

[87] Yifeng Sun and CheMing Ko, Chiral kinetic approach to the
chiral magnetic effect in isobaric collisions, Phys. Rev. C 98,
014911 (2018).

[88] Romulo Rougemont, Joaquin Grefa, Mauricio Hippert, Jorge
Noronha, Jacquelyn Noronha-Hostler, Israel Portillo, and
Claudia Ratti, Hot QCD phase diagram from holographic
Einstein-Maxwell-dilaton models, arXiv:2307.03885.

[89] Casey Cartwright, Matthias Kaminski, and Marco Knipfer,
Hydrodynamic attractors for the speed of sound in holo-
graphic Bjorken flow, Phys. Rev. D 107, 106016 (2023).

[90] Juan Hernandez and Pavel Kovtun, Relativistic magneto-
hydrodynamics, J. High Energy Phys. 05 (2017) 001.

[91] F. Karsch, E. Laermann, and A. Peikert, The pressure in two
flavor, (2þ 1)-flavor and three flavor QCD, Phys. Lett. B
478, 447 (2000).

[92] Matteo Buzzegoli and Kirill Tuchin, Chiral magnetic effect
in a cylindrical domain, Phys. Rev. D 108, 056008 (2023).

[93] Sašo Grozdanov and Napat Poovuttikul, Generalised global
symmetries in holography: Magnetohydrodynamic waves in
a strongly interacting plasma, J. High Energy Phys. 04
(2019) 141.

[94] Yongjun Ahn, Matteo Baggioli, Kyoung-Bum Huh, Hyun-
Sik Jeong, Keun-Young Kim, and Ya-Wen Sun, Holography

REAL-TIME DYNAMICS OF AXIAL CHARGE AND CHIRAL … PHYS. REV. D 108, 126010 (2023)

126010-19

https://doi.org/10.1007/JHEP06(2023)215
https://doi.org/10.1007/JHEP06(2023)215
https://doi.org/10.1007/JHEP09(2023)019
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevD.107.094028
https://doi.org/10.1103/PhysRevD.93.074022
https://doi.org/10.1103/PhysRevD.93.074022
https://doi.org/10.1016/j.physletb.2015.08.046
https://doi.org/10.1103/PhysRevD.99.114029
https://doi.org/10.1103/PhysRevD.99.114029
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.1007/JHEP07(2015)116
https://doi.org/10.1007/JHEP07(2015)116
https://doi.org/10.1088/1674-1137/43/4/044101
https://doi.org/10.1088/1674-1137/43/4/044101
https://doi.org/10.1016/j.physletb.2017.12.025
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevD.99.066004
https://doi.org/10.1103/PhysRevD.99.066004
https://doi.org/10.1103/PhysRevD.104.126012
https://doi.org/10.1103/PhysRevD.106.126023
https://doi.org/10.1103/PhysRevD.106.126023
https://doi.org/10.1007/JHEP08(2021)108
https://doi.org/10.1007/JHEP08(2021)108
https://doi.org/10.1103/PhysRevD.73.045013
https://doi.org/10.1103/PhysRevD.73.045013
https://doi.org/10.1103/PhysRevD.74.046007
https://doi.org/10.1103/PhysRevD.107.046017
https://doi.org/10.1103/PhysRevD.107.046017
https://doi.org/10.1088/1126-6708/2008/04/047
https://doi.org/10.1088/1126-6708/2008/04/047
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevD.85.126002
https://doi.org/10.1103/PhysRevD.85.126002
https://doi.org/10.1103/PhysRevD.54.3915
https://doi.org/10.1103/PhysRevD.54.3915
https://doi.org/10.1103/PhysRevLett.104.212001
https://doi.org/10.1016/j.aop.2018.04.026
https://doi.org/10.1016/j.aop.2018.04.026
https://doi.org/10.1088/1674-1137/42/5/054102
https://doi.org/10.1088/1674-1137/42/5/054102
https://doi.org/10.1103/PhysRevC.98.014911
https://doi.org/10.1103/PhysRevC.98.014911
https://arXiv.org/abs/2307.03885
https://doi.org/10.1103/PhysRevD.107.106016
https://doi.org/10.1007/JHEP05(2017)001
https://doi.org/10.1016/S0370-2693(00)00292-6
https://doi.org/10.1016/S0370-2693(00)00292-6
https://doi.org/10.1103/PhysRevD.108.056008
https://doi.org/10.1007/JHEP04(2019)141
https://doi.org/10.1007/JHEP04(2019)141


and magnetohydrodynamics with dynamical gauge fields, J.
High Energy Phys. 02 (2023) 012.

[95] Matteo Baggioli, How to sit Maxwell and Higgs on the
boundary of Anti–de Sitter, J. Hologr. Appl. 3, 1 (2023).

[96] Arpit Das, Nabil Iqbal, and Napat Poovuttikul, Towards an
effective action for chiral magnetohydrodynamics, arXiv:
2212.09787.

[97] Arpit Das, Ruth Gregory, and Nabil Iqbal, Higher-form
symmetries, anomalous magnetohydrodynamics, and
holography, SciPost Phys. 14, 163 (2023).

[98] Michael J. Landry and Hong Liu, A systematic formulation of
chiral anomalous magnetohydrodynamics, arXiv:2212.09757.

[99] Matti Jarvinen, Holographic dense QCD in the Veneziano
limit, EPJ Web Conf. 274, 08006 (2022).

GRIENINGER and MORALES-TEJERA PHYS. REV. D 108, 126010 (2023)

126010-20

https://doi.org/10.1007/JHEP02(2023)012
https://doi.org/10.1007/JHEP02(2023)012
https://doi.org/10.22128/jhap.2023.669.1047
https://arXiv.org/abs/2212.09787
https://arXiv.org/abs/2212.09787
https://doi.org/10.21468/SciPostPhys.14.6.163
https://arXiv.org/abs/2212.09757
https://doi.org/10.1051/epjconf/202227408006

