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We discuss c functions and their holographic counterpart for two-dimensional field theories with
Carrollian conformal fixed points in the UV and the IR. Specifically, we construct asymptotically flat
domain wall solutions of three-dimensional Einstein-dilaton gravity that model holographic renormaliza-
tion group (RG) flows between BMS3 invariant UVand IR fixed points. We prove three theorems for such
flows: (1) for every holographic RG flow in AdS3, there is a corresponding one in flat space, (2) the BMS
central charge in the UV cannot be smaller than in the IR, and (3) the UV/IR ratio of Virasoro central
charges is identical to the UV/IR ratio of corresponding BMS central charges. Finally, we tentatively
propose a Casini–Huerta-like c functions for BMS3-invariant quantum field theories, inspired by the
AdS3=CFT2 relation between monotonicity of the c function and the quantum null energy condition.

DOI: 10.1103/PhysRevD.108.126008

I. INTRODUCTION

Quantum field theories (QFT) adequately describe many
systems in nature. A prototypical scenario is a relativistic
QFT with conformal fixed points in the ultraviolet (UV)
and the infrared (IR). The renormalization group (RG) flow
connecting these fixed points can be characterized by c
functions that obey a c theorem.
The latter guarantees the existence of some (positive)

function, cðgi; μÞ, depending on the coupling constants gi
and the RG scale μ with two key properties: 1. it decreases
monotonically under RG flow toward the IR, and 2. at the
UVand IR fixed points the c function is a (finite) constant.
This mathematical statement captures the physical intuition
that QFTs have more degrees of freedom in the UV than in
the IR.
In two-dimensional (2d) QFTs, Zamolodchikov proved a

c theorem by explicitly constructing a c function composed
of the energy-momentum tensor components [1]. At the
UV- and IR-fixed points, the value of this c function
coincides with the respective values of the central charge
that characterize the corresponding fixed point conformal

field theories (CFT), cUV and cIR. The c theorem implies
cUV ≥ cIR. The c function monotonically interpolates
between these fixed point values.
After the advent of AdS=CFT [2], it was natural to seek a

holographic version of RG flows and construct holographic
versions of c functions. Domain wall solutions in AdS
(reviewed below) provide a simple geometric c function
[3]. Alternatively, Casini and Huerta (CH) proposed a c
function [4] based on entanglement entropy (EE) and one
of its indispensable properties, strong subadditivity. The
CH c function is tailor-made for AdS=CFT since EE is
generally hard to compute in QFTs but simple to compute
on the gravity side in terms of minimal [5] or extremal [6]
surfaces.
The main purpose of our work is to (holographically)

construct c functions for 2d field theories with conformal
Carrollian fixed points in the UV and IR. The primary
motivation for pursuing this goal is a desire for a better
understanding of flat space holography and Carrollian
CFTs. The main tools we shall employ are flat space
domain walls (which we construct and discuss in detail)
and flat space holographic EE [7,8].
The first proposal for such a holographic c function

appeared in [9]. The authors considered a flat-space version
of domain wall geometries and established a domain wall c
function. In our work, we expand on their results. New
results in our work not contained in [9] include the proof
that flat space domain walls are solutions to Einstein-
dilaton gravity without scalar field potential, a discussion of
their curvature invariants, an explicit flat space holographic

*grumil@hep.itp.tuwien.ac.at
†rieglerm@hep.itp.tuwien.ac.at

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 126008 (2023)

2470-0010=2023=108(12)=126008(11) 126008-1 Published by the American Physical Society

https://orcid.org/0000-0001-7980-5394
https://orcid.org/0000-0002-0131-957X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.126008&domain=pdf&date_stamp=2023-12-07
https://doi.org/10.1103/PhysRevD.108.126008
https://doi.org/10.1103/PhysRevD.108.126008
https://doi.org/10.1103/PhysRevD.108.126008
https://doi.org/10.1103/PhysRevD.108.126008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


RG flow example, theorems 1 and 3, and a tentative
proposal for the CH c function.
This paper is organized as follows. In Sec. II, we review

AdS3=CFT2-aspects pertinent to (holographic) c functions.
In Sec. III, we summarize BMS3=CCFT2 results required
for our constructions. In Sec. IV, we construct domain
walls in flat space, discuss their geometric properties, and
propose a flat space holographic c function. In Sec. V, we
prove the three theorems mentioned in the abstract.
Section VI concludes with a tentative CH-inspired proposal
for a Carrollian c function.

II. AdS3=CFT2 REVIEW

This section reviews AdS3=CFT2-aspects pertinent to
(holographic) c functions.
In Sec. II A, we provide the definition and main proper-

ties of the CH c function. In Sec. II B, we recall the rela-
tion to the 2d quantum null energy condition (QNEC2).
Section II C summarizes a specific class of domain wall
solutions in AdS3 as an example for a holographic model
with nontrivial CH c functions.

A. Casini–Huerta c-function

The CH c function [4,10]

cðlÞ ¼ 3l
dS0
dl

ð1Þ

is constructed from ground state EE S0 and depends on the
size l of the entangling region. By construction, it is
monotonic

dcðlÞ
dl

≤ 0 ð2Þ

as a consequence of strong subadditivity.
When the inequality (2) is saturated, integrating it twice

using (1) yields the result for ground state EE in a CFT2 on
the plane [11,12],

S0 ¼
c
3
ln
l
ε

ð3Þ

where c is the UV fixed-point value of cðlÞ and the
integration constant ε is interpreted as UV cutoff.
The limit of vanishing entangling region yields the

UV-value of the central charge,

cUV ¼ lim
l→0

cðlÞ: ð4Þ

Similarly, in cases where the theory flows to a CFT2 fixed
point in the IR its central charge is obtained in the limit of
infinite entangling region.

cIR ¼ lim
l→∞

cðlÞ ≤ cUV ð5Þ

B. Relation to quantum null energy condition

Inserting the definition (1) into the monotonicity con-
dition (2) yields an inequality for up to second derivatives
of EE.

0 ≥
d2S0
dl2

−
1

l
dS0
dl

þ 6

cðlÞ
�
dS0
dl

�
2

≥
d2S0
dl2

−
1

l
dS0
dl

þ 6

cUV

�
dS0
dl

�
2

ð6Þ

The last expression has an interpretation in terms of
variations of EE with respect to null deformations of the
interval and can be rewritten as

0 ≥
d2S0
dλ2

þ 6

cUV

�
dS0
dλ

�
2

ð7Þ

where λ is the deformation parameter (see Sec. II.5 in [13]).
The combinations of derivatives (7) is the right-hand side of
QNEC2 [14–17]

2πhTi ≥ d2S
dλ2

þ 6

cUV

�
dS
dλ

�
2

ð8Þ

for the ground state EE S0, while the left-hand side of
QNEC2 contains the expectation value of the null projec-
tion of the stress-energy tensor, denoted here by T. Since
the Poincaré-invariant ground state has hTi ¼ 0, the CH
inequality (2) implies QNEC2 for the ground state.
This relation between QNEC2 and the CH c function

can guide our proposal for c functions in non-Lorentzian
QFTs, provided that quantum energy inequalities are
available. In the context of flat space holography, this is
indeed the case [18].

C. Domain walls in AdS3

Domain walls are a specific set of geometries describing
a holographic RG flow of a QFT2 from a UV to an IR
CFT2-fixed point. The geometry dual to such a flow has
Poincaré invariant slices. In adapted coordinates

ds2 ¼ dρ2 þ e2AðρÞð−dt2 þ dx2Þ ð9Þ

the function AðρÞ characterizes the RG-flow. For any
ρ ¼ const. we have Poincaré2-invariant slices, i.e., the
metric (9) has the Killing vectors ∂t, ∂x and x∂t þ t∂x.
Each ρ ¼ ρ0 ¼ const-slice thus induces a 2d flat-space
metric ds2ð2Þ ¼ e2Aðρ0Þð−dt2 þ dx2Þ. There are infinitely
many conformal Killing vectors for each such slice, cor-
responding to the conformal symmetries generated in a
CFT2. By convention, the asymptotic region describing the
UV is reached in the limit ρ → ∞.
Domain wall solutions arise, for instance, as solutions to

Einstein-dilaton gravity. The bulk action
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I ¼ 1

16πGN

Z
d3x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
ð10Þ

with the potential (we use unit AdS-radius)

VðϕÞ ¼ −2þ 1

2
m2ϕ2 þ… ð11Þ

yields the equations of motion

Rμν −
1

2
gμνR ¼ 1

2
∂μϕ∂νϕ −

1

4
ð∂ϕÞ2gμν −

1

2
VðϕÞgμν ð12aÞ

∇2Φ ¼ ∂VðϕÞ
∂ϕ

ð12bÞ

Rewriting the potential in terms of a superpotential W

VðϕÞ ¼ −
1

2
WðϕÞ2 þ 1

2
W0ðϕÞ2 ð13Þ

reduces the equations of motion for domain wall solutions
(9) to first order equations

dAðρÞ
dρ

¼ −
1

2
WðϕðρÞÞ dϕðρÞ

dρ
¼ dWðϕðρÞÞ

dϕðρÞ : ð14Þ

An example is the superpotential

WðϕÞ ¼ −2 −
1

4
ϕ2 −

α

8
ϕ4 ð15Þ

corresponding to a mass m2 ¼ − 3
4
. Integrating the equa-

tions (14) for this superpotential yields the domain wall
solution

AðρÞ ¼
�
1−

1

16α

�
ρ−

j2

16ðeρ−αj2Þþ
logðeρ −αj2Þ

16α
ð16Þ

and the scalar field

ϕðρÞ ¼ ϕ0 þ
je−ρ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αj2e−ρ

p ð17Þ

where j and ϕ0 are integration constants.
For this example, the CH c function was calculated for

small l [13]

cðl ≪ 1Þ ¼ c

�
1 −

πl
64

þOðl2Þ
�

ð18Þ

and large l

cðl ≫ 1Þ ¼ c
1 − 1

16α

þ… ð19Þ

assuming negative α. Here c ¼ cUV ¼ 3=ð2GNÞ takes the
Brown-Henneaux value, and we have the relation

cIR ¼ cUV

1 − 1
16α

< cUV: ð20Þ

Alternatively, there is a domain wall holographic c
function [3]

cdwðρÞ ¼
cUV

A0ðρÞ ð21Þ

that does not require calculating EE but only uses the
(derivative of the) domain wall profile function AðρÞ
as input. Since limρ→∞ A0ðρÞ ¼ 1 and limρ→−∞ A0ðρÞ ¼
1 − 1

16α we recover the correct UV- and IR-values of the
central charge. Moreover, A0ðρÞ has the correct monoto-
nicity for a c function.
In our flat space construction below, we shall propose

something analogous to the domain wall c function (21).

III. BMS3=CCFT2 SUMMARY

In this section, we summarize BMS3=CCFT2 results
required for our constructions of flat space holographic c
functions in later sections.
In Sec. III A, we summarize gravity-aspects of BMS3-

invariant QFTs, also known as CCFT2. We collect corre-
sponding field theory aspects in Sec. III B. In Sec. III C, we
state the quantum inequalities based on EE that apply to
these theories.

A. Gravity aspects of BMS3=CCFT2

We are interested in 2d QFTs invariant under CCFT2

symmetries generated by the bms3 algebra

½Ln;Lm� ¼ ðn −mÞLnþm þ cL
12

nðn2 − 1Þδnþm;0 ð22aÞ

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

nðn2 − 1Þδnþm;0 ð22bÞ

½Mn;Mm� ¼ 0: ð22cÞ

The generators Ln yield a Virasoro subalgebra with
central charge cL. They are sometimes referred to as
“superrotations” in a gravity context. The supertranslation
generators Mn produce a central charge cM in the mixed
commutator.
The simplest gravity dual leading to (22) as asymptotic

symmetries is Einstein gravity with Barnich-Compère
boundary conditions [19].

ds2 ¼ MðφÞdu2 − 2dudrþ r2dφ2 þ ð2LðφÞ
þ uM0ðφÞÞdudφþ… ð23Þ
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The coordinate ranges are u; r∈R and either φ ∼ φþ 2π or
φ∈R. The ellipsis denotes subleading terms in a large-r
expansion. The state-dependent functions L, M appear as
integrands in the boundary charges. Their (Fourier-) modes
generate the bms3 algebra (22) as asymptotic symmetry
algebra, with central charges cL, cM the values of which
depend on the gravity theory, see, e.g., [20].
For Einstein gravity without cosmological constant, the

Virasoro central charge cL vanishes since there is no
dimensionless coupling constant, while the mixed central
charge cM is nonzero [19]. We use a (standard) normali-
zation of the generators Mn where cM ¼ 3=GN .
The null orbifold (M ¼ L ¼ 0) [21]

ds2 ¼ −2dudrþ r2dφ2 ð24Þ

is dual to the ground state of the BMS3 invariant QFT in the
same way that Poincaré-patch AdS3 is the gravity dual of
the ground state of a QFT on the plane with a CFT2 fixed
point in the UV. If φ ∼ φþ 2π, the null orbifold has a
singularity in the causal structure at r ¼ 0. For our
purposes, this is as irrelevant as the coordinate singularity
in the Poincaré patch horizon since we will construct
domain wall solutions that only asymptote to the null
orbifold but do not exhibit its singular behavior in the
interior. Moreover, we can simply decompactify φ.
We later investigate what happens when the retarded

time coordinate u gets rescaled by some factor λ (absorbing
such factors in the state-dependent functions L, M when
possible).

ds2 ¼ MðφÞdu2 − 2λdudrþ r2dφ2 þ ð2LðφÞ
þ uM0ðφÞÞdudφþ… ð25Þ

The superrotation charges Ln are associated with asymp-
totic Killing vectors einφ∂φ and hence unaffected by a
rescaling of retarded time. By contrast, the supertranslation
charges Mn are associated with asymptotic Killing vectors
einφ∂u and thus get rescaled by 1=λ.

½Ln;Mm=λ� ¼ ðn −mÞMnþm=λþ
cM
12

nðn2 − 1Þδnþm;0: ð26Þ

Effectively, this rescales the BMS central charge by λ.

½Ln;Mm� ¼ ðn −mÞMnþm þ λcM
12

nðn2 − 1Þδnþm;0: ð27Þ

This observation will be crucial for holographic RG flows
modeled by flat space domain walls, discussed in Sec. IV.

B. Field theory aspects

We now summarize some aspects of CCFTs; see
Refs. [22,23] and references therein for more details.

We start by recalling the definition of the Carrollian
conformal weights, analogous to conformal weights:

L0jhL;hMi ¼ hLjhL;hMi M0jhL;hMi ¼ hMjhL;hMi ð28Þ

While the interpretation of the Virasoro central charge cL in
the bms3 algebra (22) is analogous to the corresponding
CFT2 interpretation, the interpretation of the mixed central
charge cM is more subtle. At first glance, its precise value
seems irrelevant, since a change of basis Mn → λMn is an
automorphism of the bms3 algebra upon rescaling cM.
Nevertheless, there is a Cardy-like entropy formula [24,25]
(see also [26,27]), which for cL ¼ 0 (and hM > 0) reads

S ¼ 2πhL

ffiffiffiffiffiffiffiffiffiffiffi
cM

24hM

r
: ð29Þ

The reason there is no contradiction between the appear-
ance of cM in the entropy formula (29) and the fact that its
value can be rescaled to an arbitrary (positive) number is
decisive to understanding our RG flow results presented
in later sections. The simple point is that whenever cM
appears in dimensionless ratios, there is a meaning to this
ratio. In the Cardy-like formula (29), the combination
cM=hM is dimensionless. Therefore, this formula makes
sense. (Another way to come to the same conclusions is
to note that both hM and cM scale in the same way under
the automorphism Mn → λMn, so that the entropy (29) is
invariant under it.) The lesson for later is that the value of
cM by itself is physically irrelevant, but dimensionless
ratios involving cM can be physically relevant.
We focus now on the main observable of interest, EE. It

was calculated in [7] for the null orbifold, the global flat
space vacuum, and for thermal states, and in [18] for any
vacuumlike state, including arbitrary BMS3-descendants of
the vacuum and of thermal states. We shall need only the
result for the null orbifold.

SEE ¼ SL þ SM ð30Þ

with

SL ¼ cL
6
log

Δφ
ϵφ

SM ¼ cM
6

�
Δu
Δφ

−
ϵu
ϵφ

�
ð31Þ

where Δφ (Δu) is the spatial (temporal) extent of the
entangling region, ϵφ, ϵu are UV cutoffs, and cL, cM are the
central charges of the bms3 algebra (22). The result (31)
was confirmed in holographic calculations [8,28–30]. For
cM ¼ 0 (31) coincides with one chiral half of ground state
EE in a CFT2 (3). The UV cutoffs ϵφ, ϵu drop out in the
quantum inequalities and our proposal for the c functions
discussed below, so we do not discuss them further.
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C. Quantum energy conditions in CCFT2

By analogy to AdS3=CFT2, our main interests are
quantum energy conditions [18]. We define the expectation
values

2πhT Mi ¼
cM
24

M 2πhT Li ¼
cL
24

Mþ cM
24

ð2Lþ uM0Þ
ð32Þ

with conventional normalizations (primes denote φ-
derivatives). The quantum energy condition for theories
with cM ¼ 0

2πhT Li ≥ S00L þ 6

cL
S02L ð33Þ

is a chiral half of the QNEC2 inequalities and essentially
equivalent to (8). However, we are more interested in the
opposite case, when cL ¼ 0 but cM ≠ 0. In that case, the
quantum energy condition is (dots denote u-derivatives)

2πhT Mi ≥ Ṡ0M þ 6

cM
Ṡ2M: ð34Þ

The quantum inequalities above inspire the CH-like
proposal of c functions in CCFT2 at the end of our paper.

IV. DOMAIN WALLS IN FLAT SPACE

In this section, we construct domain wall solutions in 3d
flat space, intending to generate holographic RG-flows
analogous to the ones discussed in Sec. II C.
In Sec. IVA, we set the stage by deriving the possible

geometries of flat space domain walls. Section IV B
focuses on domain wall solutions in flat space Einstein-
dilaton gravity. In Sec. IV C, we pick specific solutions that
allow a holographic RG flow interpretation.

A. Geometric aspects of flat space domain walls

In AdS3, domain walls are constructed by requiring
Poincaré2 invariance on each slice; alternatively, we could
have demanded that the conformal Killing vectors of each
2d slice generate CFT2 symmetries. We follow the second
approach to construct flat space domain walls and demand
that the degenerate (Carrollian) induced metric has con-
formal Killing vectors that generate BMS3 symmetries.
Looking at the asymptotic expansion (23), it is sugges-

tive to consider as ansatz the degenerate (Carrollian)
induced metric

ds2ð2Þ ¼ gð2Þμν dxμdxν ¼ e2AðrÞdφ2þ 0 · du2þ 0 · dudφ: ð35Þ

This ansatz ensures that even at finite values of the radial
coordinate r, all slices have the same features as in the
asymptotic limit r → ∞. The function AðrÞ is arbitrary at

this stage. Since the induced metric (35) is degenerate,
we make sure not to use its inverse in any of our
considerations.
To verify this ansatz, we solve the conformal Killing

equation

ξμ∂μg
ð2Þ
αβ þ gð2Þαμ ∂βξ

μ þ gð2Þβμ ∂αξ
μ ¼ gð2Þαβ ∂μξ

μ ð36Þ

for the vector field ξ using the degenerate metric (35). The
result

ξ ¼ ðξMðφÞ þ uξ0LðφÞÞ∂u þ ξLðφÞ∂φ ð37Þ

shows that the conformal Killing vectors (37) indeed
generate centerless bms3 as Lie-bracket algebra (compare,
e.g., with [31]).

½ξðξð1ÞM ; ξð1ÞL Þ; ξðξð2ÞM ; ξð2ÞL Þ�Lie ¼ ξðξð1ÞM ξð2Þ0L þ ξð1ÞL ξð2Þ0M

− ξð2ÞM ξð1Þ0L − ξð2ÞL ξð1Þ0M ; ξð1ÞL ξð2Þ0L

− ξð2ÞL ξð1Þ0L Þ ð38Þ

Therefore, r ¼ const: slices in flat space domain walls only
contain the term e2AðrÞdφ2.
The 3d metric describing flat space domain walls

ds2 ¼ −eAðrÞ2dudrþ e2AðrÞdφ2 ð39Þ

depends on one arbitrary function1 of the radial coordinate,
AðrÞ. The additional assumption implicit in (39) is that
we keep Eddington–Finkelstein gauge in the interior of
the bulk. This is analogous to keeping Gaussian normal
coordinates in the bulk of AdS3 domain walls (9).
Let us now address curvature invariants. The Ricci tensor

has a single nonzero component.

Rrr ¼ −A00 ð40Þ

Regardless of the choice of AðrÞ, all geometries (39) have
vanishing scalar curvature invariants and vanishing Cotton
tensor. This means these geometries are not only locally
conformally flat, but it also implies we need some Page-like
curvature invariants [32] if we want to characterize these
geometries.

1One could add another function BðrÞ in the first term, but
we have eliminated it by fixing the diffeomorphisms r → fðrÞ
suitably. The gauge choice (39) ensures that both metric coef-
ficients remain bounded and never change sign, provided the
function AðrÞ remains bounded. The flat space domain wall
geometries (39) correspond to (4.11) in [9] upon redefining our
radial coordinate as dr → e−AðrÞdr.
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An example of such an invariant is

P ¼ ðRμνkμkνÞ2
ð∇μ∇νRαβÞkμkνkαkβ

ð41Þ

where kμ is any vector with nonvanishing r-component.2

However, in the following subsection, we identify an even
simpler and more useful scalar invariant, namely the matter
scalar, so we will not employ (41).

B. Flat space domain walls
in Einstein-dilaton gravity

Above, we discussed the kinematics of flat space domain
walls. Here, we focus on the dynamics of these domain
walls. As for AdS3, we consider Einstein-dilaton gravity
(10) with field equations (12). Remarkably, the field
equations hold for any choice of the function AðrÞ in
the flat space domain wall (39) provided the scalar field
potential vanishes, VðϕÞ ¼ 0, and the scalar field obeys the
ordinary differential equation

1

2
ϕ02 ¼ −A00: ð42Þ

The geometric reason for this surprising result is that both
ð∂ϕÞ2 and ∇2ϕ vanish on flat space domain wall back-
grounds (39) for any scalar field ϕ that is independent of u
and φ.
This result implies that on-shell, the combination appear-

ing in the Ricci tensor (40) is related to (the derivative of)
the scalar field. Thus, we can use the scalar field ϕ as a
scalar invariant that fully characterizes our geometry. (The
additive integration constant contained in ϕ does not play
any role for geometric properties and can be chosen
conveniently; we fix it by demanding limr→∞ ϕðrÞ → 0.)
Moreover, we can either provide the function A as input and
determine ϕ by integrating once (42), or we provide ϕ as
input and determine A by integrating twice (42).
Demanding compatibility with asymptotic flatness

requires the expansion

Aðr ≫ 1Þ ¼ r − r0 þ oð1Þ ð43Þ

for the remaining function AðrÞ. Introducing the new
radial coordinate ρ ¼ er−r0 leads to the desired asymptotic
expansion of the metric

ds2 ¼ −2dudρþ ρ2dφ2 þ… ð44Þ

In the interior the bulk metric

ds2 ¼ −2eAðrÞdudrþ e2AðrÞdφ2 ð45Þ

is free from singularities as long as the function AðrÞ
remains finite; in particular, the null orbifold singularity at
r ¼ 0 is absent since the factor e2AðrÞ always is finite in the
interior.
The asymptotic expansion for the scalar field compatible

with (43) follows from integrating the equations of motion
(42). Since both the leading and the first subleading terms
in (43) drop out in A00, only the terms that decay at r → ∞
contribute to the scalar field.

ϕðr ≫ 1Þ ¼ ϕ0 þ oð1Þ: ð46Þ

Without loss of generality, we set the integration constant to
zero, ϕ0 ¼ 0. For example, if the sub-subleading term in A
scales like e−r, then the first term in the large-r expansion
of ϕ decays like e−r=2.
We highlight an important subtlety. Reality of the field

configuration requires the inequality

A00 ≤ 0 ð47Þ

in the whole range of definition of the function A. Thus,
when designing flat space domain walls by choosing some
function AðrÞ, it is crucial to obey the concavity condition
(47) for all values of the radial coordinate r.
If we slightly change the asymptotic behavior (43),

Aðr ≫ 1Þ ¼ λ−1ðr − r0Þ þ oð1Þ λ∈Rþ ð48Þ

and use the radial coordinate ρ ¼ eðr−r0Þ=λ, the asymptotic
expansion of the metric

ds2 ¼ −2λdudρþ ρ2dφ2 þ… ð49Þ

shows that the first term is rescaled by λ. We will exploit
this property in the next subsection to establish holographic
RG flows.

C. Flat space holographic RG flow example

We are finally able to model holographic RG flows for
BMS3 invariant QFTs.
One possibility to generate flat space domain walls is

to take any AdS3 domain wall for some potential, take
the scalar field appearing in that solution as input, and
construct the function A by integrating twice (42). Any
such choice generates a legitimate flat space domain wall;
a subset of them generates an associated holographic
RG flow between BMS3 invariant UV and IR fixed points.

2In Page’s construction, kμ had to be null, and the scalar
invariants were the maximum and minimum with respect to
changes of directions of kμ. In our case, the Ricci tensor is so
simple that the quantity P is constant not only under changes of
direction but also under changes of the signature of kμ from
lightlike to timelike or spacelike; the only requirement that kμ has
to fulfill is that Rμνkμkν does not vanish unless Rμν ¼ 0, which in
our coordinates implies kr ≠ 0.
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We will be more precise and general about this in Sec. V.
For now, we focus on a specific example.
In our first example, we pick the same scalar field as

for AdS3 domain walls (17) (renaming the radial ρ into r).
In Fig. 1, we plot the scalar field ϕðrÞ and the associated
bulk energy 1

2
ϕ0ðrÞ2 for the choices ϕ0 ¼ 0, j ¼ 54 and

−αj2 ¼ 1. The blue curve depicts the scalar field and has
a clear kinklike structure, interpolating between two differ-
ent asymptotic values. The orange curve shows that the
bulk energy is localized in the interior of the bulk. Its
maximum is at r ¼ ln 2 [for general α, j the maximum is
at r ¼ lnð−2αj2Þ].
Integrating twice (42) yields

AðrÞ ¼ A1rþA0 −
j2

16

�
1

er−αj2
þ r− lnðer−αj2Þ

αj2

�
ð50Þ

with two integration constants A1, A0. To obtain the desired
asymptotics (43) we fix A1 ¼ 1, yielding

Aðr → ∞Þ ¼ rþ A0 −
j2

8
e−r þOðe−2rÞ: ð51Þ

Depending on the sign of α, there are different possibil-
ities. In the AdS case, we needed negative α to generate
domain walls with a CFT2 fixed point in the IR. We check
now whether something analogous is true for the corre-
sponding flat space domain wall.
For negative α, there is no singularity in AðrÞ for any

finite value of r. Therefore, the coordinate range of this
domain wall is ð−∞;∞Þ, and we obtain a second asymp-
totic region at r → −∞. In this limit, the function (50)
expands as

Aðr→−∞Þ ¼
�
1−

1

16α

�
rþA0þ

1þ lnð−αj2Þ
16α

þOðe2rÞ:

ð52Þ

Denoting the UV central charge by cUVM , comparison of
the two asymptotic expansions (51) and (52) yields a result
for the IR central charge

cIRM ¼ cUVM
1 − 1

16α

< cUVM ð53Þ

according to the discussion at the end of Sec. III A. Note
that the ratio cIRM=cUVM ≤ 1 is dimensionless, and hence
equation (53) is meaningful [compare with the discussion
after the Cardy-like formula (29)].
As evident from the plot in Fig. 2, the function

cdwðrÞ ≔
cUVM
A0ðrÞ ð54Þ

is a c function for this domain wall solution since it
approaches the correct UV and IR values and is monoton-
ically decreasing toward the IR.
The result (53) is precisely the same relation as for the

corresponding holographic RG flow in AdS3 (with the
Virasoro central charge replaced by the bms3 central
charge cM), see Eq. (21). In the next section, we shall
prove that this is not a coincidence but a generic feature
relating AdS3 and flat space domain walls and their
corresponding RG flow interpretations.
Before generalizing our results, consider the case of

positive α. In AdS3=CFT2 such “domain walls” do not
model an RG flow from a UV to an IR fixed point, but
rather an RG flow from a UV fixed point to the IR, but
without CFT2 fixed point in the IR. As we now show,
something comparable happens in flat space. Indeed, for
positive α the IR boundary is at finite value of r,

rIR ¼ lnðαj2Þ: ð55Þ

The scalar field and the Ricci tensor are singular at the IR
boundary, so in this case, the flow ends at a naked
singularity on the gravity side, and there is no BMS3 field
theory interpretation in the IR.
Finally, we consider the limiting case of vanishing α.

Here the c function tends to zero in the IR (which is
again obtained in the limit r → −∞); see Fig. 3. In this
case, the IR fixed point is a trivial BMS3-invariant QFT
with vanishing central charge cM ¼ 0. All these features are

FIG. 1. Scalar field (17) and bulk energy 1
2
ϕ0ðrÞ2 for ϕ0 ¼ 0,

j ¼ 54 and −αj2 ¼ 1. FIG. 2. Plot of 1=A0ðrÞ for j ¼ 1 and −α ¼ 1
16
shows it behaves

like a c function.
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analogous to corresponding AdS3=CFT2 features, see, e.g.,
the discussion in [13].

V. FLAT SPACE HOLOGRAPHIC RG
FLOW THEOREMS

In this section, we state and prove three theorems for RG
flows modeled by domain wall solutions in 3d flat space
Einstein-dilaton gravity.
In Sec. VA, we collect some definitions used in all

theorems. In Sec. V B, we state and prove a correspon-
dence theorem, relating all AdS3 domain walls to corre-
sponding flat space domain walls. In Sec. V C, we state and
prove a monotonicity theorem, showing that bulk unitarity
implies a monotonically decreasing c function. Putting
together both theorems, we prove a third one that shows
the equivalence of the UV/IR ratios of Virasoro and bms3
central charges.

A. Definitions

In this whole section, we are solely concerned with
holographic RG flows generated by flat space domain wall
solutions described in Sec. IV. For these domain walls, we
found a c function (54). While this definition was based on
a single example studied in Sec. IV C, it is natural to define
generically the flat space holographic c function

cdwðrÞ ≔
cUVM
A0ðrÞ fixing lim

r→∞
AðrÞ ¼ rþOð1Þ: ð56Þ

This formally coincides with the AdS domain wall c
function discovered in the seminal work [3]. Moreover,
the definition (56) essentially corresponds to (4.16) in [9].
We define the term proper domain wall solution of

AdS3-Einstein-dilaton gravity to mean an exact solution
of the equations of motion (12) with some scalar potential
of the form (11) such that in domain wall coordinates (9)
metric and scalar field have the following properties:
(1) for ρ → ∞ the metric asymptotes to Poincaré

patch AdS3 with unit AdS-radius and the scalar
field approaches zero

(2) for ρ → −∞ the metric asymptotes to Poincaré patch
AdS3 with AdS-radius smaller than one and the
scalar field approaches a constant (that can be zero)

(3) for finite values of ρ the metric function AðρÞ and the
scalar field ϕðρÞ are bounded real functions; more-
over, AðρÞ is at least C2 and ϕðρÞ at least C1

Similarly, we define the term proper flat-space domain
wall solution to mean an exact solution of the equations of
motion (12) with vanishing scalar potential, VðϕÞ ¼ 0,
such that in flat space domain wall coordinates (39) metric
and scalar field have the following properties:
(1) for r → ∞ the metric asymptotes to the null orbifold

(44) and the scalar field approaches zero
(2) for r → −∞ the metric asymptotes to the null

orbifold, with a possible rescaling of the first term
as in (49) (with some positive λ) and the scalar field
approaches a constant (that can be zero)

(3) for finite values of r the metric function AðrÞ and the
scalar field ϕðrÞ are bounded real functions; more-
over, AðrÞ is at least C2 and ϕðrÞ at least C1

By UV (IR), we always mean the limits ρ; r → ∞
(ρ; r → −∞) in the domain wall coordinates referred
to above.
The Virasoro central charges appearing in domain wall

solutions of AdS3-Einstein-dilaton gravity are, therefore,
denoted by cUV at the UV boundary and by cIR at the IR
boundary. The Zamolodchikov c theorem implies

cIR ≤ cUV: ð57Þ

Finally, note that the definitions above imply that domain
walls always connect UV and IR fixed points, i.e., cases
where we do not have an IR fixed point, such as the one
discussed at the end of Sec. IV C (positive α), are excluded
by our definitions of proper domain walls.

B. Correspondence theorem

Equipped with the definitions of Sec. VA, we can now
formulate our first theorem. It allows to translate any proper
AdS3 domain wall solution into a corresponding proper flat
domain wall solution.
Theorem 1 (AdS3=flat space domain wall correspon-

dence). Given a proper domain wall solution of
AdS3-Einstein-dilaton gravity, there is a corresponding pro-
per flat-space domain wall solution with the following
properties:

(I) In the UV, the flat space asymptotic symmetries
generate a bms3 algebra with central charge
cUVM ¼ 3

GN
.

(II) In the IR, the flat space asymptotic symmetries
generate a bms3 algebra with a central charge cIRM
that in general differs from cUVM .

Proof. Start with some scalar field ϕðρÞ that generates a
proper domain wall solution of AdS3-Einstein-dilaton

FIG. 3. Plot of 1=A0ðrÞ for j ¼ 1 and α ¼ 0 shows the c
function vanishes in the IR.
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gravity and define ϕðrÞ to be the scalar field of the
corresponding proper flat space domain wall. Since by
assumption, the AdS3 domain wall is proper, also the
flat space domain wall is proper, meaning there are no
singularities at finite values of r. Therefore, we need
to consider only the UV and IR limits of the scalar field
and the metric. By definition we have the expansions
ϕðr → ∞Þ ¼ oð1Þ and ϕðr → −∞Þ ¼ ϕ1 þ oð1Þ. Since ϕ
is differentiable we have ϕ0ðr → ∞Þ ¼ oð1=rÞ ¼
ϕ0ðr → −∞Þ. Integrating the equation of motion (42)
yields Aðr → ∞Þ ¼ A1rþ A0 þ oð1Þ and Aðr → −∞Þ ¼
A2rþ A3 þ oð1Þ. The quantities Ai are integration con-
stants; only two of them can be chosen independently.
Without loss of generality, we fix A1 ¼ 1 and set A0 ¼ −r0,
thereby recovering the expansion (43). According to the
discussion at the beginning of Sec. III A, we then recover
the bms3 algebra as asymptotic symmetry algebra in the
UV with the usual central charge cM ¼ 3=GN . Similarly,
we recover a bms3 algebra as asymptotic symmetry
algebra in the IR, but with a value of the central charge
that depends on A2, according to the discussion in the
second half of Sec. III A. ▪
The correspondence theorem 1 could be extended to

nonproper domain walls (those with no BMS3 fixed point
in the IR and instead terminate in a naked singularity), but
we refrain from doing so.
In the final subsection, we prove two additional theorems

and start by addressing the paramount issue of monoto-
nicity of the flat space domain wall c function.

C. Monotonicity theorem and central charge
ratio equivalence

Theorem 2 (Monotonicity of c-function). The c function
associated with any flat space domain wall solution
obtained through the correspondence theorem 1 is a mono-
tonically decreasing function when flowing from the UV to
the IR.
Proof. Since the scalar field is real, bounded and C1 the

metric function AðrÞ must obey the concavity inequality
(47) for all values of r. Denoting some fiducial radius as
rUV and another, smaller, fiducial radius as rIR < rUV,
integrating the concavity condition A00ðrÞ ≤ 0 from rIR to
rUV implies

A0ðrUVÞ ≤ A0ðrIRÞ: ð58Þ

Inserting this inequality into the definition of the c
function (54),

cdwðrUVÞ ¼
cUVM

A0ðrUVÞ
≥

cUVM
A0ðrIRÞ

¼ cdwðrIRÞ ð59Þ

establishes that the c function is a monotonically decreas-
ing function when flowing from the UV to the IR,
cdwðrUVÞ ≥ cdwðrIRÞ. ▪

The theorem 2 shows that (54) is, indeed, a BMS3 c
function for proper flat space domain wall solutions. Note
that one can consider theorem 2 to be a consequence of
bulk unitarity; indeed, if we drop the assumption of
the scalar field being real and allow for a purely imaginary
scalar field, we can circumvent theorem 2; the price for
this is effectively a switched sign in the kinetic term of the
scalar field, which violates bulk unitarity. Theorem 2
corresponds to the statement directly after (4.17) in [9].
We can be more quantitative and combine both theorems

to show that the ratio between IR and UV Virasoro central
charges is equivalent to the corresponding ratio of bms3
central charges.

1 ≤
cUV

cIR
¼ cUVM

cIRM
≥ 1 ð60Þ

The first inequality follows from Zamolodchikov’s c
theorem [1]. The last inequality is the statement of theorem
2 that we just proved. What remains to be shown is the
equality in the middle. This central charge ratio equivalence
is guaranteed by the third theorem.
Theorem 3 (CFT/CCFT central charge ratio equiva-

lence). Given the assumptions of theorem 1, the ratio of
UV/IR central charges obeys the equality in (60).
Proof. For proper flat space domain walls, the UV/IR

ratio of bms3 central charges is given by

cUVM
cIRM

¼ A0ðr → −∞Þ
A0ðr → ∞Þ ¼ A2 ≥ 1: ð61Þ

The equalities follow from the proof of theorem 1 (and the
discussion in Sec. III A). The quantity A2 was also defined
in the proof of theorem 1. The inequality in (61) follows
from theorem 2. For proper AdS3 domain walls, the UV/IR
ratio of Virasoro central charges is given by the ratio of
UV/IR AdS radii. The AdS radii follow from the UVand IR
behavior of the function AðρÞ appearing in domain wall
coordinates (9). Since by assumption we set the AdS
radius to unity in the UV, we must have the expansion
Aðρ → ∞Þ ¼ ρþ Ã0 þ oð1Þ. Without loss of generality,
we equate Ã0 ¼ A0 by a constant shift of ρ. In the IR we
have the expansion Aðρ → −∞Þ ¼ Ã2ρþ Ã3 þ oð1Þ.
Therefore, the UV/IR ratio of Virasoro central charges is
given by

cUV

cIR
¼ A0ðρ → −∞Þ

A0ðρ → ∞Þ ¼ Ã2 ≥ 1: ð62Þ

What remains to be shown is A2 ¼ Ã2. Since AðrÞ and AðρÞ
have the same leading and next-to-leading order terms in
the UV, it is sufficient to show that both of them obey
the same second-order differential equation A00 ¼ − 1

2
ðϕ0Þ2.
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For flat space domain walls, this follows from (42). For
AdS3 domain walls, this follows from differentiating the
left equation (14) with respect to ρ and, using the chain rule,
insert the right equation (14) on the right-hand side of
the left equation, viz., d2A=dρ2 ¼ − 1

2
dW=dϕ · dϕ=dρ ¼

− 1
2
ðdϕ=dρÞ2. Since AðρÞ and AðrÞ obey the same second-

order differential equation and have the same linear and
constant terms in the UV, these two functions must coincide
for all values of the radial coordinates. This implies, in
particular, Ã2 ¼ A2. ▪
In conclusion, the three theorems proven in this section

provide Carrollian c functions (56) of domain wall sol-
utions (39) to 3d Einstein-dilaton gravity that describe flat
space holographic RG flows from a Carrollian UV fixed
point to a Carrollian IR fixed point. Bulk unitarity guar-
antees the monotonicity of our domain wall c functions.
Moreover, to every AdS3 domain wall solution (reviewed in
Sec. II C), there is a corresponding flat space domain wall
solution (discussed in Sec. IV) with the same radial profile
and the same UV/IR-ratios of central charges. The principal
difference is that AdS3 domain walls require a scalar field
potential for support, whereas flat space domain walls
demand vanishing potential.
The drawback of our c functions (56) is that we need

some bulk dual, which may not always be available. Thus,
it would be satisfying to have an intrinsic construction for a
Carrollian c function without recourse to holography, either
along the lines of Zamolodchikov’s original design [1] or
the CH construction reviewed in Sec. II A.
We tentatively follow the latter path in our final section,

inspired by the relation between the CH c function and
QNEC2 recapitulated in Sec. II B. We are guided by the
considerations of Secs. II A, II B, III B, and III C.

VI. TENTATIVE PROPOSAL
FOR CASINI–HUERTA-INSPIRED

CARROLLIAN c-function

Without further ado, here is our tentative proposal for the
Carrollian c functions in CCFT2:

cLðΔu;ΔφÞ≔ 6ΔφS0L cMðΔu;ΔφÞ≔ 6ΔφṠM ð63Þ

Prime denotes φ-derivatives and dot u-derivatives.
A sanity check that our proposal is not ruled out

immediately is to consider the special case cM ¼ 0,

cL ≠ 0 corresponding to a chiral half of a CFT2. In this
case, the identity

1

6Δφ
c0L ¼ S00L þ 6

cL
S02L ð64Þ

recovers the expected QNEC2 combination, see the dis-
cussion in Sec. II B. Thus, for cM ¼ 0, cL ≠ 0, we recover
the CH c function for a chiral half of a CFT2.
Another consistency check is that our definitions are

independent of the UV cutoffs, as expected on physical
grounds.
Finally, even in the more interesting case cL ¼ 0,

cM ≠ 0, the c function cM reproduces the quantum energy
combination of terms (34).

1

6Δφ
c0M ¼ Ṡ0M þ 6

cM
Ṡ2M ð65Þ

Thus, if the c function cM is monotonic, it implies the
quantum energy condition (34) for the ground state.
The arguments above are neither proof of the quantum

energy conditions nor proof that cM is a c function; they
merely show that our putative c function in (63) is
consistent with the CCFT2 quantum energy conditions
[18]. We leave applications and scrutiny of our proposal
(63) to future work.
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