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Starting with the two-derivative limit of D ¼ 2 string theory, we explore the space of T-duality invariant
α0 corrections, a space that contains a point representing the fully α0-corrected classical string theory. Using
a parametrization introduced by Gasperini and Veneziano we obtain black hole solutions in this theory
space. We prove that the dual of a solution with a regular horizon must have a curvature singularity. We find
regions in the theory space where the black hole is deformed while preserving the horizon and the
singularity, and regions where no black hole appears to exist. Furthermore, we find subregions in this
theory space, probably not containing string theory, in which the black hole geometry exhibits a horizon
leading to an interior that, having no singularity in the metric, curvature or dilaton, is a regular cosmology.
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I. INTRODUCTION

Black holes are perhaps the most mysterious objects
predicted by general relativity. They are characterized by an
event horizon that forms, for instance, when the size of a
collapsing star falls below its Schwarzschild radius. It
follows from the singularity theorems of Penrose that in
general relativity the gravitational collapse inevitably leads
to a singularity at which the spacetime curvature becomes
infinite [1]. Since singularities cannot exist in nature we
learn that general relativity breaks down close to the black
hole singularity. In contrast, general relativity should be
applicable at the event horizon, since the curvature there
might be relatively small. In addition, we have excellent
reasons to believe that black holes with an event horizon
exist in nature. This then leads to the problem of resolving
the black hole singularity: finding a new theory that
replaces general relativity in the appropriate regime so
that there are solutions with an event horizon but no
spacetime singularity in the interior [2–6].
In this paper we ask if the black hole (BH) singularity

can be resolved in string theory by means of the higher-
derivative α0 corrections that are already a feature of
classical string theory. We consider noncritical string theory

in two dimensions (2D). Apart from its simplicity this case
is particularly promising in that there is an exact worldsheet
conformal field theory whose target space interpretation is
that of a 2D BH [7–9], although the 2D case is of course
somewhat limited in view of the horizon reducing to a
single point in space. Thus there should be an exact BH
solution to all orders in α0. We were motivated by the recent
result of Gasperini and Veneziano [10] who showed that,
remarkably, the big bang singularity may be resolved in
the α0-complete theory. Since the BH interior may be
visualized as a cosmology, one could envision that a
resolution of the BH singularity is feasible. Recent
approaches trying to remove the BH singularity using
the setup developed in [11,12] for cosmological back-
grounds were studied in [13–16]. An old result in this
direction is the D ¼ 2 black-hole geometry of [17], which
was suggested to be α0 exact. The maximally extended
spacetime geometry and regularity of such ansatz was
studied in [18–20] and an action describing this back-
ground and its (singular) dual was built in [21].
This paper is based on our recent results in [22], in which

we classify the possible higher-derivative corrections
that are compatible with an Oð1; 1Þ duality symmetry that
string theory is known to possess for such backgrounds to
all orders in α0 [23–27]. In this we generalized the earlier
work in [11,12] on cosmology. Specifically, we consider
the class of 2D string backgrounds with metrics ds2 ¼
−m2ðxÞdt2 þ n2ðxÞdx2 that admit a timelike isometry since
the metric components are independent of time t. The
outside region of the 2D BH is of this form. For any local
solution of this form, in string theory there is also the
T-dual solution obtained by sending m → 1

m, while n and
the dilaton Φ, defined in terms of the standard dilaton via
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ffiffiffiffiffiffi−gp
e−2ϕ ¼ ne−Φ, are invariant. By exploiting all possible

perturbative field redefinitions that are consistent with
duality we showed, under certain assumptions on the falloff
behavior of the coefficients, that the most general duality
invariant action is of the form

I ¼
Z

dx n e−Φ½1þ ðDΦÞ2 þ FðMÞ�; ð1:1Þ

where D ≔ 1
n ∂x is a covariant derivative, M ≔ D log m,

and

FðMÞ≡X∞
i¼0

ϵiM2iþ2 ¼ −M2 þ ϵ1M4 þ � � � ; ϵ0 ≡ −1:

ð1:2Þ

The ϵi are the free coefficients that are not fixed by duality
and that must be determined by other methods from string
theory (see for instance [28–30]). We currently do not have
the techniques to determine them and hence the function
FðMÞ to all orders. Nevertheless, here we explore the
question whether there are points in the “theory space” of
all choices of FðMÞ for which there are BH solutions that
carry an event horizon but are regular everywhere.
In order to deal efficiently with the equations following

from the α0-complete action (1.1) we will use a powerful
representation recently introduced by Gasperini and
Veneziano [10], to study the resolution of the big bang
singularity (for earlier work in this direction see [31,32]). In
the present black-hole context, instead of seeking a solution
given by explicit functions mðxÞ and ΦðxÞ (say fixing the
gauge n ¼ 1) one seeks a solution of the form mðfÞ, ΦðfÞ
and xðfÞ, with f a new parameter. Remarkably, such a
parametrized form can be obtained by inverting the
function fðMÞ ≔ F0ðMÞ to obtain MðfÞ, which parametr-
izes the metric variable M in terms of f. For the two-
derivative theory fðMÞ ¼ −2M and MðfÞ ¼ − 1

2
f. While

perturbatively α0 corrections build up the function fðMÞ as
a power series, the inverse function MðfÞ affords a more
direct solution of the equations of motion. We are thus led
to think of the “theory space” of duality-invariant derivative
corrections as one described by the possible choices of the
function MðfÞ. This leads to subtle questions on how to
encode a complete solution by such a Gasperini-Veneziano
parametrization, which in general requires the use of
several contours in “f space.” Each contour represents a
patch in coordinate space, and together they represent the
whole space. In fact, the equations of motion imply the
existence of branch points and branch cuts in the f plane,
and the underlying structure of the solution is determined
by these features. The relation xðfÞ is given in terms of an
integral x ¼ R f � � �. We divide a complete solution into
exterior and interior regions, a division that has a clear
meaning in the context of black hole solutions. We will use

f to parametrize the exterior and f̃ for the interior, to make
clear they represent different patches.
For the two-derivative BH the exterior geometry is

obtained with an f plane contour going from zero to
infinity on the real line [Fig. 1(a)]. Here f ¼ 0 is the
asymptotically flat (AF) region and f ¼ ∞ is the horizon.
For the interior, we find that the f̃ plane has a branch point
at f̃ ¼ 2 and a cut running from this point to infinity. The
contour that gives the interior solution begins under the cut
at infinity goes down to the branch point and then returns
to infinity at the top of the cut [Fig. 1(b)]. The horizon and
the singularity are at f̃ ¼ ∞, below and above the cut,
respectively. The x-space picture has the exterior going
from x ¼ −∞ (AF) to x ¼ 0 (the horizon). The interior,
drawn on the same picture goes from the horizon at x ¼ 0
to the singularity at x ¼ π [Fig. 1(c)]. It must be empha-
sized that, in general, different x-space coordinate patches
are used to cover the BH solution. For instance, in the
coordinate systems we mainly use for the standard BH, the
x coordinate ranges from −∞ to 0 and then from 0 to π,
which are two different patches, despite being displayed in
the same graph.
It is worth noting that since the roles of space and time

are interchanged when passing the event horizon, the
isometry becomes spacelike, and hence the interior of a
black hole is actually a cosmology [18]. For this cosmology
the time coordinate is x, with time x ¼ 0 corresponding to
the event horizon. Since the curvature is finite at the event

FIG. 1. The two-derivative black hole. (a) The exterior is
produced by a contour f∈ ð0;∞Þ joining the AF region to the
horizon (H). (b) The interior requires a contour going under and
then over the cut, with branch point f̃ ¼ 2 and the horizon and
singularity at f̃ ¼ ∞, under and over the cut, respectively. (c) The
x-space representation of the black hole. The exterior is in
ð−∞; 0Þ and the interior in ð0; πÞ.
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horizon, the cosmology so obtained does not have a big
bang singularity. In contrast, after a finite time the scale
factor becomes infinite, with infinite curvature, leading to a
“big rip.”
In this paper we show that T duality implies that the dual

of a solution with a regular horizon must have a curvature
singularity. This result, valid for any solution in the full
theory space, is a formalization of the early observation
of Giveon [9] noting this fact in the context of the two-
derivative version of the string theory black hole. It has
some implications in our work; in particular, two options
seem available. First, solutions may be self-dual in the
sense that the full BH (extended) geometry is invariant
under T duality. In such a case, the BH must have a
curvature singularity somewhere if it has a horizon. This is
the case for the two-derivative black hole solution. Second,
a complete solution with a horizon and no curvature or
dilaton singularity would not be self-dual, but it would still
be physically equivalent (in the sense of string theory) to its
T-dual, which necessarily would exhibit a curvature sin-
gularity. It should be stressed that throughout this paper
we employ the standard general relativity notion of
singularities, which is probed by point particles. In string
theory, however, spacetime is probed by strings, which
requires further investigation.
We show that for a large class of functions MðfÞ there

are black hole solutions that, just like that of the two-
derivative theory, are not regular and necessarily carry a
singularity. More precisely, parametrizing the space of
functions as MðfÞ ¼ − f

2
ð1þ hðf2ÞÞ, we find a number

of constraints that the function h has to obey in order to
obtain solutions with a horizon. These conditions thus pose
rather stringent constraints on the α0 corrections for string
theory to permit BH solutions with a horizon. Conversely,
if one could show that the functions h arising in string
theory do not obey these constraints one could prove that
string theory does not permit BH solutions.1

The singularity in this class of theories can be understood
using the above horizon/singularity duality. For these black
holes, the interior is represented by a contour in f̃ space that
goes both under and above a branch cut extending to
infinity and ending at a branch point at some finite f̃ ¼ f0
[Fig. 2(a)]. The interior solution is self-dual here, with the
above and below the branch contours mapped into each
other. As a result, the singularity is present (at infinity of the
top contour) because the horizon is present (at infinity on
the bottom contour).
Our strategy to construct a BH solution with a horizon

but without a singularity consists in modifying the nature of

the branch point f0 in such a way that an f̃ contour going
only under the cut suffices to describe a complete geometry
[Fig. 2(b)]. We identify a smaller class of functions MðfÞ
that can be engineered so that the branch point f0 has the
desired properties and the singularity is avoided. The
solution is complete, but not self-dual. This black hole
singularity resolution, which is nonperturbative in α0 and
closely analogous to the mechanism introduced in [11] to
obtain de Sitter vacua in string cosmology, has the
following general features. The interior is again a cosmol-
ogy with no big bang singularity at x ¼ 0. In contrast to
the standard black hole, however, it describes an expanding
universe that approaches flat Minkowski space in the
infinite future [Fig. 2(c)]. Moreover, the dilaton goes to
a fixed value in that infinite future. Such an asymptotic
background, however, defines a c ¼ 2 matter conformal
field theory, which is not a critical string theory back-
ground. It thus appears that these regular black holes are
solutions of duality-invariant theories, but apparently not of
string theory.
In exploring the geometry of the regular black hole we

emphasize that, in a subtle but important way, the f
parametrization extends the definition of the α0 corrections
beyond what the series expansion fðMÞ, which might be an
asymptotic series, can tell us. Indeed, we are postulating an
MðfÞ that is a well defined function, and for the case of the
regular black hole, this function is not invertible [MðfÞ is
also not invertible for the cases considered in [10]]. Thus,
fðMÞ would have a finite radius of convergence. The
physics of the resolved singularity involves values of f that
are not achieved within its convergence region. This allows

FIG. 2. (a) The interior of a deformed black hole with a full
contour containing a horizon H and a singularity S. (b) The
interior of the regularized black hole, without a singularity. The
bottom contour containing the horizon ends at f0 and the top
contour (dotted) is not needed for completeness. (c) The x space
representation of the regularized black hole.

1The work of Ying [14] appears to imply that a cubic MðfÞ
would yield a regular BH. Our analysis of cubic deformations in
this paper, however, finds no such regular solution. In fact, [15]
indicates that this regular solution requires changing the value of
the string theory constant term in the action.
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the late time cosmology to have a fixed dilaton instead of a
rolling one. In our reexamination of the derivation of the
equations of motion in the f parametrization (Sec. III A) we
discuss in detail how the issue of noninvertibility affects
the analysis.
This paper is organized as follows. In Sec. II we review

the general framework for the 2D black hole and the
structure of higher-derivative duality-invariant corrections,
considering the equations of motion relevant for the
exterior and interior geometries. Section III introduces
the new Gasperini-Veneziano parametrization by f and
shows how the equations of motion are solved in this
framework. We use the example of the two-derivative BH
to understand the basic structure of branch points and cuts
in f space. The next step is displaying a large class of
solutions that can be viewed as a small general deformation
of the two-derivative black hole function MðfÞ ¼ −f=2.
We do this in Sec. IV, where we also examine cubic
deformations of the function MðfÞ, which happen not to
yield black holes. In Sec. V we give the proof that the
T-dual of a geometry with a regular horizon must have a
curvature singularity. This result is used to explain why the
back-and-forth contour in f̃ space used for the interior
solution necessarily leads to an interior with a singularity.
Finally, in Sec. VI we find functions MðfÞ for which the
exterior solution is largely preserved but the interior
solution has no singularity. This is done by adjusting
MðfÞ in such a way that x as a function of f̃ diverges
at the branch point. We discuss our results and some
possible extensions in Sec. VII.

II. BLACK HOLE IN 2D STRING THEORY

Here we begin by reviewing our notation for the two-
dimensional geometry, giving the general formulas for
curvature and the action of T duality on the field vari-
ables (for more details see [22]). We reconsider the two-
derivative black hole and discuss the equations of motion
on the exterior and in the interior, the relevant equations
being related by a number of sign changes. Finally, we
consider general α0 corrections and, again, formulate the
exterior and interior versions of the equations of motion.

A. Metric, curvature and duality

We consider the target space theory of bosonic strings in
two dimensions of Lorentzian signature, with the field
content restricted to the universal massless sector. Since the
antisymmetric b field is trivial in two dimensions, we thus
include the metric gμν and the dilaton ϕ. Denoting coor-
dinates by xμ ¼ ðt; xÞ, we further impose that the fields,
and hence the gauge parameters, do not depend on time t.
This truncated theory posses a global Oð1; 1;RÞ duality
symmetry together with one-dimensional diffeomorphism
invariance: reparametrizations of x. We can assume a
diagonal ansatz for the metric

gμν ¼
�
−m2ðxÞ 0

0 n2ðxÞ

�
; ds2 ¼ −m2ðxÞdt2 þ n2ðxÞdx2:

ð2:1Þ
Here, mðxÞ and the lapse function nðxÞ are real. Under
coordinate transformations of x, the filed mðxÞ is a scalar
while nðxÞ is a scalar density. The metric mðxÞ enters the
theory through

M≡Dm
m

; ð2:2Þ

in terms of the covariant derivative

D≡ 1

n
d
dx

: ð2:3Þ

The scalar dilaton ϕðxÞ is related to the duality invariant
dilaton ΦðxÞ via

ϕðxÞ ¼ 1

2
ðΦðxÞ þ log jmðxÞjÞ; ð2:4Þ

which makes the measure of the effective theory to be of the
standard form

ffiffiffiffiffiffi−gp
e−2ϕ ¼ ne−Φ. The scalar curvature R of

the two-dimensional metric is given by

R ¼ −2ðM2 þDMÞ ¼ −2
D2m
m

: ð2:5Þ

The curvature R encodes the full Riemann tensor and hence
allows one to detect geometric singularities.
In these 2D backgrounds with a timelike isometry, the

duality group acts on the fields as

mðxÞ → m̂ðxÞ ¼ 1

mðxÞ ; nðxÞ → n̂ðxÞ ¼ nðxÞ;

ΦðxÞ → Φ̂ðxÞ ¼ ΦðxÞ: ð2:6Þ
We will use hatted fields for the fields after duality. Note
that the covariant derivative D is unchanged by duality.
As a consequence of the transformation of m one also has

MðxÞ → M̂ðxÞ ¼ −MðxÞ; ð2:7Þ
The dual scalar curvature, namely, the curvature of the dual
metric, is then given by

R → R̂ ¼ −2ðM̂2 þDM̂Þ ¼ −2ðM2 −DMÞ; ð2:8Þ
so we have

R̂ ¼ −2ðM2 −DMÞ ¼ −R − 4M2 ¼ Rþ 4DM: ð2:9Þ
A useful gauge choice. We can pick a gauge for one-

dimensional diffeomorphism invariance by fixing the lapse
function nðxÞ. A familiar gauge choice takes

nðxÞ ¼ 1: ð2:10Þ
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In this gauge the field MðxÞ, if known, is easily integrated
to find mðxÞ:

MðxÞ ¼ ∂xm
m

¼ ∂x lnm ⇒ mðxÞ ¼ exp

�Z
x

c
Mðx0Þdx0

�
;

ð2:11Þ

and consequently

mðx2Þ
mðx1Þ

¼ exp

�Z
x2

x1

Mðx0Þdx0
�
: ð2:12Þ

The scalar curvature (2.5) now reads

R ¼ −2ðM2 þ ∂xMÞ ¼ −2
∂
2
xm
m

: ð2:13Þ

It is worth emphasizing that all relations above hold for
arbitrary 2D metrics of the form (2.1), independent of any
equations of motion, and are hence applicable to generic
higher-derivative theories.

B. The two-derivative, two-dimensional black hole

Before considering α0 corrections, in the following we
recall the 2D string equations with up to two derivatives and
review the BH solution, both for the exterior region and the
interior region. We will set up the solutions, both in the
n ¼ 1 gauge in such a way that the exterior solution is in
the coordinate interval ð−∞; 0Þ and the interior solution
uses the coordinate interval ð0; πÞ. While in both cases we
use the label x to denote the coordinate, these two solutions
do not form together a single solution over the full real line;
the two xs are really different.
The target space action for the above string backgrounds

reads to leading order

I ¼
Z

dx n e−Φ½1þ ðDΦÞ2 −M2�; ð2:14Þ

where we use a unit-free notation that absorbs factors of α0,
denoted by a bar in [22] that we drop in this paper in order
not to clutter the equations. Sometimes we refer to the zero-
derivative term as the cosmological term, although it is not
a cosmological constant in the standard sense. The equa-
tions of motion for m, Φ and n are equivalent to

d
dx

ðe−ΦMÞ ¼ 0; ð2:15aÞ
�
dΦ
dx

�
2

−M2 − 1 ¼ 0; ð2:15bÞ

d2Φ
dx2

−M2 ¼ 0; ð2:15cÞ

where we picked n ¼ 1 gauge after performing the
variation.
Exterior BH solution. The above equations admit a

unique solution describing the outside region of a 2D
BH [7–9]. We use the region x∈ ð−∞; 0Þ, and the metric
and duality-invariant dilaton take the form

mðxÞ ¼− tanh
x
2
; ΦðxÞ ¼− log jsinhxjþΦ0; x < 0;

ð2:16Þ

with Φ0 an integration constant, and the sign of mðxÞ is
fixed to get the familiar asymptotic behavior. The scalar
curvature (2.13) is given by

RðxÞ ¼ 1

cosh2 x
2

: ð2:17Þ

Here x ¼ 0 is the position of the horizon, x → −∞ is the
AF region with m approaching one.2 Indeed, at x ¼ 0 the
metric vanishes and the curvature is finite

mð0Þ ¼ 0; Rð0Þ ¼ 1; ð2:18Þ

while in the AF region we have

lim
x→−∞

mðxÞ ¼ 1; lim
x→−∞

RðxÞ ¼ 0: ð2:19Þ

On the other hand, the duality-invariant dilaton ΦðxÞ
becomes infinite at both extremes

lim
x→0−

ΦðxÞ ¼ ∞; lim
x→−∞

ΦðxÞ ¼ −∞: ð2:20Þ

This does not necessarily indicate a pathology since Φ is
not the scalar dilaton ϕ that determines the string coupling
as gs ¼ eϕ. Using (2.4), we get

ϕ ¼ −
1

2
log cosh2

x
2
þ ϕ0 ⇒ ϕð0Þ ¼ ϕ0 ¼

1

2
ðΦ0 − log 2Þ;

ð2:21Þ

and so the dilaton and hence the string coupling are finite at
the horizon. We also infer limx→∞ϕðxÞ ¼ −∞, so the string
coupling gs goes to zero in the AF region.
Interior BH solution. The solution (2.16) describes

only the exterior region of the BH. Therefore, it has no
information on the BH singularity, which lies in the interior.
This region, together with others, can be obtained by
analytic extension of the exterior solution. Moreover,
for the 2D BH, it is possible to obtain the maximally
extended solution using a single patch, by the so-called

2The solution can also be used for x∈ ð0;∞Þ, but our later
work is simplified by this choice of range of x.
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Kruskal-Szekeres coordinates. This coordinate system
covers not only the exterior and interior region of the
BH, but also a white hole region and a disconnected
asymptotically flat space. Since we are mainly interested
in the BH singularity, for now it is sufficient to describe the
interior region only.
The most straightforward approach to get the interior

solution is to look for a transformation that preserves the
measure and changes the metric signature or, more pre-
cisely, that maps a metric with timelike isometry to a metric
with spacelike isometry as follows:

ne−Φ → ñe−Φ̃; ð2:22Þ
ds2 ¼ −m2ðxÞdt2 þ n2ðxÞdx2 → ds2

¼ m̃2ðxÞdt2 − ñ2ðxÞdx2: ð2:23Þ

This can be achieved by setting

m ¼ im̃; n ¼ −iñ; Φ ¼ Φ̃ − log i; ð2:24Þ
which preserves the measure and the product mn.
Therefore, from (2.2) and (2.3) we have

D ¼ iD̃; M ¼ iM̃; ð2:25Þ
with D̃ ¼ 1

ñ
d
dx and M̃ ¼ 1

m̃ ñ ∂xm̃. Applying these substitu-
tions to the curvature (2.5) we find R → R̃ with

R̃ ¼ 2ðM̃2 þ D̃ M̃Þ ¼ 2
D̃2m̃
m̃

: ð2:26Þ

Fixing the gauge ñðxÞ ¼ 1,

R̃ ¼ 2ðM̃2 þ ∂xM̃Þ ¼ 2
∂
2
xm̃
m̃

: ð2:27Þ

The scalar dilaton in (2.4) is mapped to

ϕ̃ðxÞ ¼ 1

2
ðΦ̃ðxÞ þ log jm̃jÞ: ð2:28Þ

From the original action (2.14), we obtain

Ĩ ¼
Z

dx ñe−Φ̃½1 − ðD̃ Φ̃Þ2 þ M̃2�: ð2:29Þ

Varying this action and fixing the gauge ñ ¼ 1, the
equations of motion read

d
dx

ðe−Φ̃M̃Þ ¼ 0; ð2:30aÞ
�
dΦ̃
dx

�
2

− M̃2 þ 1 ¼ 0; ð2:30bÞ

d2Φ̃
dx2

− M̃2 ¼ 0: ð2:30cÞ

The solution in this case is given by trigonometric
functions

m̃ðxÞ ¼ tan
x
2
;

Φ̃ðxÞ ¼ − log sin xþΦ0 ⇒ ϕ̃ðxÞ ¼ −
1

2
log cos2

x
2
þ ϕ0;

ð2:31Þ
where we pick the same integration constant Φ0 as for the
exterior solution in (2.16), and hence we got the same ϕ0

as in (2.21). The curvature is obtained by inserting this
solution into the right-hand side of (2.27):

R̃ðxÞ ¼ 1

cos2 x
2

: ð2:32Þ

This solution is now valid for the finite range x∈ ð0; πÞ.
For x ¼ 0, the metric, scalar dilaton and curvature take
the values

m̃ð0Þ ¼ 0; ϕ̃ð0Þ ¼ ϕ0; R̃ð0Þ ¼ 1; ð2:33Þ
which is consistent with a horizon interpretation. More
importantly, the curvature and scalar dilaton on both sides
match. At the other end x ¼ π, all fields and curvature
diverge

m̃ðπÞ ¼ ∞; ϕ̃ðπÞ ¼ ∞; R̃ðπÞ ¼ ∞; ð2:34Þ
signaling that this is the position of the BH singularity.
Dual BH solutions. As shown in [9], under T duality the

exterior region of the 2D BH is mapped to a region beyond
the singularity, while the interior region is mapped into
itself. Here we revisit briefly these phenomena.
Starting from the exterior solution (2.16) and performing

the duality transformation (2.6), one obtains the new
solution, also valid for x∈ ð−∞; 0Þ∶

m̂ðxÞ ¼ − coth
x
2
; Φ̂ðxÞ ¼ − log j sinh xj þΦ0;

ϕ̂ðxÞ ¼ −
1

2
log sinh2

x
2
þ ϕ0; ð2:35Þ

where the dual metric is the inverse of the original one and
the duality-invariant dilaton remains the same. Inserting the
dual metric into the dual curvature (2.27) we get

R̂ðxÞ ¼ −
1

sinh2 x
2

: ð2:36Þ

In this dual solution, the former horizon x ¼ 0− is mapped
to a curvature singularity

lim
x→0−

m̂ðxÞ ¼ ∞; lim
x→0−

ϕ̂ðxÞ ¼ ∞; lim
x→0−

R̂ðxÞ ¼ −∞;

ð2:37Þ
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while the asymptotic region is again a flat spacetime which
lies beyond the BH singularity.
The dual solution to the interior solution (2.31) is

given by

ˆ̃mðxÞ ¼ cot
x
2
; ˆ̃ΦðxÞ ¼ − log sin xþΦ0;

ˆ̃ϕðxÞ ¼ −
1

2
log sin2

x
2
þ ϕ0; ð2:38Þ

together with the curvature

ˆ̃RðxÞ ¼ 1

sin2 x
2

: ð2:39Þ

This geometry still corresponds to the interior region, with
the horizon and the singularity exchanged. This can be
made clear by noting that3 duality plus the “time reversal”
transformation x → π − x leaves the interior solution
invariant: ˆ̃mðπ − xÞ ¼ m̃ðxÞ.

C. General α0 corrections

In [22] we considered higher-derivative modifications
to (2.14) and pointed out that, due to the presence of the
cosmological term, contributions with more derivatives are
generally not subleading relative to terms with less deriv-
atives. A naive perturbative expansion is therefore not
meaningful unless one assumes that the numerical coef-
ficients of the higher-derivative terms obey certain falloff
conditions so that terms with more derivatives are sub-
leading after all. Under this assumption we classified
in [22] the higher-derivative terms modulo field redefini-
tions that preserve the falloff behavior. This leads to the
minimal all-order action

I ¼
Z

dx n e−Φ½1þ ðDΦÞ2 þ FðMÞ�; ð2:40Þ

where

FðMÞ≡X∞
i¼0

ϵiM2iþ2 ¼ −M2 þ ϵ1M4 þ…; ϵ0 ≡ −1:

ð2:41Þ
Note that, as one consequence of the classification in [22],
there are no higher-derivative corrections for the dilaton.
The falloff conditions we assumed amount to the following
constraints for the coefficients ϵi

ϵ≡ ϵ1 ≪ 1; ϵi ∼ ðϵÞi; i ≥ 1; ϵpϵk ∼ ϵpþk;

ð2:42Þ

where ∼ indicates equality up to numerical constants of
order 1.
Taking the variation of (2.40) with respect tom,Φ and n,

combining the dilaton and lapse equations and fixing
n ¼ 1, we arrive at the all-order extension of (2.15)

d
dx

ðe−ΦfðMÞÞ ¼ 0; ð2:43aÞ
�
dΦ
dx

�
2

þ ǧðMÞ − 1 ¼ 0; ð2:43bÞ

d2Φ
dx2

þ 1

2
MfðMÞ ¼ 0: ð2:43cÞ

Here we introduced4

fðMÞ≡ F0ðMÞ ¼
X∞
i¼0

ð2iþ 2ÞϵiM2iþ1 ¼ −2M þ 4ϵM3

þOðϵ2Þ;

ǧðMÞ≡X∞
i¼0

ð2iþ 1ÞϵiM2iþ2 ¼ −M2 þ 3ϵM4 þOðϵ2Þ;

ð2:44Þ
which satisfy the following relation

ǧ0ðMÞ ¼ Mf0ðMÞ; ð2:45Þ
where 0 denotes the derivative with respect to M.
For the two-derivative theory it was straightforward to

solve (2.15) to obtain (2.16), the exterior region of the BH.
While it is much harder to find solutions of (2.43) for
generic fðMÞ and gðMÞ, assuming that we have such a
solution describing the exterior of a BH, we can obtain
the solution describing the interior by performing the
“signature change” discussed above. To this end we apply
(2.24)–(2.40) to get

Ĩ ¼
Z

dx ñe−Φ̃½1 − ðD̃ Φ̃Þ2 þ F̃ðM̃Þ�; ð2:46Þ

where we have defined

F̃ðM̃Þ≡ FðiM̃Þ ¼
X∞
i¼0

ð−1Þiþ1ϵiM̃2iþ2 ¼ M̃2 þ ϵM̃4 þ � � �

ð2:47Þ
The equations ofmotion in the ñ ¼ 1 gauge are nowgiven by

d
dx

ðe−Φ̃f̃ðM̃ÞÞ ¼ 0; ð2:48aÞ

3We thank M. Gasperini and G. Veneziano for pointing
this out.

4In our previous work [22], we used gðMÞ for what is now
written as ǧðMÞ. This change of notation is useful to deal with the
issue of noninvertibility of MðfÞ.
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�
dΦ̃
dx

�
2

− ˜̌gðM̃Þ þ 1 ¼ 0; ð2:48bÞ

d2Φ̃
dx2

þ 1

2
M̃ f̃ðM̃Þ ¼ 0: ð2:48cÞ

The new function f̃ðM̃Þ is defined analogously to (2.44):

f̃ðM̃Þ≡ F̃0ðM̃Þ; ð2:49Þ

while ˜̌gðM̃Þ can be defined via the identity

˜̌g0ðM̃Þ ¼ M̃f̃0ðM̃Þ: ð2:50Þ

One can check that these functions are related to the ones
in (2.44) via

f̃ðM̃Þ ¼ ifðiM̃Þ; ˜̌gðM̃Þ ¼ ǧðiM̃Þ: ð2:51Þ

Equations (2.43) and (2.48) govern the exterior and interior
of higher-derivative BH solutions, respectively.
For later purposes we need to find out how the inverse

functions f−1 and f̃−1 are related: if f−1 is known, what is
f̃−1? We claim that acting on a variable y we have

f̃−1ðyÞ ¼ −if−1ð−iyÞ: ð2:52Þ

This can be checked using the first relation in (2.51) as
follows:

f̃−1ðf̃ðM̃ÞÞ ¼ −if−1ð−if̃ðM̃ÞÞ ¼ −if−1ð−i · ifðiM̃ÞÞ
¼ −if−1ðfðiM̃ÞÞ ¼ −i · iM̃ ¼ M̃: ð2:53Þ

Noting that we have fðMÞ and f̃ðM̃Þ functions, the inverse
f−1 is the functionMðfÞ and the inverse f̃−1 is the function
M̃ðf̃Þ. With this notation, (2.52) reads

M̃ðf̃Þ ¼ −iMð−if̃Þ: ð2:54Þ

III. THE GASPERINI-VENEZIANO
PARAMETRIZATION

In order to study solutions of (2.43) and (2.48) we will
use a useful parametrization inspired by recent work by
Gasperini and Veneziano in the context of pre–big bang
string cosmology [10]. Instead of describing the fields
as functions of the coordinate x, they are described as
functions of a new parameter, which arises as follows. One
considers the function fðMÞ in (2.44), a typically infinite
series in the metric variable M, and inverts it to find MðfÞ.
In MðfÞ the metric variable is parametrized by f,
the Gasperini-Veneziano parameter. One can then find
xðfÞ by performing an integral analytically, or numerically
if needed. We will distinguish the parameter for each

region, using f to describe the exterior and f̃ for the
interior.
There is a shift in perspective here. While one originally

would view the theory space as described by the set of
possible functions fðMÞ, we now consider the theory space
as described by the set of functions MðfÞ. The invertibility
issues are actually central to the development and we will
argue that the f parametrization leads to a natural extension
of the original equations of motion, beyond their original
domain of validity. Clarifying this will be our first task in
this section.
In this section we show how to solve the exterior and

interior equations of motion using this parametrization. We
then do this explicitly for the two-derivative BH. Here the
nature of the contours required in f space becomes evident.

A. Multivalued functions and equations of motion

As mentioned above and reviewed in Sec. II C, the
conventional definition of α0 corrections begins by stating
that the Lagrangian contains a function FðMÞ given as an
infinite power series expansion in (even) powers ofM, each
successive term containing an additional power of α0. It is
quite possible, perhaps even likely, that this series only has
a finite radius of convergence, making the definition of the
action incomplete. From FðMÞ one defines fðMÞ≡ F0ðMÞ
and one usually works with fðMÞ. The viewpoint adopted
here is that α0 corrections are described by the function
MðfÞ which we assume to be well defined (single valued),
and that fðMÞ is just its inverse. Thus we have

MðfÞ is a well-defined function ðsingle valuedÞ: ð3:1Þ

It follows that the inverse fðMÞ is usually multivalued.
Indeed, assume MðfÞ grows monotonically from zero at
f ¼ 0 to some maximum M� at some value f� > 0, and
then falls down. Then the inverse fðMÞ is not single
valued. In fact if one expands MðfÞ as a series in f and
perturbatively inverts it, fðMÞ will only converge up to
M ¼ M�, where it has a branch point. In general, let M�
denote the maximum value of M for which the series
fðMÞ converges. In summary, we have two important
additional facts:

The inverse fðMÞ of MðfÞ is not single valued.
The series definition of fðMÞ converges for
M∈ ½0;M�� and fð0Þ ¼ 0.

The convergent series is a precise definition of fðMÞ in
this range.
The equations of motion also feature a quantity ǧðMÞ

defined by two relations

dǧ
dM

¼ M
df
dM

and ǧð0Þ ¼ 0: ð3:2Þ
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Both of these are implemented by the integral definition

ǧðMÞ≡
Z

u¼M

u¼0

u
dfðuÞ
du

du; M∈ ½0;M��: ð3:3Þ

The condition on the range of validity of the definition is
needed because ǧ is a multivalued function. Indeed, df=du
appearing inside the integral, is multivalued, a property it
inherits from fðuÞ. But now, in this range we can change
the variable of integration from u to f. In doing so u must
be thought as uðfÞ, where this is the inverse function of
fðuÞ. The integral then becomes

ǧðMÞ≡
Z

fðu¼MÞ

fðu¼0Þ
uðfÞdf ¼

Z
fðMÞ

0

uðf0Þdf0; ð3:4Þ

so that, recalling that we call M the inverse function of f,

ǧðMÞ≡
Z

fðMÞ

0

Mðf0Þdf0; M∈ ½0;M��: ð3:5Þ

The above definition suggests the following construction of
a gðfÞ well defined for all f:

gðfÞ≡
Z

f

0

Mðf0Þdf0: ð3:6Þ

It follows immediately from the last two equations that

ǧðMÞ ¼ gðfðMÞÞ; M∈ ½0;M��: ð3:7Þ

This states that in the domain of definition, ĝðMÞ is given
by the well-defined gðfÞ.
Let us now consider the field equations, following the

steps considered in [10], but in the light of the above
observations. In the two-dimensional theory we have
(2.43b) that reads�

dΦ
dx

�
2

¼ 1 − ǧðMÞ; M∈ ½0;M��: ð3:8Þ

Using the above definition of ǧ we have�
dΦ
dx

�
2

¼ 1 − gðfðMÞÞ; M∈ ½0;M��: ð3:9Þ

Here the dilaton derivative is effectively set equal to a
function of fðMÞ. But then we may as well forget M,
declaring that this equation sets the dilaton derivative equal
to a function of f:�
dΦ
dx

�
2

¼ 1 − gðfÞ ¼ 1 −
Z

f

0

Mðf̃Þdf̃; ∀ f: ð3:10Þ

This equation is now valid for all f, thus going beyond the
limitations of the power series definition of the α0

corrections. The equation indeed yields a parametrization
of the dilaton derivative in terms of f:

dΦ
dx

ðfÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
; with PðfÞ≡ 1 −

Z
f

0

Mðf0Þdf0:

ð3:11Þ

The plus/minus signs correspond to using different
branches of the square root. The equations of motion also
imply that f ends up being a coordinate, which can be
related to the x coordinate. Indeed, consider (2.43a) and
distribute the x derivative

dΦ
dx

fðMÞ ¼ df
dx

⇒ dx ¼ df
f

1
dΦ
dx ðfÞ

: ð3:12Þ

Using (3.11), the second equality leads to an equation for
the coordinate x as a function of f

dx ¼ � df

f
ffiffiffiffiffiffiffiffiffiffi
PðfÞp : ð3:13Þ

Finally, consider again (2.43a), which states that the
combination e−ΦfðMÞ is a constant relative to the x
coordinate. It is therefore a constant relative to f, and
therefore,

ΦðfÞ ¼ log jfj þΦ1; ð3:14Þ

with Φ1 ≡Φðf ¼ 1Þ an integration constant that absorbs
the sign of f and encodes the mass of the black hole.
The above equations represent an extension of the

original equations, and we will assume these provide the
nonperturbative definition of the theory with α0 corrections.

B. Parametrization in terms of f

In this section we consider the equations of motion in the
f parametrization, both for the exterior and for the interior.
Note that we have passed from using ǧðMÞ to using gðfÞ, in
the exterior, and from using ˜̌gðM̃Þ to using g̃ðf̃Þ in the
interior. The analog of (3.10) for the interior follows from
(2.43c) and becomes

�
dΦ̃
dx

�
2

¼ −1þ g̃ðf̃Þ: ð3:15Þ

Exterior solution. Much of the work was already done
above, so we just make some comments, consider a few
extra equations and collect results. Consider again (3.11):

dΦ
dx

ðfÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
; with PðfÞ≡ 1 −

Z
f

0

Mðf0Þdf0:

ð3:16Þ
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The allowed range of f is determined by the condition
PðfÞ ≥ 0. We see that Pðf ¼ 0Þ ¼ 1 > 0, so by continuity
there is at least an interval around f ¼ 0 where the solution
exists. Moreover, if the integral appearing above is negative
for all values of f (as will be the case for the standard BH),
then the solution is valid for the whole real line f∈R.
Using (3.13) in (2.12) we obtain an expression for the

metric components

mðx2Þ
mðx1Þ

¼ mðf2Þ
mðf1Þ

¼ exp

�
�
Z

f2

f1

df
f

MðfÞffiffiffiffiffiffiffiffiffiffi
PðfÞp �

: ð3:17Þ

With mðfÞ, we can relate ΦðfÞ to the scalar dilaton ϕðfÞ
via (2.4), where now all quantities are parametrized by f.
For the curvature, we have from (2.13),

R�ðfÞ ¼−2
�
M2þdM

df
df
dx

�
¼−2

�
M2� f

dM
df

ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p �
:

ð3:18Þ
Collecting the results, for ease of reference, we have

dΦ
dx

ðfÞ ¼�
ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
; ΦðfÞ ¼ log jfj þΦ1; ð3:19aÞ

dx ¼ � df

f
ffiffiffiffiffiffiffiffiffiffi
PðfÞp ; ð3:19bÞ

mðx2Þ
mðx1Þ

¼ mðf2Þ
mðf1Þ

¼ exp

�
�
Z

f2

f1

df
f

MðfÞffiffiffiffiffiffiffiffiffiffi
PðfÞp �

; ð3:19cÞ

R�ðfÞ ¼−2
�
M2þdM

df
df
dx

�
¼−2

�
M2� f

dM
df

ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p �
:

ð3:19dÞ

Here the argument PðfÞ of the square roots is

PðfÞ≡ 1 −
Z

f

0

Mðf0Þdf0: ð3:20Þ

Equation (3.19) encode the general solution to (2.43) in
terms of f as a parameter. The solution is completely
determined once an ansatz for MðfÞ is given, and the
physics depends on such choice. To make this point more
emphatically, we can write the metric ds2 ¼ −m2ðxÞdt2 þ
dx2 by passing from the x coordinate to the f coordinate
using (3.19b), and writing mðxÞ using (3.19c):

ds2 ¼ − exp
�
�2

Z
f du
u

MðuÞffiffiffiffiffiffiffiffiffiffi
PðuÞp �

ðdtÞ2 þ ðdfÞ2
f2PðfÞ ;

ΦðfÞ ¼ log jfj þΦ1; ð3:21Þ

where we also included the dilaton. It may be that
eventually x can be traded for f, but we will not explore

this here. Still, the above makes clear that we have a
solution if we know MðfÞ.
WithoutMðfÞwe cannot say much about the specifics of

each solution, but we can still analyze some global aspects
of them: the first thing to notice is that, from our starting
point in (2.44), since fðMÞ has a power series expansion in
M, its inverse MðfÞ, at least perturbatively, is expected to
have the following expansion

MðfÞ ¼ −
1

2
f

�
1þ ϵ

2
f2 þOðϵ2f4Þ

�
¼ −

1

2
f½1þ hðf2Þ�;

ð3:22Þ

where we introduced the function h as follows

hðξÞ≡ ϵ

2
ξþOðϵ2ξ2Þ: ð3:23Þ

Here MðfÞ ¼ − f
2
, obtained for hðξÞ ¼ 0, corresponds to

the standard two-derivative case, for which we recover
the exterior BH solution of (2.16), as we will show in
Sec. III C. The expansion (3.22) implies the following two
properties for generic MðfÞ

Mðf ¼ 0Þ ¼ 0; Mð−fÞ ¼ −MðfÞ; ð3:24Þ

and

hðξ ¼ 0Þ ¼ 0; h0ðξ ¼ 0Þ ¼ finite: ð3:25Þ

These observations have the important consequence that
f ¼ 0 corresponds to the faraway region in all solutions.
To see this we study the behavior of (3.19) and (3.20)
near f ¼ 0 for generic MðfÞ. Using (3.22), (3.24), and
Pðf ¼ 0Þ ¼ 1, we get

Φð0Þ ¼ −∞; dx ≃� df
f
;

mðfÞ ≃mð0Þe∓1
2
f; Rð0Þ ¼ 0: ð3:26Þ

From the second relation we infer x ≃� ln f þ const and
hence that f ¼ 0 corresponds to an asymptotic region with
infinite x. From the third relation we see that we can choose
the integration constant such that mð0Þ ¼ 1. Using this
together with Φð0Þ ¼ −∞ in (2.4) we obtain ϕð0Þ ¼ −∞.
All these results are compatible with the interpretation as a
faraway region.
This makes f ¼ 0 the end of the spacetime, which

implies that solutions with f < 0 and with f > 0 should be
treated separately, not as two regions of the same exterior
solution. On top of this distinction, we have the two
branches of the square root of (3.11) corresponding to
the � choices. While this seems to suggest we have four
different solutions, all of them should be physically
equivalent in string theory. More precisely, the negative
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and positive regions of f are related by T duality since
M → −M and (3.22) imply

f → f̂ ¼ −f: ð3:27Þ

Moreover, solutions with different signs of the square
root (3.11) are connected via a trivial sign flip of the x
coordinate. More precisely, the solution with minus sign
and f < 0 is identical to the solution with plus sign and
f > 0, upon changing x → −x. Their T-dual solutions can
be obtained by (3.27).
Interior solution. In order to get the interior solutions in

the Gasperini-Veneziano parametrization, we repeat the
procedure we just performed for the exterior case, but this
time using the Eq. (2.48). Without going into details, the
solutions read

dΦ̃
dx

ðf̃Þ ¼�
ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q
; Φ̃ðf̃Þ ¼ log jf̃j þΦ1; ð3:28aÞ

dx ¼ � df̃

f̃
ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q ; ð3:28bÞ

m̃ðx2Þ
m̃ðx1Þ

¼ m̃�ðf̃2Þ
m̃�ðf̃1Þ

¼ exp

�
�
Z

f̃2

f̃1

df
f

M̃ðfÞffiffiffiffiffiffiffiffiffiffi
P̃ðfÞ

p �
; ð3:28cÞ

R̃�ðf̃Þ ¼ 2

�
M̃2 þ dM̃

df̃

df̃
dx

�
¼ 2

�
M̃2 � f̃

dM̃

df̃

ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q �
:

ð3:28dÞ

Here the argument of the square roots, called P̃ðf̃Þ, is
defined as follows

P̃ðf̃Þ≡ −1þ
Z

f̃

0

M̃ðf̃0Þdf̃0: ð3:29Þ

Since P̃ðf̃ ¼ 0Þ ¼ −1 < 0, this time the solution excludes
the point f̃ ¼ 0. Moreover, in general it is not even
guaranteed that the interior solution exist at all. There
would be no interior solution if P̃ðf̃Þ is negative for all f̃.
Using (2.54) we can determine the function M̃ðf̃Þ for the

interior region from the function MðfÞ for the exterior
region given in (3.22):

M̃ðf̃Þ ¼ 1

2
f̃

�
1 −

ϵ

2
f̃2 þOðϵ2f̃4Þ

�
¼ 1

2
f̃½1þ hð−f̃2Þ�;

ð3:30Þ

with the same hðξÞ defined in (3.23).
The range of validity of the interior solution is very

different from the one of the exterior solution. From now on
we assume there is always at least one positive branch point

f0 > 0 such that P̃ðf0Þ ¼ 0 and P̃ðf̃Þ > 0 for some interval
f̃∈ ðf0; f1Þ, where f1 > f0 can be another branch point or
the point at infinity. If this is the case, due to the even parity
of P̃ðf̃Þ, the interior solution exists at least for an interval
f̃∈ ð−f1;−f0Þ ∪ ðf0; f1Þ. However, since for the interior
solution T duality also acts as

f̃ → ˆ̃f ¼ −f̃; ð3:31Þ

both negative and positive regions are related via a duality
transformation. We are imposing to have at least one branch
point for positive f. With multiple such branch points it is
possible to have multiple separated domains within f̃ > 0

such that P̃ðf̃Þ is positive in each of those disconnected
regions.

C. The standard black hole

Here we work out the presentation of the standard two-
derivative BH solution of Sec. II A in the Gasperini-
Veneziano parametrization. The experience gained here
will prove essential for the later generalizations.
Exterior solution. The MðfÞ ansatz for the exterior

region of the two-derivative theory corresponds to the limit
ϵ → 0 in (3.22):

MðfÞ ¼ −
1

2
f: ð3:32Þ

Associated to M we have PðfÞ given in (3.20):

PðfÞ ¼ 1þ 1

4
f2 > 0 ∀ f∈R; ð3:33Þ

which implies that all f are in principle allowed. The
duality-invariant dilaton does not depend on the specific
ansatz for MðfÞ, so it is still given by (3.14). Using (3.33)
in (3.11), its x derivative is given by

dΦ
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
f2

r
; ð3:34Þ

where we choose the plus sign to fit conventions where
x ¼ 0− is the horizon and the exterior region is x < 0, with
the AF region at x → −∞. Moreover, to stick to this
convention, we need to choose f ≥ 0. The relation between
x and f can be obtained from (3.13), which for this ansatz
takes the form

dx ¼ df
f

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
f2

q ¼ −dArcSinh
2

f
: ð3:35Þ

Integrating,

xðfÞ ¼ −ArcSinh
2

f
→

f
2
¼ −

1

sinh x
; ð3:36Þ
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where we choose the integration constant to be zero. The
x ¼ 0− horizon corresponds to f ¼ ∞ and the AF region
x ¼ −∞ corresponds to f ¼ 0þ (see Fig. 3):

AF region∶ x ¼ −∞; f ¼ 0þ;

Horizon∶ x ¼ 0; f ¼ þ∞: ð3:37Þ
Increasing x corresponds to increasing f.
In order to determine the metric we take the plus sign in

(3.19c) and use (3.32) and (3.33):

mðf2Þ
mðf1Þ

¼ exp

0
B@−

1

2

Z
f2

f1

dfffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

4

q
1
CA: ð3:38Þ

We can integrate this analytically, but before doing so it is
instructive to consider the ratio of the scale factor at the
horizon f ¼ ∞ divided by the value at the AF region
about f ¼ 0:

mðf ¼ ∞Þ
mðf ¼ 0Þ ¼ exp

0
B@−

1

2

Z
∞

0

dfffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

4

q
1
CA ¼ 0; ð3:39Þ

due to the logarithmic divergence at the top limit of
integration, and confirming the vanishing of the metric
at the horizon: mðf ¼ ∞Þ ¼ 0. Since the scale of m is not
detected by the equations of motion, we can set
mðf ¼ 0Þ ¼ 1. Setting f2 ¼ f and f1 ¼ 0 in (3.38) we get

mðfÞ ¼ exp

0
B@−

1

2

Z
f

0

df0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f02

4

q
1
CA ¼ exp

�
−ArcSinh

f
2

�

¼ −
f
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

4

r
: ð3:40Þ

This indeed gives mð0Þ ¼ 1, and mðfÞ ≃ 1=f for large f,
so that mð∞Þ ¼ 0. We now compute the curvature from
(3.18), using the top sign and finding

RðfÞ ¼ f

 
−
f
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

4

r !
¼ fmðfÞ: ð3:41Þ

Note that Rð0Þ ¼ 0, as befits the AF region, and RðfÞ ≃ 1
for f → ∞, which is the value of the curvature at the
horizon.
At this point we have MðfÞ;ΦðfÞ; mðfÞ and RðfÞ, and

so the full f-parametrized solution is determined. As a
consistency check one may use the relation between f and
x to recover the BH solution in the familiar form reviewed
in Sec. II B. For the metric, for example, we have, using
(3.36), and recalling that x is negative,

mðxÞ ¼ 1

sinhx
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

sinh2x

r
¼ 1

sinhx

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2x

p �
¼− tanh

x
2
: ð3:42Þ

For the dilaton we have, since f > 0,

Φ ¼ log f þ c ¼ log

�
−2

sinh x

�
þ c ¼ − log j sinh xj þ c0:

ð3:43Þ

Interior solution. The BH interior solution of (2.31) can
also be recovered in the f̃ parametrization, using (3.28).
The ansatz for M̃ðf̃Þ is obtained by using the formula (2.54)
on the ansatz for the exterior (3.32):

M̃ðf̃Þ ¼ 1

2
f̃: ð3:44Þ

The argument of the square root this time takes the form

P̃ðf̃Þ ¼ −1þ 1

4
f̃2; ð3:45Þ

and so the square root has branch cuts on the real line with
jf̃j > 2, with branch points at f̃ ¼ �2. Therefore, the
interior solution is valid for the interval f̃∈ ð−∞;−2Þ ∪
ð2;∞Þ, where negative and positive regions are related via
T duality (3.31). From now on we choose f̃ ≥ 2.
In order to describe all of the internal region in the f̃

parametrization we need to cover the range f̃ ≥ 2 twice.

FIG. 3. Black hole exterior. The solid line is the plot of the
dilaton derivative dΦ=dx and M as a function of f∈ ½0;∞Þ. The
point on the horizontal axis is f ¼ 0 and represents the AF
region. As f → ∞ we reach the horizon and the curve asymptotes
to the dashed line jMj ¼ j dΦdx j.
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We begin from f̃ ¼ ∞ to f̃ ¼ 2 traveling under the branch
cut, and then we return from f̃ ¼ 2 to f̃ ¼ ∞ over the cut.
The difference between paths is given by the choice of
� sign in front of the square root in the solution (3.28). The
square root is assumed to take negative values below the cut
(−sign) and positive values above the cut (þsign).
When going under the cut, the dilaton derivative is

given by

dΦ̃
dx

ðf̃Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 1

4
f̃2

r
: ð3:46Þ

The relation between x and f̃ in (3.28b) takes the form

dx ¼ −
df̃

f̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 1

4
f̃2

q ¼ −
df̃

jf̃j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 1

4
f̃2

q ¼ d arccsc
f̃
2
;

f̃ ≥ 2: ð3:47Þ

Integrating this equation and setting the integration con-
stant to zero we get

xðf̃Þ ¼ arccsc
f̃
2
→

f̃ðxÞ
2

¼ csc x ¼ 1

sin x
: ð3:48Þ

In this parametrization as f̃ decreases x increases. Indeed,
we have xðf̃ ¼ ∞Þ ¼ 0 and xðf̃ ¼ 2Þ ¼ π

2
:

f̃∈ ½∞; 2�− → x∈
�
0;
π

2

�
; ð3:49Þ

with the minus subscript indicating that we are traveling
under the cut. As we will see, f̃ ¼ ∞ (x ¼ 0) corresponds
to the position of the horizon, while f̃ ¼ 2 (x ¼ π

2
) is just an

intermediate point in the interior solution.
For the metric we need (3.28c) with the minus sign.

Choosing the lower boundary to be f̃1 ¼ 2 and leaving the
upper boundary arbitrary we get

m̃−ðf̃Þ ¼ m̃−ð2Þ exp

0
B@−

1

2

Z
f̃

2

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 1

4
f2

q
1
CA

¼ m̃−ð2Þ exp
�
−arccosh

f̃
2

�
; ð3:50Þ

and since arccoshð1Þ ¼ 0 we can take m̃−ð2Þ ¼ 1. Since
arccoshy ¼ log ðyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ y2

p
Þ, we obtain

m̃−ðf̃Þ ¼
f̃
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ f̃2

4

s
¼ f̃

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

4

f̃2
þ 1

s !
; ð3:51Þ

where for the second equality we used that f̃ is positive. For
the curvature one can show with (3.28d) that

R̃−ðf̃Þ ¼ f̃

 
f̃
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ f̃2

4

s !
¼ f̃m̃−ðf̃Þ: ð3:52Þ

As anticipated, m̃−ðf̃Þ and R̃−ðf̃Þ are consistent with
f̃ ¼ ∞ being the location of the horizon since

lim
f̃→∞

m̃−ðf̃Þ ¼ 0; lim
f̃→∞

R̃−ðf̃Þ ¼ 1; ð3:53Þ

as can be checked with the expansion around f̃ → ∞ of the
second equality in (3.51). On the other hand, f̃ ¼ 2 is just
an intermediate point in the interior solution such that

m̃−ð2Þ ¼ 1; R̃−ð2Þ ¼ 2: ð3:54Þ
The other half of the solution is recovered by going over

the cut. In this situation, the dilaton derivative (3.28a) and
the relation between x and f̃ from (3.28b) have the opposite
sign as in (3.46) and (3.47). For the latter we have

dx ¼ −d arccsc
f̃
2
¼ d arccos

2

f̃
⇒ xðf̃Þ ¼ arccos

2

f̃
þ c0;

ð3:55Þ

where after integration we picked a nontrivial integration
constant c0. This is necessary since at f̃ ¼ 2we already had
x ¼ π

2
from under the cut, so by continuity we must have

π

2
¼ arccos 1þ c0 ¼ c0 → c0 ¼

π

2
: ð3:56Þ

Therefore,

xðf̃Þ − π

2
¼ arccos

2

f̃
→

2

f̃ðxÞ ¼ cos

�
x −

π

2

�
¼ sin x:

ð3:57Þ
Indeed we have xðf̃ ¼ 2Þ ¼ π

2
and xðf̃ ¼ ∞Þ ¼ π, since x

grows with f̃. So we have

f̃∈ ½2;∞�þ → x∈
�
π

2
; π

�
; ð3:58Þ

where the subscriptþ indicates going on top of the cut. It is
interesting to note that the relation f̃ðxÞ is the same for
under the cut, cf. (3.48), and over the cut, cf. (3.57). The
former covers x∈ ð0; π

2
Þ and the latter the remaining half of

the interior solution x∈ ðπ
2
; πÞ.

This time, taking the plus sign choice in (3.28c) and
(3.28d), we obtain the expressions for the metric and
curvature over the cut:

m̃þðf̃Þ ¼
f̃
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ f̃2

4

s
; R̃þðf̃Þ ¼ f̃m̃þðf̃Þ: ð3:59Þ
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The intermediate point f̃ ¼ 2 (x ¼ π
2
) gives again (3.54),

but this time the boundary f̃ ¼ ∞ (x ¼ π) corresponds to
the singularity, where

lim
f̃→∞

m̃þðf̃Þ ¼ ∞; lim
f̃→∞

R̃þðf̃Þ ¼ ∞: ð3:60Þ

As a consistency check one may again verify that the
solution in the form (2.31) follows from the relation
between f̃ and x. A plot of the dilaton derivative dΦ̃=dx
and the metric derivative M̃, both as a function of f̃ helps
visualize the solution (Fig. 4). As we go from the horizon
to the singularity the dilaton derivative first decreases and
then increases. The metric m̃ goes from zero to infinity,
while M̃ first decreases and then increases.

IV. α0 CORRECTED BLACK HOLE SOLUTIONS

In the first part of this section we present a class of
functions MðfÞ that lead to BH solutions in the conven-
tional sense. These solutions have an exterior and an
interior region. The exterior includes in f space the point
zero, which can be identified with the AF region, and the
point at infinity, which can be identified with a horizon. The
interior region begins at a horizon and ends in a singularity,
that is not removed in this class of solutions. Both regions,
we believe, form a single solution because the curvature on
both regions attain the same value at the horizon. We make
no claims that this is the most general class of Ms that lead
to conventional BH solutions.
We then consider a cubic ansatz for MðfÞ, the simplest

deformation of the expression MðfÞ ¼ − 1
2
f valid in the

two-derivative theory. We do not find black hole solutions
here. Instead we find situations where the exterior and

interior solutions do not seem to form a single solution,
situations with naked singularities, and situations where
only the exterior solution exists.

A. A family of BH solutions

This family of solutions is parametrized by a function
hðξÞ via the relation

MðfÞ ¼ −
f
2
ð1þ hðf2ÞÞ; ð4:1Þ

where we take

hð0Þ ¼ 0; h0ð0Þ < ∞; ð4:2Þ

conditions that allow making f ¼ 0 the far away region
of the black hole. We also require that the correction to
M ¼ −f=2 implied by h is “small.” For this we impose

jhðξÞj ≤ 1; ∀ ξ∈R: ð4:3Þ

This implies, in particular, that MðfÞ ≤ 0 for all f > 0. To
get a horizon we need conditions on the behavior of h for
large argument:

lim
ξ→∞

hðξÞ ¼ 0;
Z

∞

0

hðξÞdξ¼ α<∞; lim
ξ→∞

ξh0ðξÞ ¼ 0:

ð4:4Þ
The first condition implies thatMðfÞ ≃ −f=2 for very large
f. The second condition strengthens the bound jhðξÞj ≤ 1
by requiring that the full integral over positive arguments
be finite. The third condition follows from the first for a
regular function at infinity.
For the interior of the black hole, we need conditions on

hðξÞ for large negative ξ. At the cost of some generality, we
simply demand that h be an odd function of its argument:

hð−ξÞ ¼ −hðξÞ: ð4:5Þ
The interior solution demands one further constraint. Let
f0 > 0 be the value of f where the function P̃ðfÞ, defined
in (3.29), first goes from negative to positive, so that
P̃ðf0Þ ¼ 0. We will demand that

hðf20Þ < 1; ð4:6Þ
in particular, hðf2Þ is not equal to one at this point.
Exterior solution. For the exterior solution, we have

Eq. (3.19). Picking the plus sign and inserting the function
MðfÞ as given in (4.1), the equations for the metric and
curvature reduce to

mðf2Þ
mðf1Þ

¼ exp

�Z
f2

f1

dfIeðfÞ
�
; IeðfÞ≡ −

1þ hðf2Þ
2
ffiffiffiffiffiffiffiffiffiffi
PðfÞp ;

ð4:7aÞ

FIG. 4. Black hole interior. The solid line plots the relation
between the dilaton spatial derivative and M̃. The horizon H is on
the upper left, the singularity S on the upper right (both at f̃ ¼ ∞,
below and above the cut). The branch point at f̃ ¼ 2 corresponds
to the point with minimal M̃ ¼ 1. The f̃ contour is that shown in
Fig. 1(b).
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RðfÞ ¼ −
f
2

�
fð1þ hðf2ÞÞ2

− 2

�
1þ hðf2Þ þ 2f2

dhðf2Þ
df2

� ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p �
; ð4:7bÞ

with the subscript e for “exterior” and

PðfÞ ¼ 1þ 1

4
f2 þ 1

4

Z
f2

0

dξhðξÞ; ð4:8Þ

which determines the location of branches. From the bound
(4.3) on hðξÞ, we infer that

−f2 ≤
Z

f2

0

dξhðξÞ ≤ f2; ð4:9Þ

and we conclude that

PðfÞ ≥ 1 ∀ f∈R; ð4:10Þ

showing that there are no branch cuts in the f plane and we
can work with

f∈ ð0;∞Þ: ð4:11Þ

We now consider the behavior of the integrand Ie. Using
the vanishing of hðξ ¼ 0Þ and the first two conditions in
(4.4), we conclude

lim
f→0

IeðfÞ ¼ −
1

2
;

lim
f→∞

IeðfÞ ≃ −
1

f
⇒
Z

f

0

df0Ieðf0Þ ≃ − log f; as f → ∞:

ð4:12Þ

For the ratio of metric values, these limits imply

mð∞Þ
mð0Þ ¼ exp

�Z
∞

0

dfIeðfÞ
�

¼ expð−∞Þ ¼ 0; ð4:13Þ

which allows us to pick the integration constant such that

mð0Þ ¼ 1; mð∞Þ ¼ 0; ð4:14Þ

the former consistent with f ¼ 0 being the faraway region
and the latter consistent with f ¼ ∞ being the horizon.
Additionally, as required, the curvature goes to zero for

f → 0 and is finite for f → ∞. While the former is a
general feature of solutions coming from the classification,
the behavior at the horizon is a consequence of (4.4), which
implies

lim
f→∞

RðfÞ ≃ −
f2

2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4þ α

f2

s #
≃ 1þ α

4
: ð4:15Þ

Let us now show that the behavior of the dilaton is as in
the standard two-derivative black hole: the duality invariant
dilaton diverges at the horizon but the scalar dilaton is
finite. For this recall that

Φ ¼ log f þΦ1; ð4:16Þ
where Φ1 is a constant, and we can take the logarithm
without concern as f∈ ð0;∞Þ. The asymptotically flat
region is f ∼ 0 and corresponds to Φ → −∞which is weak
coupling. Using (2.4) and that m ≃ 1 in this region, the
scalar dilaton also indicates weak coupling. The horizon is
obtained as f → ∞ and this means Φ → ∞ so we need to
consider the metric contribution. We can obtain log mðfÞ
by taking the log of (4.7a), and picking the upper bound of
the integration to be f2 ¼ f:

log mðfÞ ¼ log mðf1Þ þ
Z

f

f1

df0Ieðf0Þ: ð4:17Þ

For large f, using the last relation in (4.12) we find that

log m ≃ − log f þ c2; as f → ∞; ð4:18Þ

where c2 is a constant. Therefore, at the horizon xh, which
corresponds to f → ∞, from (2.4) we have

ϕðxhÞ ≃
1

2
ðlog f þΦ1 − log f þ c2Þ ≃ c; ð4:19Þ

a constant, as we wanted to confirm.
Interior solution. For the interior solution, we use (2.54)

to find that the ansatz (4.1) gives

M̃ðf̃Þ ¼ −iMð−if̃Þ ¼ f̃
2
ð1þ hð−f̃2ÞÞ ¼ f̃

2
ð1 − hðf̃2ÞÞ;

ð4:20Þ

where the last equality follows because h is odd. The
expressions for the metric ratios in (3.28c) and the
curvature in (3.28d), become

m̃�ðf̃2Þ
m̃�ðf̃1Þ

¼ exp

�
�
Z

f̃2

f̃1

dfIiðf̃Þ
�
; Iiðf̃Þ≡1−hðf̃2Þ

2

ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q ;

ð4:21aÞ

R̃�ðf̃Þ ¼
f̃
2

�
f̃ð1−hðf̃2ÞÞ2

� 2

�
1−hðf̃2Þ− 2f̃2

dhðf̃2Þ
df̃2

� ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q �
; ð4:21bÞ
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with i for “interior.” Regarding branch cuts, this time the
range of f̃ depends on the roots of the function

P̃ðf̃Þ ¼ −1þ 1

4
f̃2 −

1

4

Z
f̃2

0

dξhðξÞ: ð4:22Þ

This function picks the following values at the boundaries

P̃ð0Þ ¼ −1 < 0;

lim
f̃→�∞

P̃ðf̃Þ ¼ lim
f̃→�∞

�
−1 −

1

4
αþ 1

4
f̃2
�

¼ ∞; ð4:23Þ

where we used the second equation of (4.4). This shows
that P̃ðf̃Þ must change sign as f̃ grows from zero. Let us
call f0 the value where P̃ðf0Þ ¼ 0 a branch point. Notice
also that

dP̃

df̃
¼ 1

2
f̃ð1 − hðf̃2ÞÞ ≥ 0; ð4:24Þ

since jhj ≤ 1. Note, however, that hðf20Þ < 1 by assumption
so that

dP̃

df̃

				
f0

> 0: ð4:25Þ

Once P̃ðf̃Þ becomes positive it will remain positive all the
way since its derivative is never negative. Therefore, the
range of validity of the solution is taken to be

f̃∈ ðf0;∞Þ: ð4:26Þ

Using (4.9) one can show that f0 >
ffiffiffi
2

p
. For the standard

BH we had f0 ¼ 2.
We now investigate the condition for the horizon. We

have from (4.21a)

m̃�ð∞Þ
m̃�ðf0Þ

¼ exp

�
�
Z

∞

f0

df̃Iiðf̃Þ
�
: ð4:27Þ

We need the right-hand side to be infinite for the plus sign;
this makes m̃ð∞Þ over the cut infinite, assuming m̃ðf0Þ is
finite. This is as desired. For the minus sign the right-hand
side should be zero, which makes m̃ð∞Þ below the cut
equal to zero—this is as desired as it corresponds to the
horizon. To show this, we consider the integral of Ii on the
right-hand side. At the branch point f0 there is an integrable
square-root singularity: P̃ðf0Þ ¼ 0 and the derivative
P̃0ðf0Þ is nonzero, see (4.24). We thus need only focus
on the behavior of Ii for large f̃. For the f̃ → ∞ limit, using
(4.4) we find

Iiðf̃Þ≃
1

f̃
as f̃→∞⇒

Z
f̃

f0

df̃0Iiðf̃0Þ≃ ln f̃; f→∞:

ð4:28Þ

Finally, inserting this into (4.27) we get m̃�ð∞Þ
m̃�ðf0Þ ¼ e�∞, from

where we can choose as integration constant a finite value
of m̃ at the branch point m̃þðf0Þ ¼ m̃−ðf0Þ ¼ m̃0, so that
we have, as desired

m̃−ð∞Þ ¼ 0; and m̃þð∞Þ ¼ ∞: ð4:29Þ
The curvature at the branch point f0 is easily evaluated

since P̃ðf0Þ vanishes:

R̃−ðf0Þ ¼ R̃þðf0Þ ¼ 2M̃2ðf0Þ ¼
1

2
f20ð1−hðf20ÞÞ2: ð4:30Þ

For the infinite limit we have, from (4.21b),

R̃�ðf̃Þ ≃
1

2
f̃2
"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4þ α

f̃2

s #
; f̃ → ∞: ð4:31Þ

As a result we find

lim
f̃→∞

R̃−ðf̃Þ ¼ 1þ α

4
; lim

f̃→∞
R̃þðf̃Þ ¼ ∞: ð4:32Þ

The first is the curvature at the horizon as computed from
the interior. As required, it coincides with the curvature at
the horizon computed from the exterior in (4.15). The
second result is the infinite curvature at the singularity.
For the duality-invariant dilaton in the interior region

we have

Φ̃ ¼ log f̃ þΦ1; ð4:33Þ

which is well defined for f̃∈ ðf0;∞Þ. Φ̃ does not dif-
ferentiate between lower or upper branches. It diverges
at f̃ → ∞ but it is finite for f̃ ¼ f0. For the scalar dilaton
we use

ϕ̃�ðf̃Þ ¼
1

2
ðΦ̃ðf̃Þ þ log m̃�ðf̃ÞÞ; ð4:34Þ

which does distinguish branches through m̃�. While it is
clear that ϕ̃þðf0Þ ¼ ϕ̃−ðf0Þ ¼ finite, for f̃ → ∞ under and
over the cut we need log m̃�. To this end, as we did for the
exterior region, we integrate the metric ratio in (4.21a)

log m̃�ðfÞ ¼ log m̃�ðf1Þ �
Z

f̃

f1

df̃0Iiðf̃0Þ: ð4:35Þ

Using large f̃ value of the integral from (4.28), we find

log m̃�ðfÞ ≃� log f̃ þ c�; f̃ → ∞; ð4:36Þ

where c� are constants. Plugging this expansion back into
(4.34), together with (4.33) we find that for f̃ → ∞

ϕ̃−ðf̃Þ ≃ c̃; ϕ̃þðf̃Þ ≃ log f̃: ð4:37Þ
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The first one is consistent with the horizon interpretation,
where we need c̃ ¼ c with c in (4.19), in order to match
exterior and interior regions. The behavior of ϕ̃þ close to
infinity signals, once more, the presence of a singular-
ity there.
To sum up, the general ansatz (4.1) parametrized with a

function hðξÞ satisfying (4.3)–(4.5) lead to BH solutions.
There are infinitely many functions satisfying these con-
ditions. For example

hðξÞ ¼ ξ expð−ξ2Þ; ð4:38Þ
which satisfies

R∞
0 hðξÞdξ ¼ 1

2
and jhðξÞj ≤ 1ffiffiffiffi

2e
p < 1.

The way the more general solutions are parametrized in
terms of f mimics the standard BH. The exterior corre-
sponds to f∈ ð0;∞Þ with f ¼ 0 the faraway region and
f ¼ ∞ the horizon. The interior region is covered by two
patches: f̃∈ ðf0;∞Þ− and f̃∈ ðf0;∞Þþ, where the first
goes under the branch cut [picking the minus sign in (4.21)]
and the second over it [with the plus sign in (4.21)]. We
begin under the branch at f̃ ¼ ∞ (the horizon) until
f̃ ¼ f0, the branch point, where all quantities are finite.
From there, we return to f̃ ¼ ∞ over the branch cut. This
time, the metric and curvature diverge at this point, which is
identified as the singularity.

B. Cubic ansatz for Mðf Þ
The class of solutions introduced above assume a

function hðξÞ that vanishes at zero and at infinity, among
other conditions. Here we assume that hðξÞ is just linear
in ξ, leading to a cubic ansatz for MðfÞ:

MðfÞ ¼ −
1

2
f þ cf3; hðξÞ ¼ −2cξ; ð4:39Þ

with c ≠ 0, otherwise we are back to the two-derivative
BH. This hðξÞ does not satisfy the conditions in (4.3)
and (4.4), and so the physics is very different. We will find
that the solutions do not seem to have a BH interpretation
due to the presence of naked singularities and disconnected
regions. This shows that arbitrary α0 corrections can easily
eliminate BH solutions. We were also motivated to consider
this case because some of the pre–big bang solutions of [10]
were constructed with a cubic ansatz for MðfÞ.
Without going into the calculations which are straight-

forward, we proceed to enumerate the main characteristics
of these solutions. To this end, we need the branch
structures of exterior and interior solutions, which can
be inferred, respectively, from

PðfÞ ¼ 1þ 1

4
f2 −

c
4
f4; and P̃ðf̃Þ ¼ −1þ 1

4
f̃2 þ c

4
f̃4:

ð4:40Þ
The analysis is different depending on the sign of c. For
simplicity we give the results for f > 0, but similar results

hold for the negative region, which is connected to the
positive one via T duality.
(1) c > 0:

The exterior region is parametrized by f∈ ð0; f0Þ,
where

f20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16c

p þ 1

2c
≃
1

c
þOð ffiffiffi

c
p Þ; c → 0:

ð4:41Þ
For positive f, the function PðfÞ only vanishes at f0.
Since f0 ∼ 1=

ffiffiffi
c

p
, the appearance of a branch cut for

the exterior solution is nonperturbative in c. As it
should be, f ¼ 0 still corresponds to the far away
region. This time, the boundary at f0 is a point with
nonvanishing metric and finite curvature.
The interior region exists for jf̃j ≥ f̃0, with

f̃20 ¼
ffiffiffiffiffiffiffiffiffiffi
1þ16c

p
−1

2c . As in the standard BH and the class
of deformations studied above, we cover the solution
by the two patches f̃∈ ðf̃0;∞Þ− ∪ ðf̃0;∞Þþ, corre-
sponding to going under the cut and then coming
back over the cut. At one end, m̃− ¼ 0 but R̃− ¼ ∞.
At the other end m̃þ ¼ ∞ and R̃þ ¼ ∞.
The absence of a horizon in the exterior and the

presence of singularities in the interior makes this
solution incompatible with a black hole. Moreover,
the two geometries do not connect. Each one is a
separate solution.

(2) c < 0:
In this situation, PðfÞ is always positive and

therefore the exterior solution is valid for f∈ð0;∞Þ
as in the two-derivative case. As usual, f ∼ 0 is theAF
region, but f → ∞ is not a horizon but a point with
vanishing metric with infinite curvature. This region
then corresponds to a naked singularity.
The interior region has now two branch points, f̃0

and f̃1. The point f̃0 is the same as for the c > 0 case,

and f̃1 is given from f̃21 ¼ −
ffiffiffiffiffiffiffiffiffiffi
1þ16c

p
−1

2c . The interior
region only exists for c > − 1

16
and f̃∈ ðf̃0; f̃1Þ. Since

this f̃ interval is finite, is easy to see that m̃� and R̃�
are regular everywhere but the metric never vanishes.
For c < − 1

16
, there is no interior solution, just an

exterior one.
When both exist, the exterior and the interior

solutions do not combine. They are separate solutions,
and we have no black hole.5

V. HORIZONS AND SINGULARITIES

Having gained experience on the constraints of black
hole solutions in the previous section, we now want to

5The construction of [14] was in this class of negative c
theories, so while there seems to be a regular interior solution, the
exterior solution does not work out.
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discuss some general lessons. We show that for dilaton-
gravity theories in two-dimensional time-independent
backgrounds T duality implies a constraint on the con-
struction of regular black holes (geometries with a horizon
but no curvature singularity). We will prove that T duality
maps a geometry with a regular horizon to one with a
curvature singularity. This shows that the observation of
Giveon [9] for the two-derivative black hole is general. For
a solution that is expected to be self-dual, this means one
cannot have a horizon and no singularity. Moreover, we
explain, as a corollary, how the usual branch structure of the
interior solution implies self-duality and thus a singularity.
In the next section we will give black hole solutions that
have an unusual branch structure and that are not self-dual
so that the singularity can be avoided.
To prove that a horizon implies a singularity in the dual

geometry we begin with a configuration where, without
loss of generality, we can take x ¼ 0 as the position of the
horizon, the point where the metric mðxÞ vanishes. A
regular configuration is one where the scalar curvature is
finite everywhere. Since the conclusions should be inde-
pendent of any gauge choice, we pick n ¼ 1 for simplicity.
Demanding R ¼ −2m00=m (2.13) to be finite everywhere

implies, in particular, m00ðxÞ=mðxÞ must be finite at the
horizon. Then, from R̂ ¼ −R − 4M2, (2.9), we see that
regularity of the dual curvature R̂ additionally forces M ¼
m0=m to be finite everywhere, in particular at the horizon.
Together with the horizon condition we obtain

lim
x→0

mðxÞ ¼ 0; lim
x→0

m00ðxÞ
mðxÞ ¼ finite; lim

x→0

m0ðxÞ
mðxÞ ¼ finite:

ð5:1Þ
To gain intuition, we now show that (5.1) cannot be

satisfied for analytic metric components. If mðxÞ is ana-
lytic, then it admits a regular Taylor expansion around
x ¼ 0, and the location of the horizon is

m ¼ a1xþ
1

2
a2x2 þ

1

3
a3x3 þ � � � ; ð5:2Þ

where the first condition in (5.1) rules out the presence of a
constant term. Plugging (5.2) into the second condition of
(5.1) we find

lim
x→0

m00ðxÞ
mðxÞ ≃

a2
a1

1

x
þ � � � ; ð5:3Þ

which is finite only if a2 ¼ 0. Finally, with a2 ¼ 0 the third
condition on (5.1) now reads

lim
x→0

m0ðxÞ
mðxÞ ≃

1

x
þ � � � ; ð5:4Þ

which diverges regardless the coefficients of the Taylor
expansion. This logarithmic derivative diverges at the

position of the horizon. As claimed the conditions cannot
be satisfied.

A. A proof that a horizon implies
a curvature singularity

Having considered the case when mðxÞ is analytic we
now build a general proof. We define the neighborhood
Nϵ ¼ ð0; ϵÞ, and the neighborhood N̄ϵ ¼ ½0; ϵÞ where we
include the point 0. We assume that there is an ϵ sufficiently
small such that the following hold:
(1) The functionmðxÞ is continuous in N̄ϵ and vanishing

at x ¼ 0. This is an isolated zero: the neighborhood
N̄ϵ does not contain another zero of m.

(2) The curvature RðxÞ in N̄ϵ is finite.
These are the natural conditions satisfied by a conventional
horizon.
Claim: The dual curvature R̂ cannot be finite in N̄ϵ.
Proof. Since the curvature R and the dual curvature R̂ are

related as follows

R̂ ¼ −R − 4

�
m0

m

�
2

; ð5:5Þ

and R is assumed finite in N̄ϵ this means that the finiteness
condition

m0ðxÞ
mðxÞ < ∞; ∀ x∈ N̄ϵ; ð5:6Þ

cannot hold. Let us assume it holds and derive a
contradiction.
Since the sign of mðxÞ is immaterial to the definition

of the metric component g00, we can change it at will so
that we can require mðxÞ > 0 for x∈Nϵ. This follows
from the continuity of m and the isolated zero. Given the
positivity of mðxÞ in N̄ϵ we can write mðxÞ in terms of its
logarithm gðxÞ:

mðxÞ ¼ egðxÞ; with mð0Þ ¼ 0 → gð0Þ ¼ −∞: ð5:7Þ

Since mðxÞ ≠ 0 in Nϵ, the function gðxÞ is finite in Nϵ.
Taking a derivative of m we have

m0ðxÞ
mðxÞ ¼ g0ðxÞ: ð5:8Þ

Given the hypothesis (5.6) we conclude that g0ðxÞ < ∞ in
N̄ϵ. Now consider the relation

gð0Þ ¼ gðxÞ −
Z

x

0

g0ðuÞdu; ∀ x∈Nϵ; ð5:9Þ

and examine the right-hand side above. For x∈Nϵ, the
function gðxÞ is finite. Moreover, since g0 is finite in N̄ϵ and
x is finite, the integral is also finite. But with both terms on
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the right-hand side finite, we cannot have gð0Þ ¼ −∞ as
required. This contradiction means that (5.6) does not hold;
we need g0 to diverge in order for the integral above to give an
infinite gð0Þ. This iswhatwewanted to show. The proof does
not tell us where is R̂ infinite, but the intuition of the analytic
case indicates that it is expected to be at x ¼ 0. ▪
The result above is reasonable: In one dimension, T-

duality maps mðxÞ → 1=mðxÞ, which makes a vanishing
metric unavoidably dual to a divergent one. All we had to
prove was that such dual metric has divergent curvature.
This result actually gives a simple proof that the interior

solution based on the contour extending below and above
the branch cut in f space must lead to a singularity. The
main observation here is simple. Recall that R̃ is given in

(2.26) and its dual ˆ̃R is obtained by letting M̃ → −M̃,

R̃ ¼ 2M̃2 þ 2DM̃;

ˆ̃R ¼ 2M̃2 − 2DM̃: ð5:10Þ

Compare with Eq. (3.28d) for the curvatures above (þ) and
below (−) the cut:

R̃�ðf̃Þ ¼ 2M̃2 � 2f̃
dM̃

df̃

ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q
: ð5:11Þ

Since M̃ðf̃Þ and P̃ðf̃Þ are functions without branches, each
term in the above curvature formula takes the same value
above or below the cut; the only difference being that they
enter with different sign combinations for the curvature and
for its dual. It thus follows that we can identify R̃ ¼ R̃þ and
ˆ̃R ¼ R̃−. The curvatures above and below the cut are related
by T duality! Since the f̃ contour defining the x domain
extends both above and below the cut, this means that
having a horizon below the cut (as we conventionally
set it up) will imply a curvature singularity above the cut.
The interior solution is self-dual: T duality, supplemented
with the time reparametrization that exchanges the values
of xðf̃Þ for points immediately above and below the cut,
leaves the fields invariant.

VI. REGULAR BLACK HOLES

In this section we modify the analysis of Sec. IVAwhere
we found black hole solutions with conventional properties.
We will show that with a couple of extra constraints on the
functionMðfÞ we can obtain regular black holes: solutions
where the exterior, as usual, has an asymptotically flat
region and a horizon, and the interior has no singularity in
the metric, the curvature, or the dilaton. As in Sec. IVAwe
parametrize M in terms of a function h

MðfÞ ¼ −
1

2
f½1þ hðf2Þ�; ð6:1Þ

with hðξÞ satisfying the same properties as before:
hð0Þ ¼ 0, h0ð0Þ is finite, jhðξÞj ≤ 1 for all ξ, hð∞Þ ¼ 0,
ξh0ðξÞjξ¼∞ ¼ 0, the parity condition hð−ξÞ ¼ −hðξÞ andR∞
0 hðξÞdξ ¼ α < ∞. If this the case, the interior solution is
parametrized by

M̃ðf̃Þ ¼ 1

2
f̃½1 − hðf̃2Þ�: ð6:2Þ

There was one additional condition on hðξÞ (recall that
ξ ¼ f2): it is not supposed to reach the value of one at the
point f0 > 0 where the function P̃ðfÞ first goes from
negative to positive. We will explicitly relax this condition;
this will be essential for the interior solution. Letting
ξ0 ¼ f20, we demand that

hðξ0Þ ¼ 1; h0ðξ0Þ ¼ 0; h00ðξ0Þ < 0;

and
Z

ξ0

0

dξhðξÞ ¼ ξ0 − 4; ð6:3Þ

Wewill confirm that with these conditions P̃ðf0Þ ¼ 0. This
fact and the motivation for the above set of conditions will
be explained below.
If we call T the space of all possible α0 corrections [the

space of all MðfÞ s], and S the subspace of Sec. IVA
leading to conventional 2D black holes, the regular black
holes arise from the boundary of S. This is clear because
the inequality hðf20Þ < 1, needed for conventional black
holes, is saturated for regular black holes. They do not
cover the full boundary, because we require additional
conditions.
We will now examine the equations of motion in the f

parametrization, both in the exterior and the interior,
finding solutions. We will see that in the interior the
noninvertibility of M̃ðf̃Þ plays a central role. We will also
explain that the solution for the regular black hole has
an interior that is a cosmology that at late times is
asymptotic to Minkowski space with a constant dilaton.
This behavior suggests strongly that this is not a solution in
string theory.

A. Regular BH solutions

Exterior solution. The additional conditions (6.3) pre-
serve all good features of the exterior BH solution. In
particular, for the exterior region f0 has no special mean-
ing, it is just a finite intermediate point in the solution’s
domain. The object that determines the latter is the argu-
ment of the square root:

PðfÞ ¼ 1þ 1

4
f2 þ 1

4

Z
f2

0

dξhðξÞ; ð6:4Þ

and the domain f∈ ð0;∞Þ that we use remains unchanged
since, as a consequence of the bound jhðξÞj ≤ 1, we have
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PðfÞ > 0 for such domain. The analysis of the exterior
solution in Sec. IVA remains unchanged, and the results for
the metric, curvature and dilaton derived there hold here
as well.
Interior solution. For the interior solution, the role of f0

is crucial to get a regular solution. The idea is that the
conditions (6.3) render the position xðf0Þ infinitely far-
away. Therefore, after going from the horizon (f̃ ¼ ∞) to
f̃ ¼ f0 under the cut, we do not need to go back to f̃ ¼ ∞
on the top of the cut, where the singularity always was.
Now, we can just stop at f0 because in terms of x this is the
end of spacetime.
We begin with the function P̃ðf̃Þ appearing in the interior

formulas under a square root:

P̃ðf̃Þ ¼ −1þ
Z

f̃

0

M̃ðf̃0Þdf̃0 ¼ −1þ 1

4
f̃2 −

1

4

Z
f̃2

0

dξhðξÞ:

ð6:5Þ

We then have

P̃ðf̃ ¼ 0Þ ¼ −1; P̃ðf0Þ ¼ 0;

P̃ðf̃Þ ≃ 1

4
f̃2 for f̃ → ∞: ð6:6Þ

The first equality is manifest, the second equality follows
from the last condition in (6.3), and the last one from the
convergence of

R∞
0 hðξÞdξ. To understand the nature of

the interior solution we must consider derivatives of P̃ðf̃Þ.
The first derivative coincides with M̃ðf̃Þ:

P̃0ðf̃Þ ¼ M̃ðf̃Þ ¼ f̃
2
½1 − hðf̃2Þ� ≥ 0 ∀ f̃ ≥ 0; ð6:7Þ

where the inequality follows from jhj ≤ 1. We then have
the following values

P̃0ð0Þ ¼ M̃ð0Þ ¼ 0; P̃0ðf0Þ ¼ M̃ðf0Þ ¼ 0;

P̃0ðf̃Þ ¼ M̃ðf̃Þ ≃ 1

2
f̃ for f̃ → ∞: ð6:8Þ

The first equality is manifest, the second follows from
hðξ0Þ ¼ 1, the third from the vanishing of h for large
argument. The second derivative is given by

P̃00ðf̃Þ ¼ M̃0ðf̃Þ ¼ 1

2
ð1 − hðξÞÞ − ξh0ðξÞ; ð6:9Þ

using ξ ¼ f̃2. We obtain

P̃00ðf̃ ¼ 0Þ ¼ M̃0ðf̃ ¼ 0Þ ¼ 1

2
; P̃00ðf0Þ ¼ M̃0ðf0Þ ¼ 0:

ð6:10Þ

The second equality holds because hðξ0Þ ¼ 1 and
h0ðξ0Þ ¼ 0. For the third derivative we have

P̃000ðf̃Þ ¼ M̃00ðf̃Þ ¼ −3f̃h0ðξÞ − 2f̃3h00ðξÞ: ð6:11Þ
The special values here are

P̃000ðf̃ ¼ 0Þ ¼ M̃00ðf̃ ¼ 0Þ ¼ 0;

P̃000ðf0Þ ¼ M̃00ðf0Þ ¼ −2f30h00ðξ0Þ > 0; ð6:12Þ
the second relation following from the assumption
h00ðξ0Þ < 0.
All these results can be represented collectively in the

two plots in Fig. 5, where we show M̃ðf̃Þ and P̃ðf̃Þ.
The plot of M̃ (left) shows a function that begins at

zero with positive slope and remains strictly positive until
f0 where M̃ðf0Þ ¼ M̃0ðf0Þ ¼ 0 and M00ðf0Þ > 0, which
makes f0 a minimum. The area under the curve in the
interval ð0; f0Þ is exactly one because P̃ðf0Þ ¼ −1þR f0
0 df̃ M̃ðf̃Þ ¼ 0. For f̃ > f0 the function remains always
positive [see (6.7)] and approaches infinity exactly as the
standard BH.
Let us now turn to the graph of P̃ðf̃Þ. This function equals

−1 for f̃ ¼ 0, the minimum of P̃ðf̃Þ. The function then
increases with f̃ until f0, where it vanishes together with its
first and second derivative. Since the third derivative is
nonzero, in fact, P̃000ðf0Þ > 0, we see that f0 is an inflection
point. Afterwards, P̃ðf̃Þ keeps increasing monotonically, as
can be seen from (6.7), and at infinity it behaves as f̃2=4.
Note now that with hðξÞ as discussed, the domain for the

interior solution is f̃∈ ðf0;∞Þ. With the function P̃ðf̃Þ, its
first derivative, and its second derivative all vanishing at f0,
we see that P̃ near f0 is given by

P̃ðf̃Þ ≃ 1

6
P̃000ðf0Þðf̃ − f0Þ3 ¼ −

1

3
f30h

00ðf20Þðf̃ − f0Þ3 > 0

for f̃ ∼ f0: ð6:13Þ

This behavior will allow us to regularize the BH’s interior.

FIG. 5. Left: sketch of M̃ðf̃Þ. The shaded region must have unit
area, the point f̃� indicates the position of the first local maximum
M̃ðf̃�Þ ¼ M̃�, the point f0 is a minimum, and for large f̃ the
curve approaches the line f̃=2. Right: sketch of P̃ðf̃Þ. This
function changes sign at f0, which is an inflection point.
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We first confirm the presence of the horizon in this
interior solution (below the cut). Consider the third equa-
tion in (3.28), picking the minus sign and integrating over
the whole range of f̃:

m̃ð∞Þ
m̃ðf0Þ

¼ exp

0
B@−

Z
∞

f0

df̃
1 − hðf̃2Þ
2

ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q
1
CA: ð6:14Þ

The integral is convergent at the lower limit since the
integrand in fact vanishes there (the numerator vanishes like
ðf̃ − f0Þ2 and the denominator vanishes like ðf̃ − f0Þ3=2. At
the upper limitweget a logarithmic divergence since

ffiffiffiffĩ
P

p
∼ f̃

[see (6.6)] and the numerator approaches a constant. Thus the
integral is infinite and the right-hand side of (6.14) becomes
zero. Since m̃ðf0Þ is finite we can choose

m̃ðf0Þ ¼ 1; m̃ð∞Þ ¼ 0: ð6:15Þ

This is the horizon at f̃ ¼ ∞.
For the curvature, we can use (5.11) with the lower sign,

as we are working below the cut,

R̃−ðf̃Þ ¼ 2
h
ðP̃0ðf̃ÞÞ2 − f̃P̃00ðf̃Þ

ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q i
; ð6:16Þ

where we rewrote the dependence on M̃ in terms of
derivatives of P̃. The curvature vanishes at f̃ ¼ f0, because
P̃; P̃0 and P̃00 all vanish at f0. For f̃ → ∞ the behavior of P̃
is the same as we had in Sec. IVA, and therefore the
curvature computation we did there applies here as well.
The relevant result is given by the first expression in (4.32).
In summary, we have

R̃−ðf0Þ ¼ 0; R̃−ð∞Þ ¼ 1þ α

4
: ð6:17Þ

For the dilaton we have, as usual, Φ̃ðf̃Þ ¼ log f̃ þΦ1,
which is finite for f0 and diverges for f̃ → ∞. The scalar
dilaton is given by ϕ̃ ¼ 1

2
ðΦ̃þ log m̃Þ. For f̃ ¼ f0 we get

ϕ̃ðf0Þ ¼ 1
2
Φ̃ðf0Þ since m̃ðf0Þ ¼ 1. The scalar dilaton, as

opposed to the duality invariant dilaton Φ̃, has no diver-
gence as f̃ → ∞. The argument follows identically as
the one used in Sec. IVA to arrive at (4.37), which in this
case reads

ϕ̃ðf̃Þ ≃ c̃ for f̃ → ∞:

Finally, the relation between x and f̃ is very different
from that in the family of singular black holes: the point
halfway from the horizon to the singularity is moved to
infinite distance. This is the branch point at f0. Using the
behavior (6.13) of P̃ðf̃Þ close to f0, the differential
equation (3.13) relating x and f̃ takes the form

dx ¼ −df̃
1

f̃
ffiffiffiffiffiffiffiffiffiffi
P̃ðf̃Þ

q ≃ −df̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

f50jh00ðξ0Þj

s
ðf̃ − f0Þ−3

2

for f̃ ∼ f0: ð6:18Þ

This integral diverges as f̃ → f0. On the other hand, for
f̃ → ∞ we get a finite integral: here P̃ðf̃Þ ≃ 1

2
f̃ and

therefore dx ≃ −2df̃=f̃2, which is integrable as f̃ → ∞.
This allows us to define xðf̃Þ with the following values at
the boundaries

xðf0Þ ¼ ∞; xð∞Þ ¼ 0: ð6:19Þ

These results make the interior region to be a regular
cosmology, identifying x with a time coordinate τ and t
with a spatial coordinate w, as required by the signature of
the metric

ds2 ¼ m̃2ðxÞdt2 − dx2 ¼ −dτ2 þ m̃2ðτÞdw2: ð6:20Þ

This cosmology begins at time τ ¼ 0 with finite curvature
R̃ðτ ¼ 0Þ ¼ 1þ α

4
and evolves as τ → ∞ to a geometry

with zero curvature and hence to flat space. In this
cosmology there is no big-bang, and time begins at the
position of the horizon.
We now perform a local analysis to see how the solution

approaches the flat region to compare it with standard
cosmology. For clarity we continue to use x (rather than τ).
We begin by integrating (6.18) to get the relation between x
and f̃ close to f0

xðf̃Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12

f50jh00ðξ0Þj

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

f̃ − f0
p for f̃ ∼ f0; ð6:21Þ

where we dropped an integration constant. Inverting this
expression we get

f̃ðxÞ ≃ f0 þ
12

f50jh00ðξ0Þj
1

x2
for x → ∞: ð6:22Þ

With this relation we can express all quantities locally in
terms of x. For M̃ðxÞ we use (6.2) to expand M̃ðf̃Þ around
f̃ ∼ f0:

M̃ðf̃Þ ¼ M̃ðf̃0Þ þ M̃0ðf0Þðf̃ − f0Þ þ
1

2
M̃00ðf0Þðf̃ − f0Þ2

þOððf̃ − f0Þ3Þ: ð6:23Þ

Recalling that M̃ðf0Þ ¼ M̃0ðf0Þ ¼ 0 and using the value for
the second derivative from (6.12) we get

M̃ðf̃Þ ≃ f30jh00ðξ0Þjðf̃ − f0Þ2 for f̃ ∼ f0; ð6:24Þ
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which in terms of x reads

M̃ðxÞ ≃ 144

f70jh00ðξ0Þj
1

x4
for x → ∞: ð6:25Þ

Now m̃ðxÞ is given by

m̃ðxÞ ¼ C exp

�Z
x
dx0M̃ðx0Þ

�
≃C exp

�
−

48

f70jh00ðξ0Þj
1

x3

�

≃C

�
1−

48

f70jh00ðξ0Þj
1

x3

�
; ð6:26Þ

with C a constant of integration. For the curvature we
use (2.27) to get

R̃ðxÞ ¼ 2ðM̃2ðxÞ þ M̃0ðxÞÞ ≃ 2M̃0ðxÞ ≃ −
1152

f70jh00ðξ0Þj
1

x5
;

ð6:27Þ

where we noted that M̃2 ∼ x−8 and thus can be ignored
to lowest order. Finally, the duality invariant dilaton is
given by

Φ̃ ¼ log f̃ þΦ1 ≃
1

f0
ðf̃ − f0Þ þ log f0 þΦ1 for f̃ ∼ f0;

ð6:28Þ

which in terms of x reads

Φ̃ðxÞ ≃ 12

f60jh00ðξ0Þj
1

x2
þ log f0 þΦ1: ð6:29Þ

The scalar dilaton is given by ϕ̃ðxÞ ≃ 1
2
Φ̃ðxÞ since the

contribution from the logarithm of m̃ is of order x−3 and
thus subleading.
Remark. It is important to note that the interior solution,

for infinite time x, becomes flat Minkowski space with a
constant dilaton. This may seem surprising, given the
well-known fact that the “cosmological” term in the 2D
action requires a linear dilaton when the spacetime becomes
flat. Indeed, the black hole exterior in the far away region
operates in this way, both in the two-derivative theory and in
the case above: the metric approaches the flat metric and the
dilaton profile approaches a linear function. To see what is
happening in the interior consider the exterior and interior
relations (3.10), (3.11) and (3.15), (3.28a):

�
dΦ
dx

�
2

¼ 1 − gðfÞ ¼ PðfÞ;
�
dΦ̃
dx

�
2

¼ −1þ g̃ðf̃Þ ¼ P̃ðf̃Þ: ð6:30Þ

Moreover, just as we have (3.7) in the exterior, there is a
similar equation in the interior

ǧðMÞ ¼ gðfðMÞÞ; M∈ ½0;M��;
˜̌gðM̃Þ ¼ g̃ðf̃ðM̃ÞÞ; M̃∈ ½0; M̃��; ð6:31Þ

where M̃� is the value beyond which the inverse f̃ðM̃Þ of
M̃ðf̃Þ is not expected to have a convergent series. Looking at
Fig. 5, M̃� is themaximum of M̃ðf̃Þ attained for f̃� ∈ ð0; f0Þ.
The non-invertibility issue can be better appreciated in Fig. 6.
Consider first the exterior, in particular the AF region

f ∼ 0 and M ∼ 0. Here Pðf ¼ 0Þ ¼ 1 [see (6.4)], and
therefore gð0Þ ¼ 0 [(6.30)]. This is consistent with the
top equation in (6.31): perturbatively ǧðMÞ ¼ −M2 þ � � �
which gives (left-hand side) ǧð0Þ ¼ 0 consistent with
(right-hand side) gðfð0ÞÞ ¼ gð0Þ ¼ 0. Indeed, this requires
a rolling dilaton [(6.30)].
Consider now the interior, in particular the AF region

f̃ ∼ f0 and M̃ ∼ 0. Here P̃ðf0Þ ¼ 0 (6.6), therefore g̃ðf0Þ ¼
1 (6.30), and there is no need for a rolling dilaton (6.30).
The value g̃ðf0Þ ¼ 1 may sound surprising given that
M̃ðf0Þ ¼ 0 and ˜̌gðM̃ ¼ 0Þ ¼ 0. There is no contradiction,
however, with the bottom equation in (6.31): ˜̌gðM̃Þ ¼
M̃2 þ � � � gives (left-hand side) ˜̌gðM̃ ¼ 0Þ ¼ 0 consistent
with (right-hand side) g̃ðf̃ð0ÞÞ ¼ g̃ð0Þ ¼ 0. Since both
M̃ð0Þ and M̃ðf0Þ are zero, the inverse function f̃ðMÞ is
necessarily multivalued. In the domain of definition of the
perturbative expansion f̃ð0Þ ¼ 0, so this expansion cannot
see what is happening for f̃ ∼ f0.
The above discussion shows how this regular BH

convincingly emerges from a suitable choice of MðfÞ.
Still, the interior solution is approaching a background

FIG. 6. Sketch of f̃ðM̃Þ, the inverse of M̃ðf̃Þ in Fig. 5, making
its multivaluedness evident. The bold curve is f̃ðM̃Þ on the
domain of expected convergence of its series representation.
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defined by two-dimensional Minkowski space and a fixed
dilaton. Such a background is associated with a c ¼ 2
conformal field theory, not a c ¼ 26 one. Since classical
backgrounds of (bosonic) string field theory are c ¼ 26
conformal field theories, one does not expect the regular
BH solution to be a string theory solution. More likely, the
choice of MðfÞ leading to it defines α0 corrections that do
not occur in string theory.

B. A particular example

As a proof of the existence of a function with the
properties mentioned above, we built a concrete example:

hðξÞ ¼ 16ξ30ξ

ðξ2 þ 3ξ20Þ2
: ð6:32Þ

In here ξ0 is a parameter that will be adjusted to make h
satisfy all the requisite conditions. The derivatives of h are

h0ðξÞ ¼ 48ξ30ðξ20 − ξ2Þ
ðξ2 þ 3ξ20Þ2

; h00ðξÞ ¼ 192ξ30ξðξ2 − 3ξ20Þ
ðξ2 þ 3ξ20Þ4

:

ð6:33Þ

We see that consistent with conditions (4.2) we have
hð0Þ ¼ 0 and finite h0ð0Þ. It is simple to check that, as
required by (4.3), hðξÞ ≤ 1 for all ξ, with jhð�ξ0Þj ¼ 1.
The integral of h is easily calculated

Z
ξ

0

dξ0hðξ0Þ ¼ 8ξ0
3

ξ2

ξ2 þ 3ξ20
: ð6:34Þ

This implies thatZ
∞

0

dξ0 hðξ0Þ ¼ 8ξ0
3

¼ α < ∞; ð6:35Þ

so that the finiteness condition expressed in the second
relation in (4.4) is obeyed. The first and third condition in
(4.4) (vanishing of h and ξh0 as ξ → ∞) are also satisfied.
Note also that h is an odd function, as required.
All of the above conditions were already imposed in the

previous section, but here we have the new conditions
concerning the point ξ0, where h reaches the value of one.
We indeed have, as required by the conditions listed in (6.3),

hðξ0Þ ¼ 1; h0ðξ0Þ ¼ 0; h00ðξ0Þ ¼ −
3

2

1

ξ20
< 0:

ð6:36Þ

Thevalueof ξ0 is determinedby the integral constraint in (6.3)Z
ξ0

0

dξ0hðξ0Þ ¼ 2ξ0
3

¼ ξ0 − 4 → ξ0 ¼ 12: ð6:37Þ

We see that for this value of ξ0 we have α ¼ 32. The function
h has a maximum at ξ0, and being odd, a minimum at −ξ0. It
vanishes both for ξ ¼ 0 and as ξ → ∞. A plot of this function
can be seen in Fig. 7. Figure 8 shows the plot ofdΦ̃=dx and M̃
as a function of f̃ for this regular black hole (continuous line).
Superposed in the figurewe see the similar plot (Fig. 4) for the
two-derivative black hole (dashed lines). The coordinate x for
the interior as a function of f̃ is given by the integral

x ¼
Z

∞

f̃

df

f
ffiffiffiffiffiffiffiffiffiffi
P̃ðfÞ

p ; ð6:38Þ

FIG. 7. Plot of hðξÞ ¼ 16ξ3
0
ξ

ðξ2þ3ξ2
0
Þ2 with ξ0 ¼ 12. The dotted lines

indicate the position of the maximum.

FIG. 8. Parametric plot for dΦ̃
dx and M̃ both as functions of

f̃∈ ð12;∞Þ for the interior of the black hole with resolved
singularity (continuous line). Shown dashed is the analogous plot
for the two-derivative black hole. The faint lines are asymptotes at
45° and 135°. The horizon is far on the 135° asymptote, and the
late-time asymptotically Minkowski part of the cosmology is
around the origin.
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which correctly gives the horizon x ¼ 0 for f̃ ¼ ∞ and a
x → ∞ for f̃ → f0. The integral above is best done numeri-
cally, and a plot of it is shown in Fig. 9.

VII. CONCLUDING REMARKS

In this paper we have considered the theory space of
duality-invariant derivative corrections to the lowest order
action that gives a solution identified as the string theory
two-dimensional black hole. We describe the theory space
by the choice of function MðfÞ, whose inverse is related to
the usual perturbatively defined α0 corrections. Using f as a
parameter, and with square roots of nontrivial functions
appearing in the equations, f space naturally becomes a
space with branch points and branch cuts. In this f plane,
the underlying structure of the solution is determined by the
type of branch points which determine the lines or contours
that parametrize the solution. We have argued that the f
parametrization provides an extension of the original α0
corrected theory that applies for situations where the series
defining the corrections in the action does not converge. We
have used a notation where f and f̃ are the parameters for
the exterior and interior solutions, respectively.
In fact, we saw that the black hole interior leads to a

branch point at some real, positive f0 with a cut going all
the way to f̃ ¼ ∞. For the black hole interior with a
singularity, the x coordinate reaches a finite value at the
branch point f0, a point that can be reached in finite proper
time. This means that the space cannot end there, and one
must indeed return to f̃ ¼ ∞ over the cut. To avoid the
singularity, while preserving a horizon, we altered the
nature of the branch point f0. Now x reaches an infinite
value as we approach f0, and it takes infinite proper time to
get there. Thus we get a complete space without having to
go over the branch. This yields a black hole with a horizon
but a regular interior, a regular black hole. The main caveat
is that such solution does not appear to be a string theory
one, as discussed in Sec. VI A. It could be that while

general T-duality invariant α0 corrections allow for regular
black holes, such regular two-dimensional black holes do
not arise in string theory.
Our work can be viewed as an exploration of the space T

of all possible α0 corrections in two dimensions; the space of
all possibleMðfÞ. If we callS the subspacewe showed leads
to conventional singular black holes, the regular black holes
we identified appear on some subspace R ⊂ ∂S of the
boundary ofS. Note that we have not delineated themaximal
space Ŝ ⊃ S that leads to conventional black holes. Of
course, we would very much like to know where D ¼ 2
string theory sits in T . If the string theory black hole has a
conventional singularity, then string theory would lie in Ŝ.
We have also discussed duality in the black hole

solutions. The maximally extended geometry of the black
hole of the two-derivative theory describes a self-dual
solution where, as noted by Giveon, duality maps the
horizon to the curvature singularity. We showed this is
actually a general result. In particular, complete solutions
that have horizons but no singularities are not self-dual.
Their T-duals give an alternative description of the space.
A few issues could be investigated next:
(1) The present work makes some progress but does not

completely describe the type of situations that can
arise throughout the theory space T . We have seen
some unusual solutions, and it would be of interest to
know all that can happen. We identified a subspace
R ⊂ T leading to regular black holes, but there may
be a larger subspace R̂ giving nonsingular black
holes, perhaps containing some that could be ex-
pected to be string theory solutions. Since 2D string
theory is strongly believed to have a black hole,
the regions of T for which no black hole solution
exists could be thought of as the “swampland” in the
theory space.

(2) To better understand solutions, instead of using the
n ¼ 1 gauge, which results in disconnected f con-
tours for the exterior and interior solutions, one may
try for a better, more geometric understanding in the
nm ¼ 1 gauge, where maximal extensions may be
more easily constructed.

(3) It would indeed be important to determine the maxi-
mal extensions of the regular black holes obtained
here and to display their Penrose diagrams. The
challenge here is doing the needed work analytically.

(4) To get hints if the 2D string theory black hole is
regular, it may be of interest to do a more careful
study of the Dijkgraaf, Verlinde, Verlinde ansatz [17]
to understand its geometry and the behavior of the
dilaton. In [19], the geometry is first extended to
include a region with Euclidean signature, which is
later removed, with completeness restored by gluing
infinite number of copies with such excision. Of
course, we still lack insight on how this configura-
tion could be a solution of the α0 corrected string

FIG. 9. The coordinate x as a function of the parameter
f̃∈ ðf0;∞Þ for the resolved BH interior. Here f0 ¼

ffiffiffiffiffi
12

p
∼ 3.464.
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equations of motion. In [22] we showed that the
ansatz, in its given form, does not fit the framework
of our analysis.

(5) Our work could help constrain the α0 corrections of
string theory. We have seen that if the string theory
BH remains singular then the α0 corrections are
strongly constrained. Indeed for generic classes of
corrections the BH presumably does not exist. At
present the class ofMðfÞ s for which the BH has no
singularity seems strongly restricted, but further
investigation could change this.

(6) As emphasized in the introduction, our search for a
regular BH geometry is based on standard general
relativity notions, where a singularity is probed by
point particles and geodesics. Since in string theory
spacetime should be probed by strings, the ultimate
picture might be quite different. As shown here, the
T-dual of a regular BH geometry necessarily fea-
tures a curvature singularity, but it might be that
when probed by winding modes this singularity is

harmless. This could be explored with a genuine
double field theory [33,34] on 2D black hole back-
grounds.
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