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We argue that the boundary of an asymptotically anti–de Sitter (AdS) space of dimension dþ 1,
say Mdþ1, can be locally reconstructed from a codimension-two defect located in the deep interior
of a negatively curved Einstein manifold Xdþ2 of one higher dimension. This means that there exist
two differentways of thinking about the samed-submanifold,Σd: either as a defect embedded in the interior of
Xdþ2, or as the boundary of Mdþ1 in a certain zero radius limit. Based on this idea and
other geometric and symmetry arguments, we propose the existence of an infrared field theory on a bulk
Zn-orbifold defect, located in the deepest point of the interior of AdSdþ2. We further conjecture that
such a theory gives rise to the holographic theory at the asymptotic boundary of AdSdþ1, in the limit where the
orbifold parametern → ∞. As an example,we compute a defect central chargewhenΣ is a 2-manifold of fixed
positive curvature, and show that its n → ∞ limit reproduces the central charge of Brown and Henneaux.
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I. INTRODUCTION

A. Bulk defects as generalized boundaries

It has increasingly become a known fact that in order to
fully characterize a quantum field theory one should
consider not only local operators but also take into account
defects of various codimensions. A codimension-k defect is
a d-dimensional submanifold with singular support,
embedded in a manifold of dimension D > d, where
k ¼ D − d. Examples include line and surface defects,
such as Wilson and ’t Hooft loops and surfaces, and cosmic
strings and membranes.
The properties of defects have shown to be relevant in the

study of dualities in supersymmetric gauge theories [1–4],
boundary conformal field theories [5–13], and in the study of
generalized symmetries and charges in field theory [14–16]
and higher spin gravity [17,18]. The case of orbifold
defects has been of importance in the computation of
holographic Rényi and entanglement entropies [19–21],
and in the analysis of the Page curve of evaporating black
holes [22–25].

The aim of this article is to argue that, on general
grounds, a bulk defect1 and a boundary are two different
phases of the same object; a d-submanifold, say Σd, can be
understood as a defect or as a boundary depending on the
different limits of the theory one is looking at. Moreover, as
we will elaborate on for the case of an asymptotically AdS
space Mdþ1, the boundary submanifold can be recon-
structed from a bulk defect embedded in a manifold of
one higher dimension, that hereafter we denote by Xdþ2.
The general scheme is illustrated in following diagram2:

In this picture, all the geometric properties of the
asymptotic AdS boundary may be thought of as being
inherited from a higher (co)dimensional bulk defect, as a
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1In this work, we are interested in defects that are located in the
interior of a manifold. A defect with support on a boundary
subregion is sometimes referred to as a corner.

2We decorate the manifold Σd
⋆ with a “star” to specify that is

being treated as a defect; we write Σd
⋆ ↪ Xdþ2 to indicate that the

defect Σd
⋆ is embedded in Xdþ2. When the manifold instead

behaves as a boundary, we simply write Σd ¼ ∂Mdþ1 with no
extra bells or whistles. The rest of the notation used through the
paper is collected in Appendix A.
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result of some type of transition Σd
⋆ → Σd whereby the

boundary Σd ¼ ∂Mdþ1 is truly a reincarnation of a defect
Σd
⋆ embedded inXdþ2. The existence of this transition yields

inevitably to hypothesize that bulk defects should be able to
holographically encapsulate [26,27] (just as a boundary
does) degrees of freedom that can independently be
described by means of some field theory; we conjecture
that such a theory gives rise to the holographic theory at the
boundary of AdS [28–30], in a certain zero-radius limit.

B. Summary and plan of the paper

Having in mind the diagram displayed further above, we
begin in Sec. II by constructing the manifold Xdþ2. For
simplicity, we take Xdþ2 ¼ D2 × Σd, where D2 is a disk
(with boundary a circle) and Σd is a d-dimensional
manifold with no boundary (that we can think of as having
sphere topolgy). Importantly, one can easily create a defect
on Xdþ2 by acting with Zn on the disk; this originates a
defect in codimension two, that we denote by Σ⋆, which
corresponds to the set of fixed points of the Zn action on
Xdþ2 and it is thus located at the center of the disk. This is
of course the deepest point of the interior of Xdþ2.
We next ask ourselves whether if physically relevant

spacetimes of this type can actually exist; requiring Xdþ2

to be a negatively curved Einstein manifold, we show
the existence of a family of such backgrounds—all of
them supporting a defect Σ⋆ in the deepest point of their
interior—of which pure AdS spacetime is an example.
Motivated by the ideas of the holographic renormalization
group flow [31–39], in which one identifies the AdS
radius as the energy scale in the flow of the dual field
theory, we refer to Σ⋆ as an infrared defect.
In Sec. III we study the local geometry close to an

infrared defect by zooming into the region at center of the
disk. About this region, the quotient D2=Zn is locally a
cone, and the manifold Xdþ2 is approximately the direct
product of that cone (with the defect Σd

⋆ at the tip of it) with
Σd. Importantly, the radius of the cone scales as 1=n, where
n > 1 is the Zn-orbifold parameter. Thus, the limit3 n → ∞
is equivalent to the zero-radius limit of the cone. In this
limit, the cone shrinks to a small interval, say ½0; εÞ (where
ϵ > 0 defines the range of validity of the local approxima-
tion), and thus the full space Xdþ2 collapses to
Mdþ1 ¼ ½0; εÞ × Σd. During the process, the defect sub-
manifold Σd

⋆—originally embbeded in Xdþ2—becomes the
boundary of Mdþ1, as illustrated in the diagram of the
previous page. We denote this transition4 as Σd

⋆ → Σd.

We continue by observing that the product ½0; εÞ×
Σd ¼ Mdþ1, where we recall that Σd has no boundary
and has the same form as the collar neighborhood one
considers when studying the geometry close to the boundary
of an asymptotically AdS space. Therefore, in Sec. III B we
ask for the conditions under which the manifold Mdþ1 ¼
Xdþ2jn→∞ (understood as a limit of X) can be regarded as an
asymptotically AdS space. These conditions follow from
requiring that Einstein’s equation for the metric close to the
boundary Σd ¼ ∂Mdþ1—which can in general be solved
asymptotically by means of the Fefferman–Graham expan-
sion [46]—should arise from the large n limit of Einstein’s
equations for the metric on Xdþ2, about the region close to
Σd
⋆. We will refer to the procedure of imposing such

conditions as boundary reconstruction.
Next, in Sec. III C, we show that, just as in the case of

the boundary of AdS, the Einstein condition at finite
n > 1, on the metric close to the defect, can also be
formally solved order by order in powers of the distance to
the defect, in a metric expansion that resembles the
Fefferman–Graham solution. We construct this expansion
up to second order.
In Sec. IV we turn to the holographic implications of

the Σd
⋆ → Σd transition; because of the existence of a

dual theory at the boundary Σd of an asymptotically AdS
space [28–30], it is plausible to think that (at least in some
cases) such a theory exists already on an infrared defect
Σd
⋆, and becomes a boundary theory only in the zero-radius

limit n → ∞. Consequently, in Sec. IVA, we argue that the
parent bulk defect Σd

⋆ exhibits generalized versions of all
the relevant features that we find at the asymptotic
boundary of AdS, and that are indicative of the existence
of a boundary holographic theory, namely:

(i) At the location of the defect, the spacetime sym-
metries are enhanced to those of the full con-
formal group.

(ii) The singular nature of the defect permits the
insertion—via a δ-function in codimension-two—
of a local stress-energy tensor, which in principle
suffices to define a conformal field theory.

(iii) In a suitable gauge, the defect submanifold turns out
to benaturally equippedwith a conformal equivalence
class ofmetrics (also known as a conformal structure).
Furthermore, in that gauge and as spelled out in
Sec. III C, there exists a formal asymptotic solution to
Einstein’s equations for the metric about the location
of the defect, analogue to the Feffereman–Graham
expansion, whose expansion coefficients encode
relevant holographic quantities.

The previous elements lead us to propose the existence
of a conformal field theory (CFT) on a Zn-orbifold defect
Σd
⋆, located in the deepest point of the interior of Xdþ2. We

further argue that, by virtue of the Σd
⋆ → Σd transition, this

theory gives rise to the holographic theory at the boundary

3Here and in what follows, we implicitly assume the analytic
continuation n∈Rþ.

4In two bulk dimensions, related ideas have been explored in
string theory and condensed matter physics when studying the
behavior of boundary degrees of freedom under renormalization
group flow [40–45].
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Σd of an asymptotically AdS space Mdþ1, upon taking the
n → ∞ limit.
In Sec. IV B we give a simple example. We compute a

central charge for the theory on the infrared defect in the
case where the defect is a 2-manifold embedded in four bulk
dimensions. We show that when Σ2

⋆ has scalar Ricci
curvature equal to 4=R2

0, where R0 is the radius of the
disk, the n → ∞ limit of the charge reproduces the Brown–
Henneaux [47] central charge of the theory at the asymptotic
boundary of AdS3.
We conclude with a brief discussion in Sec. V. We collect

our conventions, notation, and some details of our calcu-
lations in Appendices A and B.
The main ideas presented here have been shaped by

previous work [48,49], in which the properties of defects in
codimension-two were exploited to study the notion of
entanglement in de Sitter space (see also [50] for earlier
work dealing with defects in de Sitter space). In particular,
the idea that a boundary submanifold can be understood as
a limit of a bulk defect was first discussed in [48]. In a more
formal context, some of the holographic features of
embedded submanifolds in arbitrary codimension were
studied in [51]. Different routes to generalize holography
to higher codimensions, in which the dual CFT has support
on a boundary corner, have been proposed by other authors
in [52–55].

II. GLOBAL EINSTEIN GEOMETRIES
WITH DEFECTS

In this section, we study a certain type of Einstein
geometries that admit a codimension-two defect in the
deepest point of their interior. We demonstrate the existence
of an entire family of such geometries and, as an example,
we explicitly show that pure AdS spacetime belongs to this
family. The goal of this section is to motivate a further local,
asymptotic analysis about the location of one of these
defects, in the same fashion one performs a local study
about the boundary of an asymptotically AdS spacetime.

A. Geometries with a deep-in-the-bulk defect

To begin with, we consider a manifold X of dimension
dþ 2 given by the direct product

Xdþ2 ¼ D2=Zn × Σd; ð2:1Þ

where D2 is a two-dimensional disk and Σd is a
d-dimensional manifold without boundary. It follows that5

∂X ¼ S1rn × Σ; ð2:2Þ

where S1rn denotes a circle of radius rn; due to the Zn

action on D2, this radius scales as rn ∼ 1=n. We next
endow X with a singular metric of the form

gX ¼ gD2=Zn
þ h

u2
: ð2:3Þ

Here, gD2=Zn
is a two-dimensional Euclidean metric on the

conically singular orbifold D2=Zn (whose smooth limit is
n ¼ 1), h is a Lorentzian metric on Σd, and u is a defining
function whose zero locus determines the conformal
infinity of the metric (2.3), that is

Conf∞ðgXÞ ≔ fp∈XjuðpÞ ¼ 0g: ð2:4Þ

Choosing the coordinates on D2 to be ðθ;ϕÞ, with 0 ≤
θ ≤ π=2 and 0 ≤ ϕ < 2π, the coordinates on Σ to be xi,
with i ¼ 0;…; d − 1, and recalling that Zn acts on D2

by the azimuthal identification ϕ ∼ ϕþ 2πn−1, the metric
(2.3) reads

gX ¼ R2
0ðdθ2 þ n−2 sin2 θdϕ2Þ þ hijðθ; xÞdxidxj

u2ðθÞ : ð2:5Þ

In the above, R0 denotes the radius of the disk, and we have
taken the metric h to depend on x∈Σ and on the polar
coordinate θ∈D2, while the defining function u only
depends on the latter.
We are interested in the case in which the pair ðX; gXÞ is

an Einstein manifold for a negative cosmological constant.
When that is the case, Einstein equations for the compo-
nents ðgXÞθθ, ðgXÞθi, ðgXÞϕϕ, and ðgXÞij are respectively
given by6

0 ¼ −
1

2
Trðh−1h00Þ þ 1

4
Trðh−1h0h−1h0Þ þ 1

2

u0

u
Trðh−1h0Þ

þ 1þ cotθ
u0

u
þ ðdþ 1Þ

�
u00

u
−
�
u0

u

�
2

þ R2
0

L2u2

�
; ð2:6Þ

0 ¼ hjkð∇jh0ik −∇ih0jkÞ; ð2:7Þ

0¼ sin2θ
n2

�
1þu00

u
þ
�
u0

u
− cotθ

��
1

2
Trðh−1h0Þ− ðdþ1Þu

0

u

�

þðdþ1ÞR2
0

L2u2

�
; ð2:8Þ

5Whenever is clear from context, we will drop the dimension
as a superscript and simply write X and Σ instead of Xdþ2 and Σd.

6We have retained the overall factor of 1=n2 in front of (2.8) for
reasons that will become clear later.
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0 ¼ RijðhÞ −
1

2R2
0

h00ij þ
1

2R2
0

ðh0h−1h0Þij

−
1

2R2
0

�
cot θ − d

u0

u
þ 1

2
Trðh−1h0Þ

�
h0ij

þ 1

R2
0

�
u00

u
þ cot θ

u0

u
þ dþ 1

u2

�
R2
0

L2
− ðu0Þ2

�

þ 1

2

u0

u
Trðh−1h0Þ

�
hij: ð2:9Þ

The calculation of the above equations makes use of
the conventions specified in Appendix A and the compo-
nents of the Ricci tensor for gX given in equation (B3).
In order to lighten the notation, we have suppressed
whenever is possible the indexes on the metric h, writing
Trðh−1h00Þ ¼ hijh00ij, Trðh−1h0h−1h0Þ ¼ hijh0ikh

klh0jl, and
ðh0h−1h0Þij ¼ h0ikh

klh0jl, where the primes indicate deriv-
atives with respect to θ. Also, L denotes the AdSdþ2

radius, and RijðhÞ denotes the components of the Ricci
tensor built from h.
Global solutions to (2.6)–(2.9) are difficult to find, of

course, and it is not our purpose here. However, we observe
that a family of exact Einstein geometries can be obtained
by taking h to be independent of θ (so that h0 ¼ h00 ¼ 0),
and by setting the radius of the disk to be equal to the
AdSdþ2 radius, that is

h ¼ hðxÞ and R0 ¼ L: ð2:10Þ

Consequently, the defining function

u ¼ cos θ ð2:11Þ

solves Eqs. (2.6)–(2.9) in the special case in which h is
itself any Einstein metric of negative scalar of curvature,
namely

RijðhÞ þ
d − 1

L2
hij ¼ 0: ð2:12Þ

We thus have the family of Riemannian geometries

Fh ≔ ðX; gXðhÞÞ; ð2:13Þ

where X and gX are defined as in (2.1) and (2.5),
respectively, and h satisfies the Einstein condition (2.12).
From (2.4) and (2.11), it follows that in all these geometries
the conformal infinity of gX is located at θ ¼ π=2 and thus
coincides with the boundary of X:

Conf∞ðgXÞ ¼ ∂X: ð2:14Þ

A key feature of the family F h is that every geometry
member of it contains two distinguished submanifolds,

namely a codimension-one boundary and a codimension-
two bulk defect. Indeed, recalling that Xdþ2 ≅ D2=Zn × Σd,
one can see that the nontrivial Zn>1 action has as a set of
fixed points at the center of the disk (see Fig. 1), which is the
deepest point of the interior ofX (i.e., the furthest point from
the boundary). Metricwise and locally about this point, in
coordinates given by θ ¼ 0, we have that gX ≈ R2

0ðdθ2þ
θ2dϕ2=n2Þ þ � � �, which is the singular geometry of a cone
of deficit angle 2πð1 − 1=nÞ.
In what follows, we will denote the codimension-two set

of fixed points as

Σ⋆ ≔ Xjθ¼0; ð2:15Þ

and we will refer to it as defect. By construction, Σ⋆ has the
same topology as Σ (and hence has no boundary), and it is
endowed with the induced metric hð0Þ ¼ gXjθ¼0 that in turn
satisfy (2.12).

B. Example: Pure AdS

There exists a distinguished solution h to the Einstein
condition (2.12) by means of which the Riemannian mani-
fold ðXdþ2; gXÞ turns into pure AdSdþ2 spacetime. To this
end, we take Σd to be two copies of AdSd glued along their
boundaries, that is

Σd ¼ AdSd� ≔ AdSdþ ∪ AdSd−; ð2:16Þ

where we have denoted by AdSdþ and AdSd− to each of these
copies. Note that since the gluing is along the boundary, Σ
has sphere topology and thus no boundary. We next equip
AdSd� with the line element

h ¼ hAdSd� ¼ L2

cos2z

h
−dt2 þ dz2 þ sin2zdΩ2

d−2

i
: ð2:17Þ

FIG. 1. Depiction of the D2=Zn factor of the product manifold
Xdþ2 ¼ D2=Zn × Σd. For any h satisfying the Einstein condition
(2.12), the corresponding member of the family F h ¼ ðX; gXðhÞÞ
has conformal infinity at the boundary of the disk, which
coincides with the boundary of X. On the left, we illustrate
the smooth, n ¼ 1 geometry, in which case the radius of the disk
is R0. The value n > 1, on the right, induces a conical defect Σ⋆
(the set of fixed points of the Zn-action) located at the center of
the disk, which is the deepest point of bulk. In this case, the
boundary circle has radius rn ¼ R0=n.
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These coordinates are sometimes referred to as the con-
formal compactification of AdS; in our case, the radial
coordinate 0 ≤ z ≤ π, with 0 ≤ z ≤ π=2 for one AdS copy
and π=2 ≤ z ≤ π for the second one. The two copies are
glued along the boundary7 located at z ¼ π=2. As usual, the
time coordinate −∞ < t < ∞, and dΩ2

d−2 denotes the
induced metric on a sphere of dimension d − 2.
With the choices (2.16) and (2.17), the full (dþ 2)-

dimensional geometry (2.5) becomes

gX ¼
L2ðdθ2 þ sin2 θdϕ2Þ þ hAdSd�

cos2 θ
: ð2:18Þ

A direct calculation shows that (2.18) is indeed the induced
metric on the AdSdþ2 ↪ R2;dþ1 hyperboloid

−ðZ0Þ2 − ðZ00 Þ2 þ
Xdþ1

a¼1

ðZaÞ2 ¼ −L2; ð2:19Þ

where the Z’s are coordinates on flat embedding space
R2;dþ1. To see this, it suffices to parametrize

Z0 ¼ L cosðt=LÞ
cos θ cos z

; Z00 ¼ L sinðt=LÞ
cos θ cos z

;

Zi ¼ L tan z
cos θ

yi; Zd ¼ L tan θ cosϕ;

Zdþ1 ¼ L tan θ sinϕ; ð2:20Þ

where we recall that 0 ≤ θ ≤ π=2 and 0 ≤ ϕ ≤ 2π. The
pullback of the flat embedding space metric η ¼
diagð−1;−1; 1;…; 1Þ onto the hypersurface (2.19) then
gives (2.18).

III. BOUNDARY RECONSTRUCTION AND LOCAL
DEFECT GEOMETRY

We now abandon the global approach of Sec. II and
focus on the asymptotic geometry about the region close to
the defect. Our first goal here is to examine, locally around
Σ⋆ ≔ Xjθ¼0, the n → ∞ limit of Eqs. (2.6)–(2.9). This
limit—which corresponds to the zero-radius limit of an
azimuthal circle transverse to Σ⋆—defines a transition
whereby the defect submanifold, originally embedded in
Xdþ2, reincarnates as the boundary of the resulting space of
one lower dimension, that we denote by Mdþ1; the
situation is depicted in Fig. 2.
Consequently, in Sec. III B, we establish the conditions

under which Mdþ1 can be generically considered an
asymptotically AdS spacetime, with its ordinary asymptotic

boundary Σ ¼ ∂M being thought of as the large n phase of
the defect, finite n > 1 submanifold Σ⋆.
The second goal of the section is to show that the local

defect equations, given by the θ ≪ 1 approximation of
Eqs. (2.6)–(2.9), can be formally solved order by order in
the “radial” coordinate, in a metric expansion that resembles
the Fefferman–Graham boundary expansion; we construct
such an expansion up to second order in Sec. III C. Because
it is needed for our purposes, we begin in Sec. III A by
reviewing the relevant properties of the asymptotic geom-
etry of the boundary of AdS.

A. The local geometry of the AdS boundary

In [56], Fefferman and Graham established a link between
a pseudo8-Riemannian ambient manifold ðYdþ2; gYÞ of
dimension dþ 2, and a conformal manifoldΣd of dimension
d, by means of which local conformal invariants onΣ can be
constructed from Riemannian invariants on Y. The con-
struction of these invariants is carried out by formally
solving a Ricci-flat condition for the ambient space metric;
physicswise, this Ricci-flat condition for gY happens to be
equivalent to Einstein’s equations on a negatively curved
manifold Mdþ1 with boundary Σd. Consequently, as sug-
gested in [30], the Fefferman–Graham construction naturally
encapsulates some of the geometric textures appearing in
Maldacena’s AdS=CFT correspondence [28]. In particular,
its usage has been relevant to the calculation of the holo-
graphic Weyl (boundary) anomaly [57], as well as other
types of submanifold anomalies [58]. In what follows, we
briefly review the aspects of the Fefferman–Graham expan-
sion that are relevant for our purposes. Further details can be
found in the monograph [46].
Conformally compact Einstein metrics. Let M̄ ¼ M ∪

∂M be a compact manifold of dimension dþ 1with interior
M and boundary ∂M ¼ Σ. A Riemannian metric g on M is
said to be conformally compact if there exists a smooth
defining function r∈ C∞ðM̄Þ, in which case

FIG. 2. Local picture of the quotient D2=Zn about the center of
the disk: (a) for finite n > 1, the set of fixed points Σ⋆ is a
codimension two defect embedded in X; (b) when n → ∞, the
transverse circle shrinks to a point and D2=Zn collapses to the
interval I. During the process, Σ⋆ transitions from being a defect
embedded in Xdþ2, to be the boundary of Mdþ1 ≅ I × Σd.

7In the special case of AdS2 the gluing is made along the two
disconnected boundaries located at z ¼ 0; π; the resulting ex-
tended z-coordinate runs then over an entire circle 0 ≤ z < 2π.

8The prefix pseudo here simply means that the (everywhere
nondegenerate) metric gY needs to not be positive definite, so that
is taken to be an indefinite bilinear form.
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rjM > 0; rjΣ ¼ 0; drjΣ ≠ 0; ð3:1Þ

such that the metric

ḡ ¼ r2g ð3:2Þ

extends continuously to M̄. The structure ðM̄; ḡÞ is referred
to as a compactification of ðM; gÞ [59]. Because the choice
of defining function is not unique, the restriction hð0Þ of ḡ to
∂M rescales upon different choices of r; this freedom
invariantly defines a conformal class of metric ½hð0Þ� on ∂M.
The pair ðΣ; ½hð0Þ�Þ is the conformal infinity of the metric g.
A metric g which in addition satisfies the Einstein

condition l2RijðgÞ þ dg ¼ 0, where l is the radius of
curvature of the manifold M, is termed a conformally
compact Einstein metric. Importantly, every conformally
compact Einstein metric is asymptotically hyperbolic,9

meaning that its sectional curvature approach to −1=l2

at Σ. Sometimes in the math literature these type of metrics
are dubbed Poincaré–Einstein metrics.
Graham–Lee normal form and Fefferman–Graham

expansion. If g is an asymptotically hyperbolic metric on
M, then a choice of a representative hð0Þ in the conformal
class ½hð0Þ� on Σ uniquely determines a defining function r
such that, in a collar neighborhood Σ × ½0; εÞ, the singular
metric g takes the Graham–Lee normal form [60]

g ¼ l2ðdr2 þ hrÞ
r2

; ð3:3Þ

where hr is a one-parameter family of metrics on Σ,
with h0 ¼ hð0Þ ∈ ½hð0Þ�.
The Einstein condition l2RijðgÞ þ dg ¼ 0 can be

asymptotically solved for a metric of the form (3.3). The
solution is a formal expansion hr ¼

P
k≥0 hðkÞrk, where the

expansion coefficients hðkÞ are determined inductively from
the Einstein condition itself. In components, this condition
reads

rTrðh−1h00Þ − r
2
Trðh−1h0h−1h0Þ − Trðh−1h0Þ ¼ 0; ð3:4Þ

∇iTrðh−1h0Þ −∇jh0ij ¼ 0; ð3:5Þ

rh00ij þ ð1 − dÞh0ij − Trðh−1h0Þhij − r½ðh0h−1h0Þij
−
1

2
Trðh−1h0Þh0ij þ 2l2RijðhÞ� ¼ 0: ð3:6Þ

For simplicity, in the above display we have written
the tensor hr simply as h, whose components are denoted
by hij; we have also denoted Trðh−1h00Þ¼hijh00ij,
Trðh−1h0h−1h0Þ¼hijh0ikh

klh0jl, and ðh0h−1h0Þij¼h0ikh
klh0jl,

where the primes indicate derivatives with respect to r.
Successive derivatives of (3.6) evaluated at r ¼ 0 give

½ðk − dÞ∂krhij − Trðh−1∂krhÞhij�jr¼0 ¼ LOTsjr¼0; ð3:7Þ

where “LOTs” refers to lower order terms in derivatives of
the metric h. From Eq. (3.7) with hð0Þ as an initial
condition, the higher order coefficients can be iteratively
determined as follows:

(i) For k < d, all the coefficients hðkÞ can be computed
in terms of hð0Þ from ∂

k
rh evaluated at r ¼ 0. The

case k ¼ 1 implies immediately that the first order
expansion coefficient hð1Þ vanishes. Consequently,
since Eq. (3.6) is invariant under r → −r, it follows
that only even powers of the expansion have non-
vanishing coefficients and thus hðkÞ ∼ ∂

k
rhjr¼0 ¼ 0

for k odd.
When k ¼ d the coefficient of the trace-free part of hðdÞ ∼
∂
d
rhjr¼0 vanishes and this can be freely chosen; this is the
second piece of initial data—in addition to hð0Þ—needed to
solve the second order Einstein condition. Furthermore

(i) If k ¼ d is odd, the LOTs in (3.7) vanish at r ¼ 0

and thus the trace Trðh−1ð0ÞhðdÞÞ ¼ 0.
(ii) If k ¼ d is even, the trace-free part of the LOTs

in (3.7) do not vanish at r ¼ 0 giving rise to what is
known as the obstruction tensor. In order to circum-
vent this obstruction, one must include in the
expansion a logarithmic term rd log r with a trace-
free coefficient aðdÞ.

Tying the above arguments together one concludes that

hr ¼
� hð0Þ þ hð2Þr2 þ even powersþ hðd−1Þrd−1 þþhðdÞrd…; if d is odd:

hð0Þ þ hð2Þr2 þ even powersþ aðdÞrd log rþ hðdÞrd þ…; if d is even:
ð3:8Þ

The distinguished coefficients aðdÞ and hðdÞ can be characterized as the metric variation of the conformal anomaly, and the
expectation value of the boundary stress-energy tensor, respectively.
As for the other two components (3.4) and (3.5) of the Einstein condition, it can be shown that they give no extra

information at order k ¼ d and lower. This is because, from the ambient space perspective, some of the components of the

9In order to be consistent with the original literature, in this subsection we are considering spaces of Euclidean signature; statements
regarding asymptotically hyperbolic spaces translate with no subtleties to asymptotically AdS spaces in Lorentzian signature.
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Ricci-flatness equation for the ambient space metric gY
are identically satisfied due to the contracted Bianchi
identities [56].
Second-order coefficient. For the sake of completeness,

let us compute hð2Þ. Evaluating Eq. (3.6) at r ¼ 0 implies
that hð1Þ ¼ 0; using this fact, the first derivative of that
equation gives

½ð2 − dÞh00ij − Trðh−1h00Þhij − 2l2RijðhÞ�r¼0 ¼ 0: ð3:9Þ

Since hjr¼0 ¼ hð0Þ and h00jr¼0 ¼ 2hð2Þ (because að2Þ is
traceless), it follows that for d ¼ 2 we can only determine
the trace of the second-order coefficient

Trðh−1ð0Þhð2ÞÞ ¼ −
l2

2
RΣ; ð3:10Þ

where RΣ ¼ RðhÞjr¼0 is the Ricci scalar of the boundary
(built from the induced metric hð0Þ). It is not difficult to
check that when d > 2, taking the trace of (3.9) and
plugging it back, one obtains

hð2Þij ¼ l2

2 − d

�
RΣ
ij −

RΣ

2ðd − 1Þ h
ð0Þ
ij

�
¼ −l2PΣ

ij; ð3:11Þ

where PΣ
ij is the Schouten tensor of the boundary.

B. Boundary reconstruction
and the Fefferman–Graham–Lee limit

As anticipated, the limit n → ∞ defines the transition
Σ⋆ → Σ in which the defect submanifold Σ⋆ ↪ Xdþ2

becomes the boundary of Mdþ1. We now turn to the
question of under which conditions the resulting manifold
Mdþ1 can be considered an asymptotically AdS spacetime,
with Σ ¼ ∂M. When such conditions are imposed, one
may think of the boundary Σ as being reconstructed
from Σ⋆.
To begin with, we note that, close to Σ, the topology of

Mdþ1 is the same as the topology of the asymptotic

boundary region of an asymptotically AdS space. Indeed,
recalling from (2.1) that Xdþ2 ¼ D2=Zn × Σd, we once
again observe that the n → ∞ limit corresponds to the zero-
radius limit of the boundary circle S1rn ¼ ∂ðD2=ZnÞ; see
Fig. 1. It follows that

Xdþ2 → Mdþ1 ≔ I × Σd as n → ∞; ð3:12Þ

where I ¼ ½0; R0� is the interval that results from the large n
limit of the quotient D2=Zn. Thus, upon sending n to
infinity and zooming into the region close to the origin,10 the
topology of the space collapses to the collar Σ × ½0; εÞ, for
some ε > 0; this is precisely the cylinder topology of the
asymptotic boundary region of an arbitrary AdS spacetime,
in the sense of Sec. III A.
On geometric grounds,Mdþ1 will be asymptotically AdS

if, locally about Σ ¼ ∂M, its line element can be written in
Graham–Lee normal form; in our case, this means that the
metric

gM ¼ gXjn→∞ ¼ R2
0dθ

2 þ h
u2

; ð3:13Þ

which is the metric on Mdþ1 inherited from the metric on
Xdþ2 once n is sent to infinity, should equal (3.3) for θ ≪ 1.
It is direct to verify that this will indeed be the case if we
impose

u → θ and R0 → l as n → ∞; ð3:14Þ

and redefine the radial coordinate as r ≔ R0θ.
Consequently and in addition to imposing (3.14),

for Mdþ1 ¼ Xdþ2jn→∞ to be asymptotically AdS, the
metric (3.13) should satisfy the local boundary equa-
tions (3.4)–(3.6), which thus should arise in the large n
limit of the local approximation of the global defect
equations (2.6)–(2.9). In other words, the known local
equations for the asymptotic AdS boundary should be
reobtained through the following sequence:

The local defect equations (that complete the center of the diagram above) are given by the θ ≪ 1 approximation of
Eqs. (2.6)–(2.9); recalling that at leading order cot θ ≈ 1=θ, these are

10Note that, since we are only focusing on a small region about the origin, whatever happens at the right end of the interval I is
irrelevant to us.

RECONSTRUCTING THE BOUNDARY OF ADS FROM AN … PHYS. REV. D 108, 126005 (2023)

126005-7



0 ≈ −
1

2
Trðh−1h00Þ þ 1

4
Trðh−1h0h−1h0Þ þ 1

2

u0

u
Trðh−1h0Þ þ 1þ 1

θ

u0

u
þ ðdþ 1Þ

�
u00

u
−
�
u0

u

�
2

þ R2
0

L2u2

�
; ð3:15Þ

0 ≈ hjkð∇jh0ik −∇ih0jkÞ; ð3:16Þ

0 ≈
θ2

n2

�
1þ u00

u
þ
�
u0

u
−
1

θ

��
1

2
Trðh−1h0Þ − ðdþ 1Þ u

0

u

�
þ ðdþ 1ÞR2

0

L2u2

�
; ð3:17Þ

0 ≈ RijðhÞ −
1

2R2
0

h00ij þ
1

2R2
0

ðh0h−1h0Þij −
1

2R2
0

�
1

θ
− d

u0

u
þ 1

2
Trðh−1h0Þ

�
h0ij

þ 1

R2
0

�
u00

u
þ 1

θ

u0

u
þ dþ 1

u2

�
R2
0

L2
− ðu0Þ2

�
þ 1

2

u0

u
Trðh−1h0Þ

�
hij; ð3:18Þ

where thus the symbol “≈” stands for small θ
approximation.
It is now direct to verify that the boundary equa-

tions (3.4)–(3.6) can be obtained from the n → ∞ limit
of the defect equations (3.15)–(3.18). To this end, we first
observe that, since the radial coordinate r ¼ R0θ, the
derivative ∂θ ¼ R0∂r, so that each prime in the defect
equations differ by a factor of R0 with respect to a prime in
the boundary equations.
We next observe that Eq. (3.15) → (3.4) as n → ∞ if, in

this limit, the second line in (3.15) vanishes and u → θ. The
last requirement is part of condition (3.14), and in particular
implies that, upon expanding u ≈ u0 þ u1θ þ u2θ2, the
coefficients u0 → 0, u1 → 1, and u2 → 0 in that limit.
As for the second line in (3.15), using the above expansion
for u, we can write

1þ 1

θ

u0

u
þ ðdþ 1Þ

�
u00

u
−
�
u0

u

�
2

þ R2
0

L2u2

�

¼ 1

u2

�
u1u0
θ

þ
�
u20 þ u21 þ ðdþ 1Þ

�
2u0u2 − u21 þ

R2
0

L2

��

þ θ½2u0u2 þ ð1 − 2dÞu1u2� þOðθ2Þ
�
: ð3:19Þ

Recalling that u0 → 0, u1 → 1, and u2 → 0 as n → ∞, we
conclude that the above display vanishes in that limit if we
require

R2
0

L2
→

d
dþ 1

as n → ∞; ð3:20Þ

which thus guarantees that Eq. (3.15) gives (3.4) when n
is large.
Equation (3.16) trivially gives (3.5) when n → ∞. Also,

in this limit, Eq. (3.17) is identically satisfied without
imposing any further constraint on the geometry of Mdþ1.
Finally and by virtue of (3.14) and (3.20), it is also direct to
show that Eq. (3.6) follows from (3.18).

Having looked at the n → ∞ regime of the local defect
equations, from which we infer that they reproduce the
boundary equations if both conditions (3.14) and (3.20)
hold, we will next show that they can formally be solved
order by order in θ; in the next subsection, we will
explicitly construct this expansion up to second order.

C. Local defect geometry

We now turn to the construction of an asymptotic
solution to the local defect Eqs. (3.15)–(3.18)—which
we recall are valid in the regime where n > 1 is finite—
of the form

hðθ; xÞ ¼ hð0Þ þ θhð1ÞðxÞ þ θ2hð2ÞðxÞ þ � � �
uðθÞ ¼ u0 þ u1θ þ u2θ2 þ � � � ð3:21Þ

where hð0Þ is the induced metric on Σ⋆ and u0 is the
defining function zero-mode which we assume to be
nonvanishing for finite n. For simplicity and because it
suffices for our purposes, we will consider an expansion up
to second order in θ, and leave a more technical analysis of
the higher order terms, including possible obstructions, for
a separate work.
In order to determine the expansion coefficients in

(3.21), we first rewrite Eqs. (3.15), (3.17), and (3.18)
respectively as

0 ¼ u0

u
þ θF θθ; ð3:22Þ

0 ¼ u0

u
−

1

2ðdþ 1ÞTrðh
−1h0Þ þ θFϕϕ; ð3:23Þ

0 ¼ u0

u
hij −

1

2
h0ij þ θF ij; ð3:24Þ

where
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F θθ ≔ −
1

2
Trðh−1h00Þ þ 1

4
Trðh−1h0h−1h0Þ þ 1

2

u0

u
Trðh−1h0Þ

þ 1þ ðdþ 1Þ
�
u00

u
−
�
u0

u

�
2

þ R2
0

L2u2

�
; ð3:25Þ

Fϕϕ ≔
1

dþ 1

�
1þu00

u
þ 1

2

u0

u
Trðh−1h0Þ

�
þ 1

u2

�
R2
0

L2
− ðu0Þ2

�
;

ð3:26Þ

F ij ≔ R2
0RijðhÞ −

1

2
h00ij þ

1

2
ðh0h−1h0Þij

þ 1

2

�
d
u0

u
−
1

2
Trðh−1h0Þ

�
h0ij

þ
�
u00

u
þ dþ 1

u2

�
R2
0

L2
− ðu0Þ2

�
þ 1

2

u0

u
Trðh−1h0Þ

�
hij:

ð3:27Þ
As in the case of the boundary equation (3.5), the defect
equation (3.16) will not play any role due to one of the
Bianchi identities, and we have thus not considered it in the
above two displays. Importantly, we are a priori assuming
that all the F s defined above are finite at θ ¼ 0 and hence
ðθF Þjθ¼0 ¼ 0. We will a posteriori realize that this is not
really an assumption but a consistency condition.
The first order expansion coefficients in the anstaz (3.21)

can be determined by first evaluating (3.22) at θ ¼ 0. This
implies u0jθ¼0 ¼ 0, so that the defining function u cannot
have a linear term at finite n [but because of the condition
(3.14), note that u will actually be linear for large n]. Using
this fact and further evaluating (3.23) or (3.24) at θ ¼ 0, it
follows that, since hð0Þ is the induced metric on Σ⋆ and thus
it is nondegenerate, the linear term h0jθ¼0 ¼ 0. Then, at this
order we conclude that

u1 ¼ 0 and hð1Þ ¼ 0: ð3:28Þ
The second-order coefficients follow from the first

derivative of the defect equations. Taking the derivative
of (3.22) and evaluating at the origin using (3.28) gives

0 ¼
�
u00

u
þ F θθ

�����
θ¼0

¼ 2
u2
u0

− Trðh−1ð0Þhð2ÞÞ þ 1þ 2ðdþ 1Þ u2
u0

þ ðdþ 1ÞR2
0

L2u20
; ð3:29Þ

where the last four terms come fromF θθjθ¼0. It follows that

Trðh−1ð0Þhð2ÞÞ ¼ 1þ 2ðdþ 2Þ u2
u0

þ ðdþ 1ÞR2
0

L2u20
: ð3:30Þ

It is not hard to check that the derivative of (3.23) gives the
same information as (3.30). As for the derivative of (3.24),
recalling that h0jθ¼0 ¼ 0 and u0jθ¼0 ¼ 0, we have that

0¼
�
u00

u
hij−

1

2
h00ijþF ij

�����
θ¼0

¼ 2
u2
u0

hð0Þij −hð2Þij þR2
0R

Σ⋆
ij −hð2Þij þ

�
2
u2
u0

þðdþ1ÞR2
0

L2u20

�
hð0Þij ;

ð3:31Þ

where the last four terms follow from F ijjθ¼0, and where

we have denoted by RΣ⋆
ij ¼ RijðhÞjθ¼0 to the Ricci tensor of

the defect submanifold ðΣ⋆; hð0ÞÞ. Thus, solving for the
second-order coefficient gives

hð2Þij ¼ R2
0

2
RΣ⋆
ij þ

�
2
u2
u0

þ ðdþ 1ÞR2
0

2L2u20

�
hð0Þij ; ð3:32Þ

whose trace should then be consistent with (3.30); this fixes
the curvature of the defect in terms of the defining function
expansion coefficients u0 and u2, and the scales R0 and L

RΣ⋆
¼ 2

R2
0

�
1þ 4

u2
u0

þ
�
1 −

d
2

� ðdþ 1ÞR2
0

L2u20

�
: ð3:33Þ

The above implies that the defect submanifold is con-
strained to have constant curvature.
Because it will be useful afterwards, let us write down

the explicit form of the above solution for the case in which
Σ⋆ is a 2-manifold. Note that, when d ¼ 2, the last term
in (3.33) vanishes identically, so that the defect curvature is
simply given by

RΣ⋆
¼ 2

R2
0

�
1þ 4

u2
u0

�
: ð3:34Þ

When the above is the case, the defining function is

u ¼ u0

�
1þ 1

4

�
R2
0

2
RΣ⋆

− 1

�
θ2
�
; ð3:35Þ

and the second-order expansion coefficient

hð2Þij ¼ R2
0

2
RΣ⋆
ij þ

�
2
u2
u0

þ 3R2
0

2L2u20

�
hð0Þij : ð3:36Þ

Equation (3.34) will be of particular relevance in Sec. IV B.
A consistency check. The local formulæ (3.28),

(3.32)–(3.33) can be scrutinized by studying how the
global family of solutions (2.13) spelled out in Sec. II A
behaves close to the location of the defect ðΣ⋆; hð0ÞÞ. In the
global case, we have that
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hðθ; xÞ ¼ hð0ÞðxÞ; uðθÞ ¼ cos θ; R0 ¼ L; ð3:37Þ

where hð0Þ satisfy the Einstein constraint (2.12), which in
turn implies

RΣ⋆
¼ −

dðd − 1Þ
L2

; ð3:38Þ

with RΣ⋆
¼ Rðhð0ÞÞ ¼ RðhÞjθ¼0.

Close to the defect, the defining function in (3.37) goes
as u ≈ 1 − 1

2
θ2, so that the expansion coefficients u0 ¼ 1

and u2 ¼ −1=2; interestingly, substituting these values in
the local formula (3.33) [remembering from (3.37) that
R0 ¼ L] we obtain exactly (3.38).
It is also interesting to note that the global solution for h

in (3.37) has vanishing second-order coefficient hð2Þ;
replacing u0 ¼ 1, u2 ¼ −1=2, and R0 ¼ L in the local
formula (3.32) and imposing hð2Þ ¼ 0 gives now exactly the
Einstein condition (2.12). In other words, we have learnt
that the Einstein constraint on hð0Þ is equivalent to the
vanishing of hð2Þ.
Defining function as an order parameter. It is important to

note that condition (3.14) and solution (3.28), (3.32)–(3.33)
imply that the defining function u exhibits rather different
behaviors depending on whether the submanifold Σ is in a
defect phase (finite n) or a boundary phase (large n). Indeed,
condition (3.14) enforces the defining function to become
linear in the n → ∞ limit, suppressing the zero-mode u0 and
second-order coefficient u2 in the boundary phase. Solution
(3.28), on the other hand, requires no contribution from the
linear term in u-expansion within the defect phase. This
behavior suggests the existence of a (presumably abrupt)
phase transition, whereby the defining function may be
thought of as the order parameter; the situation is qualita-
tively represented in Fig. 3.

IV. DEFECT CENTRAL CHARGE
AND ITS BOUNDARY LIMIT

In Sec. III Awe argued that the zero-radius limit n → ∞
defines a defect-to-boundary transition, in which the
defect submanifold Σd

⋆ ↪ Xdþ2 becomes the boundary
Σd ¼ ∂Mdþ1 of an asymptotically AdS space Mdþ1.
Motivated by this transition, in this section we argue that
it is plausible to think that, at least in some nontrivial
cases, the holographic CFT at the asymptotic boundary of
AdSdþ1 is truly a reincarnation of some defect, infrared
field theory with support on the interior of Xdþ2. Here,
we collect some arguments supporting the existence of
such a theory.

A. Heuristics

Symmetries. There is a simple symmetry argument,
similar to the one used to justify the existence of a CFT
at the boundary of AdS, which can be equally invoked to
support the existence of a CFT on Σ⋆. To this end, recall
that the symmetry group of AdSdþ2 has as a subgroup

SOð2;dþ1Þ⊃ SOðpÞ×SOð2;qÞ; pþq¼ dþ1: ð4:1Þ

In our construction, because Xdþ2 ¼ D2=Zn × Σd and the
explicit form of the metric (2.3) and (2.5), each factor at the
right-hand side of (4.1) correspond to the (manifest)
isometries of one factor in the decomposition of Xdþ2;
SOðpÞ corresponds to the symmetries of the quotient
D2=Zn and SOð2; qÞ to the symmetries of Σd. Away from
the singular point θ ¼ 0, the symmetries of the former are
those of a circle, which fix p ¼ 2 and consequently
q ¼ d − 1, so that Σd acquires SOð2; d − 1Þ symmetries.
But at the singular point, the circle above shrinks to a point,
which fix p ¼ 1 and in turn equips the defect submanifold
Σd
⋆ with SOð2; dÞ symmetry. This is of course the full

conformal group in dimension d. The argument is sketched
in Fig. 4.
Existence of a local stress tensor. Strictly speaking, in

AdS space, any submanifold at some fixed radius has as a
symmetry group the conformal group in one lower
dimension. However, among all these codimension-one
submanifolds, there exists one and only one equipped with

FIG. 3. Asymptotic behavior of the defining function u. The
defect phase is defined by a finite temperature T ¼ 1=n and the
absence of linear terms in u; all the dashed curves depicted have
equal u2=u0 ¼ 1=4. The boundary phase is reached at zero
temperature, in which case the defining function becomes linear
with no zero-mode (the continuous straight line has u1 ¼ 1).

FIG. 4. The symmetries of the manifold Xdþ2. Away from the
center of the disk, Σd has SOð2; d − 1Þ symmetry. At the locus of
the orbifold singularity, these symmetries are enhanced to those
of the conformal group SOð2; dÞ.
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a stress-energy tensor; this is the AdS boundary, endowed
with the Brown–York stress tensor [61,62].
From the geometric point of view, the existence of a local

stress-energy tensor on a given submanifold is related to the
way this submanifold is embedded into the full space. In
the case of the boundary Σd of an asymptotically AdS
space Mdþ1, there exists a gauge [the Graham–Lee normal
form (3.3)] in which the spacetime metric blows up at the
location of the boundary. This means that the boundary
submanifold Σd can be thought of as being embedded into
Mdþ1 via a one-dimensional delta function11

Σd↪
δ
Mdþ1 ðΣ ¼ ∂MÞ: ð4:2Þ

It is precisely the existence of such a singular embedding
that permits the insertion of a stress-energy operator at the
location of the boundary, and such a stress tensor in
principle suffices to define a CFT.12

A similar reasoning in one higher codimension applies to
a Zn-orbifold defect. In this case, when n > 1 is finite, the
codimension-two set of fixed points Σd

⋆ embeds into
Xdþ2 ¼ D2=Zn × Σd via a delta function in codimension
two, that is

Σd
⋆↪
δ2

Xdþ2 ðΣ⋆ ¼ defect; finite n > 1Þ: ð4:3Þ

This is because the Zn>1 action locally induces a conically
singular geometry about the center of the disk and, on this
background, some of the components of the Einstein tensor
contain a term of the form [64] (here we take ρ ¼ R0θ so
that the metric about the center ofD2=Zn is locally given by
dρ2 þ n−2ρ2dϕ2)

�
1 −

1

n

�
∇2 log ρ ∼

�
1 −

1

n

�
δ2ðρÞ; ð4:4Þ

which is not present in the smooth case n ¼ 1. Due to (4.4)
and in order to have a well defined variational principle,
one needs to couple to the gravitational action a Nambu–
Goto term with support on Σ⋆, which in turns fixes the form
of the stress-energy tensor to

TΣ⋆
ij ¼ 1

4Gdþ2

�
1 −

1

n

�
hð0Þij ; ð4:5Þ

where we recall that hð0Þij ¼ hijð0; xÞ denotes the induced
metric on Σ⋆. Hence, just as in the boundary case, the
existence of (4.5)—whose insertion is possible because of
the singular embedding (4.3) and whose precise form is
determined by consistency of the variational principle—is
indicative of the existence of a CFT on Σ⋆.
Defect conformal structure. The common lore states that

the boundary of AdS is special because it carries a
conformal structure. Although this is true, conformal
structures can in general be attached to any submanifold
embedded in AdS.
A conformal structure is a metric-dependent13 notion

which refers to an equivalence class of metrics on a given
submanifold. Consider for instance the conformal infinity
of ðXdþ2; gXÞ (as defined in Sec. II), whose location
coincides with that of the boundary of X at θ ¼ π=2.
The induced metric on this submanifold is

g∂X ¼ u2gXjθ¼π
2
¼ R2

0

n2
dϕ2 þ h

�
π

2
; x

�
: ð4:6Þ

Then, the fact that the defining function u is not unique
implies that the rescaling

u → Ωu ð4:7Þ
(where Ω is a positive smooth function with no poles at
θ ¼ π=2) induces the conformal class of metrics

½g�
∂X ¼ Ω2

�
π

2

�
g∂X; ð4:8Þ

on the boundary of X.
The same argument above applies to the defect sub-

manifold Σ⋆ ¼ Xjθ¼0. Indeed, due to the nonuniqueness of
the defining function (4.7), Σ⋆ is naturally equipped with
the conformal class

½h�Σ⋆
¼ Ω2ð0Þhð0; xÞ; ð4:9Þ

where hð0; xÞ ¼ hð0Þ is the induced metric on Σ⋆. Note that,
because of the boundary reconstruction discussed in
Sec. III B, the conformal structure (4.9) becomes the
conformal structure at the boundary ofMdþ1 when n → ∞.

B. Defect central charge and its boundary limit

Because of the arguments given in Sec. IVA, we hereafter
assume the existence of a conformal field theory on Σd

⋆.

11Another way to see this is by gluing two copies of M along
their conformal boundary. The gluing procedure enhances a Z2-
symmetry whereby the two fully overlapped conformal infinities
become a single domain wall. Because of the latter symmetry, the
metric will contain the absolute value of the radial coordinate
whose second derivative is a delta function (in codimension one).

12From an axiomatic point of view, a stress tensor is a sufficient
but not necessary condition to define a conformal field theory.
Indeed, there exist a number of CFTs that have no stress energy
tensor [63].

13The boundary of a manifold, on the other hand, is a metric-
independent notion that only depends on the topology of the
manifold, regardless of which metric one puts on it.
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Our aim is now to illustrate with a simple example how
the Σ⋆ → Σ transition amounts to computing the central
charge of the holographic boundary CFT, defined on
Σd ¼ ∂Mdþ1, from the central charge of the CFT defined
on Σd

⋆.
To this end, we specialize to the d ¼ 2 case and consider

a two-dimensional defect embedded in a 4-manifold. As
discussed in Sec. IVA, when n > 1, the singular embedding
Σ2
⋆ ↪ X4 amounts to the insertion of the local stress-energy

tensor (4.5) with support on Σ⋆, which we recall is given by

TΣ⋆
ij ¼ 1

4G4

�
1 −

1

n

�
hð0Þij ; ð4:10Þ

where hð0Þij is the induced metric on Σ⋆ and G4 is Newton
constant.
Defect central charge. From the defect point of view, the

trace of (4.10) is classically anomalous in the sense that

Trðh−1ð0ÞTΣ⋆
Þ ¼ c⋆

24π
RΣ⋆

; ð4:11Þ

where c⋆ denotes the central charge of the CFT on Σ2
⋆. In

the above, since Trðh−1ð0Þhð0ÞÞ ¼ 2, the left-hand side gives

Trðh−1ð0ÞTΣ⋆
Þ ¼ 1

2G4

�
1 −

1

n

�
; ð4:12Þ

while the defect Ricci scalar at the right-hand side was
determined in (3.34); it crucially depends on the ratio of
the defining function expansion coefficients, that we
denote by μ:

RΣ⋆
¼ 2

R2
0

ð1þ 4μÞ; μ ≔
u2
u0

: ð4:13Þ

From (4.11)–(4.13), and recalling that Newton constant
can be dimensionally reduced à la Kaluza–Klein as G4 ¼
VolðS1R0

ÞG3 ¼ 2πR0G3 (we denote by VolðS1R0
Þ the vol-

ume of the transverse circle of radius R0), it follows that

c⋆ ¼
�
1 −

1

n

�
3R0

ð1þ 4μÞG3

: ð4:14Þ

Equation (4.14) provides a formal expression for the
central charge c⋆ of the field theory on Σ⋆ in terms of the
curvature of the defect (which is in turn controlled by
μ ≔ u2=u0), the scale R0, and Newton constant in dimen-
sion three.
Note that, since orbifold parameter n > 1 and the radius

R0 > 0, the sign of c⋆ is controlled by the curvature
coefficient μ. This means that unitarity of the theory on
Σ⋆ depends on the curvature of that manifold; defects
whose curvature 4μ > −1 will support unitary theories,
while defects with 4μ < −1 will admit nonunitary ones.

Boundary limit. Let us conclude by thinking of the Σ⋆ →
Σ transition. Recalling from (3.14) that, when n is large,
R0 → l (where l is the AdSdþ1 radius), it follows that

c⋆ → c ¼ 3l
ð1þ 4μÞG3

as n → ∞: ð4:15Þ

Thus, the resulting boundary central charge, denoted by c,
will necessarily retain the information about the curvature
of the parent defect Σ⋆ from which the boundary sub-
manifold Σ emerge in the limit n → ∞.
Importantly, because of the μ-dependence of (4.15), we

observe that only a defect with positive, μ ¼ 1=4 curva-
ture14 will give rise to a boundary CFT with central charge
equal to the Brown–Henneaux [47] central charge
c ¼ 3l=2G3. Indeed, according to our findings, there exist
a number of theories on Σ⋆ whose boundary limit gives rise
to holographic, possibly nonunitary theories with different
values of their central charge. For instance, for the back-
ground constructed in Sec. II B, the defining function
u ¼ cos θ ≈ 1 − 1

2
θ2 þ � � �, so that the expansion coeffi-

cients u0 ¼ 1 and u2 ¼ −1=2. In that case μ ¼ −1=2 and
thus the resulting boundary theory is a nonunitary CFTwith

FIG. 5. Possible CFT in ðμ; TÞ space. The curvature parameter
μ ≔ u2=u0 controls the sign of the central charge of a given
theory, and the “temperature” T ¼ 1=n defines two different
phases. For T > 0 (defect phase), the possible CFT on Σ⋆ are
unitary for μ > −1=4 and nonunitary otherwise. When n is large
one reaches the zero-temperature, boundary phase. In this phase,
there is a unique point representing a holographic theory with
Brown–Henneaux central charge. Note that, although both u0,
u2 → 0 as n → ∞, the ratio μ ¼ u2=u0 remains finite.

14Note that this is consistent with the fact that stability of the
dual CFT requires a positively curved boundary [65].
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central charge c ¼ −3l=G3. A diagram with the space of
possible defect theories and their boundary limit is depicted
in Fig. 5 below.

V. DISCUSSION

In this work we have argued that the dynamics and
geometry of the boundary of an asymptotically AdS space
can be reconstructed from a conical bulk defect embedded
in one higher (co)dimension. Consequently, all the proper-
ties of the boundary submanifold—including the capability
of encapsulating localizable degrees of freedom in an
holographic fashion—can be thought of as inherited from
a parent bulk defect. Based on this idea, we have con-
jectured that the holographic theory at the boundary of AdS
arises in a certain zero-radius limit of a field theory on an
infrared defect. In order to illustrate our conjecture, we
worked out the lowest dimensional case and showed that
the Brown–Henneaux central charge arises from the zero-
radius limit rn ∼ 1=n → 0 of the central charge on a two-
dimensional defect (at fixed curvature) embedded in four
dimensions.
Our findings seem to manifest the need for the inclusion

of bulk defects into the holographic framework. Indeed,
following the ideas of the holographic renormalization
group flow, one may hypothesize that the conformal field
theory on the defect Σ⋆ represents the infrared fixed point of
the dual flow, with the boundary dual theory being the
ultaviolet fixed point. In these regards, the Σ⋆ → Σ tran-
sition here proposed would represent a second type of flow
in the space of holographic theories, in which the direction
of the flow is reversed with respect to the direction of the
renormalization group flow, from the infrared to the ultra-
violet, at the cost of suppressing one spacetime dimension.
The situation is sketched below:

The above elements lead us to speculate that gauge/
gravity duality belongs to a broader scheme, in which dual
gauge theories do not necessarily have support on boundary
submanifolds. In such a scheme, bulk gravitational theories

ought to be formulated on manifolds with multiple boun-
daries and extended objects in all possible codimensions;
Hilbert spaces are assigned to boundaries, encapsulating
states of a boundary, large N gauge theory, as well as to
defects—encoding defect states labeled by the codimension
number and described by means of a presumable finite N
gauge theory. Furthermore, Hilbert spaces associated with
boundaries and defects are expected to be related via a (co)
dimensional ladder of dualities involving different limits of
the moduli parameters of the theory.
Clearly, many open questions remain to be investigated.

The very existence of the infrared type of theories postu-
lated in this work, as well as the universality and robustness
of our framework require further study; this is the subject
matter of some of our current, ongoing research.
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APPENDIX A: CONVENTIONS

Through the body of this article, we take the bulk
dimension to be

D ¼ dþ 2; d ≥ 2; ðA1Þ

and often indicate the dimension of a manifold as a super-
script; we write Xdþ2 to denote a smooth Riemannian
manifold of dimension D ¼ dþ 2. On tensors, we some-
times attach a manifold as a sub or superscript. For instance,
we may write RΣ to indicate that such a tensor is intrinsically
defined on Σ or constructed from the induced metric on that
manifold. We omit decorations when all is clear from
context.
Given a metric g compatible with a (Levi–Civita)

connection ∇g ¼ 0, the Christoffel symbols are given by

Γρ
μν ¼ 1

2
gρσð∂μgνσ þ ∂νgμσ − ∂σgμνÞ: ðA2Þ

The components of the Riemann and Ricci tensors, and the
Ricci scalar are defined as

RECONSTRUCTING THE BOUNDARY OF ADS FROM AN … PHYS. REV. D 108, 126005 (2023)

126005-13



Rμνρ
σ ¼−2∂½μΓσ

ν�ρ−2Γσ
λ½μΓ

λ
ν�ρ; Rμν¼Rμλν

λ; R¼gμνRμν:

ðA3Þ

Einstein equations are

Rμν−
1

2
RgμνþΛgμν¼ 0; Λ¼−

ðD−1ÞðD−2Þ
2L2

< 0; ðA4Þ

or equivalently

Rμν þ
D − 1

L2
gμν ¼ 0; ðA5Þ

where L is the AdSdþ2 radius.

APPENDIX B: CURVATURES

Here we collect the Christoffel symbols and components
of the Ricci tensor involved in the calculation of Einstein
equations of Sec. II A.
Consider the globally defined metric (2.5)

gX ¼ R2
0ðdθ2 þ n−2 sin2 θdϕ2Þ þ hijðθ; xÞdxidxj

u2ðθÞ : ðB1Þ

The nonvanishing Christoffel symbols are

Γθ
θθ ¼ −

u0

u
; Γθ

ϕϕ ¼ sin2θ
n2

�
u0

u
− cot θ

�
; Γθ

ij ¼
1

R2
0

�
u0

u
hij −

1

2
h0ij

�
;

Γϕ
θϕ ¼ cot θ −

u0

u
; Γi

θj ¼
1

2
hikh0jk −

u0

u
δij; ðB2Þ

where the prime denotes derivative with respect to θ. The nonzero components of the Ricci tensor of gX are

Rθθ ¼ −
1

2
Trðh−1h00Þ þ 1

4
Trðh−1h0h−1h0Þ þ 1

2

u0

u
Trðh−1h0Þ þ 1þ cot θ

u0

u
þ ðdþ 1Þ

�
u00

u
−
�
u0

u

�
2
�
;

Rθi ¼
1

2
hjk∇jh0ik −

1

2
hjk∇ih0jk;

Rϕϕ ¼ sin2θ
n2

�
1þ u00

u
þ
�
u0

u
− cot θ

��
1

2
Trðh−1h0Þ − ðdþ 1Þ u

0

u

��
;

Rij ¼ RijðhÞ −
1

2R2
0

h00ij þ
1

2R2
0

ðh0h−1h0Þij −
1

2R2
0

�
cot θ − d

u0

u
þ 1

2
Trðh−1h0Þ

�
h0ij

þ 1

R2
0

�
u00

u
− ðdþ 1Þ

�
u0

u

�
2

þ cot θ
u0

u
þ 1

2

u0

u
Trðh−1h0Þ

�
hij: ðB3Þ

In the above, we have introduced the simplified notation Trðh−1h00Þ ¼ hijh00ij, Trðh−1h0h−1h0Þ ¼ hijh0ikh
klh0jl, and

ðh0h−1h0Þij ¼ h0ikh
klh0jl. Also, in the last equation, we have explicitly indicated that RijðhÞ is Ricci tensor of the metric h.
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