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The correlations of electric currents in hot non-Abelian plasma are responsible for the experimental
manifestations of the chiral magnetic effect in heavy-ion collisions. We evaluate these correlations using
holography, and show that they are driven by large-scale topological fluctuations. In a non-Abelian plasma
with chiral fermions, local axial charge can be generated either by topological fluctuations (creating
domains with nonzero Chern-Simons number) or by thermal fluctuations. Within holography, we
investigate the dynamical creation of the axial charge and isolate the imprint of the topological dynamics
on the spatial correlations of electric current. In particular, we show that the spatial extent of the current
correlation is quite large (∼1 fm) and grows with time, which is consistent with sphaleronlike dynamics.
We provide numerical estimates for this spatial size that can be used as an input in phenomenological
analyses.
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I. INTRODUCTION

Non-Abelian gauge theories, including Quantum
Chromodynamics (QCD), possess topologically nontrivial
configurations of gauge fields [1]. The topology of these
gauge fields is characterized by Chern-Simons number [2]
which differentiates between energetically degenerate but
topologically distinct ground states. Tunneling transitions
between such energy-degenerate vacuum sectors are medi-
ated by instantons, classical Euclidean solutions to the
Yang-Mills field equations [1].
At high energy (or high temperature) the barrier can be

crossed classically by sphalerons [3–5]. Within the
Standard Model such transitions violate the baryon number
conservation and are believed to have occurred in the hot
electroweak plasma in the expanding early Universe [6,7]
satisfying two of Sakharov’s conditions for baryogenesis
[8]. Unfortunately, the temperature of the electroweak
phase transition is too high (TEW ≈ 160 GeV) to observe
these processes in the laboratory.
However, the temperature of the QCD phase transition is

three 3 orders of magnitudes smaller and the QCD plasma

is created in heavy-ion collisions at the relativistic heavy
ion collider (RHIC) and the large hadron collider (LHC). In
QCD, sphaleron transitions are accompanied by a chirality
flip of the light quarks, representing a “local P and CP
violation” [9,10].
The chiral magnetic effect (CME) opens the possibility to

detect the topological transitions by converting the chirality
asymmetry generated by them into a fluctuation of an electric
current, in an external magnetic field [11–13]. In heavy-ion
collisions, the produced quark-gluon plasma is penetrated by
a strong magnetic field created mostly by the spectator
protons [12]. Therefore, the chirality imbalance generated by
topological transitions induces an electric charge separation
along the direction of magnetic field, i.e., relative to the
reaction plane of a heavy-ion collision.
The experimental observable directly linked to fluctua-

tions of electric current was proposed in [14] (see [15] for a
review and discussion):

cosðΔϕα þ ΔϕβÞ ∝
αβ

NαNβ
ðhJ2⊥i − hJ2kiÞ; ð1Þ

where Δϕ is the angle relative to the reaction plane of the
produced hadrons, with α; β ¼ �1 indicating positively
and negatively charged hadrons. As shown in (1), this
experimental observable can be related [16] to the fluctua-
tions in the current J⊥ perpendicular to the magnetic field B
and the current Jk along B, whereNþ andN− is the number
of positive and negative hadrons, respectively.
To evaluate the observables (1), one needs to use a model

for generating the chirality imbalance, and then include
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the CME and the corresponding hydrodynamical modes
(e.g., the chiral magnetic wave [17]) in the description of
the expanding quark-gluon plasma; see [18–24] for differ-
ent implementations of this program. At present, the major
source of uncertainty in the model calculations is the spatial
and temporal distribution of the chirality imbalance. While
the sphaleron rate in a magnetized strongly coupled plasma
has been evaluated in holography [25], the resulting spatial
and temporal correlations of the electric currents that
determine the value of (1) have not been computed.
The goal of the present paper is to fill this gap, and use a

microscopic field theoretical model to describe topological
transitions in a hot non-Abelian plasma and the resulting cor-
relations of electric currents. In particular,wewill be interested
in the spatial correlations of the electric currents, as the size of
these correlations strongly affects the observables (1).
The observed hydrodynamical behavior of the quark-

gluon plasma suggests that it is strongly coupled; see,
e.g., [26,27]. In the context of strongly coupled quantum
field theories, holography provides a valuable toolkit to
address questions about real-time dynamics. Within holog-
raphy, the real-time dynamics of the CME [28–30] was first
studied in [31,32] which was more recently extended to the
back-reacted case [22,23,33,34].

II. HOLOGRAPHIC SETUP

In the presence of dynamical gauge fields axial current is
no longer conserved:

∂μJ
μ
5 ¼ cstrongtrG ∧ Gþ cemð3F ∧ F þ Fð5Þ ∧ Fð5ÞÞ:

The necessary gravity degrees of freedom to incorporate
the non-Abelian chiral anomaly in holography are the
following: the work of Klebanov, Ouyang, and Witten [35]
argued that the anomaly emerges from the various form
fields on the cycles in the internal part of the 10D back-
ground. In the case of the N ¼ 1 cascading SUðN þMÞ ×
SUðNÞ gauge theory, it arises from the two-form F3 ¼ dC2

on the three cycle in the T1;1 geometry which renders the
bulk vector field massive. Following this philosophy, [36]
wrote down a top-down inspired holographic model
including the dilaton. The dilaton degrees of freedom are
not important for the discussion of chiral anomaly since it
does not depend on the metric (see, e.g., [37]). Therefore
we freeze the expectation value of the dilaton to a non-
singular value, thus fixing the mass of the axial gauge field,
and work with the minimal bottom up model of [38].
We consider the holographicUð1ÞA×Uð1ÞV Stückelberg

model established in [38,39]:

S¼ 1

2κ25

Z
M
d5x

ffiffiffiffiffiffi
−g

p �
Rþ12

L2
−
1

4
F2−

1

4
F2
ð5Þþ

m2
s

2
ðAm−∂mθÞ2

þα

3
ϵmnklpðAm−∂mθÞð3FnkFlpþFð5Þ

nk F
ð5Þ
lp Þ

�
þSbdyþSct

ð2Þ

with the axial field strength Fð5Þ ¼ dA, the vector field
strength F ¼ dV, and the Stückelberg (pseudo)scalar θ
which renders the axial gauge field massive while preserv-
ing gauge invariance. The strength of the Abelian Uð1Þ3A
and Uð1ÞA ×Uð1Þ2V anomaly is governed by the parameter
α in front of the mixed Chern-Simons term that couples the
axial and vector gauge fields. Similarly, the strength of the
non-Abelian anomaly is governed by the parameter ms that
determines the mass of the axial gauge field and thus its
anomalous dimension. Note that both couplings α and ms
may be separately tuned to different values which we will
utilize in the manuscript.
In this work, we will focus on the explicit breaking of

the Uð1ÞA due to the chiral anomaly and hence consider
massless fermions for clarity. Moreover, we aim to study
correlations of the electric current due to topological fluc-
tuations which generate axial charge dynamically. Thus, we
start with a background geometry that does not contain
any finite charge densities but a (Abelian) magnetic field in
the z direction:

Vμ ¼ ð0; 0;−B=2y; B=2x; 0Þ; Aμ ¼ 0; θ ¼ 0: ð3Þ

The corresponding background metric is given by the
magnetic brane [40] in infalling Eddington-Finkelstein
coordinates

ds2 ¼ 1

u2
ð−fðuÞdt2 − 2dtduþ vðuÞ2dx2

þvðuÞ2dy2 þ wðuÞ2dz2Þ: ð4Þ
which takes the anisotropy caused by the magnetic field at
equilibrium into account. Unfortunately, the background
geometry is not known analytically for all values of the
magnetic field, and we have to construct it numerically.
The equations of motion associated with the action,

Eq. (2), are given by

m2
s∇mðAm − ∂

mθÞ ¼ 0 ð5Þ

∇nFnm þ 2αϵmnklpFnkF
ð5Þ
lp ¼ 0; ð6Þ

∇mFmn
ð5Þ −m2

sðAn − ∂
nθÞþαϵmnklpðFnkFlpþFð5Þ

nk F
ð5Þ
lp Þ ¼ 0;

ð7Þ

Rmn −
R
2
gmn − 6gmn −

1

2
FmkF

p
n þ 1

8
ðF2 þ F2

ð5ÞÞgmn

−
1

2
Fð5Þ
mkF

ð5Þp
n −

m2
s

2
ðAm − ∂mθÞðAn − ∂nθÞ

þ 1

4
m2

sðAk − ∂kθÞðAk − ∂
kθÞgmn ¼ 0: ð8Þ

Note that we do not recover the decoupled axion as a wave
equation upon sending Aμ and Vμ to zero since Eq. (7)
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would impose the constraint dθ ¼ 0. We consider linear-
ized spacetime dependent fluctuations about the back-
ground specified in Eqs (3) and (4) by considering

Vμ ¼ ð0; 0;−B=2y; B=2x; 0Þ
þ εeið−ωtþk·xÞfvtðuÞ; 0; vxðuÞ; vyðuÞ; vzðuÞg; ð9Þ

Aμ ¼ εeið−ωtþk·xÞfatðuÞ; 0; axðuÞ; ayðuÞ; azðuÞg; ð10Þ

θ ¼ εeið−ωtþk·xÞϑðuÞ ð11Þ
to linear order in ε, where ω and k≡ ðkx; ky; kzÞ are Fourier
frequency and momentum, respectively. Owing to the
mass of the gauge field the coefficient of the leading
and subleading modes in the asymptotic expansion are
modified to

aμðuÞ ∼ aðlÞμ u−Δð1þ ::Þ þ ∂μϑ
ðlÞ þ aðslÞμ u2þΔð1þ ::Þ;

Δ≡ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

s

q
: ð12Þ

The superscripts (l) and (sl) refer to leading and subleading,
respectively, and where fractional exponents proportional
to multiples of Δ and 2þ Δ also appear in the expansion of
the vector gauge field and the Stückelberg scalar.
The numerical simulations are conducted for parameters

relevant for the Quark-Gluon plasma by matching the
entropy density and Abelian anomaly to three flavor
QCD results as explained in [22,33,41]. The coefficient
of the mixed Chern-Simons term is denoted as ACS ¼ α

2κ2
5

.
To estimate κ5, we match the entropy of a black brane
sBH ¼ 4π4T3

2κ2
5

to the Stefan-Boltzmann value of entropy

density in three flavor QCD, including the strange quark.
The Stefan-Boltzmann value of entropy density sSB ¼
4ðνb þ 7

4
νfÞ π2T3

90
is used, but a reduction factor of 3=4 is

taken into account due to moderate temperatures (around
T ¼ 300 MeV) which is known in the context of N ¼ 4
super-YangMills theory [42].1 Matching the model to QCD
gives κ25 ¼ 24π2

19
≈ 12.5. The axial anomaly in three flavor

QCD isAQCD ¼ 1
8π2

. By matchingACS toAQCD, the Chern-
Simons coupling is determined as α ¼ 6

19
≈ 0.316.

All numerical simulations are performed using pseudo-
spectral methods [44].2

III. AXIAL CHARGE RELAXATION RATE

Owing to the explicit breaking of the axial Uð1Þ
symmetry, the chiral-magnetic wave (CMW) [17] is no
longer gapless at zero wave vector as was observed in the

probe approximation in [38] (for completeness we display
the dispersion relation for the full system in Fig. 7 of
Appendix A). For small momenta (along the magnetic
field) the CMW is purely diffusive and only starts propa-
gating for kk > kk;c. If the symmetry breaking is small
enough, the dynamics can still be treated within quasihy-
drodynamics as was explicitly demonstrated in a similar
setup in [46]. In this section, we focus on the k≡ 0
dynamics which determines the rate of axial charge
relaxation Γ according to n5ðtÞ ∼ e−Γtn5ð0Þ [34,38,39].3

In holography, dispersion relations are encoded in the so-
called quasinormal modes (QNMs) which are solutions to
the linearized fluctuation equations in the absence of
sources. The QNMs in this model at zero ms describing
the CME and axial charge equilibration for the unbroken
Uð1ÞA ×Uð1ÞV symmetry were computed in [32,47]. In
Fig. 1, we show the axial charge relaxation rate as a function
of the magnetic field at fixedms and for five different values
of the Abelian anomaly [α ¼ f0; 0.1; 0.15; 0.32; 2g corre-
sponding to (black, brown, blue, red, and green)]. For small
magnetic fields, the dimensionless axial charge relaxation
rate Γ=T grows (decreases) quadratically as a function of
B=T2 for α ¼ f0; 0.1g (α ¼ f0.15; 0.32; 2g). As was also
observed in real-time simulations [34], large magnetic fields
and sufficiently large strength of theAbelian anomaly protect
axial charge and lower the axial charge relaxation rate. At
large magnetic field the dimensionless axial charge relaxa-
tion rate decreases linearly inB=T2 for α ¼ f6=19; 2gwhere

FIG. 1. Axial charge relaxation rate as a function of
B=T2 for five different values of the Abelian anomaly [α ¼
f0; 0.1; 0.15; 0.32; 2g corresponding to (black, brown, blue, red,
and green)]. We fixed msL ¼ 0.04. For small magnetic fields the
dependence on B=T2 is quadratic.

1Lattice simulations indicate a relative factor of 0.8 (see for
example [43]).

2See appendix A of [45] for an introduction applied to a related
setup.

3In particular in [34], we explicitly demonstrate that the
homogeneous real-time dynamics decays exponentially with Γ
obtained from the quasinormal modes.
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the larger value of α leads to a smaller Γ=T at large B=T2.
Increasing the strength of the non-Abelian anomaly by
increasing ms increases Γ, while increasing the strength of
the Abelian anomaly α (at finiteB) decreasesΓ aswas shown
in [34].

IV. CHERN-SIMONS DIFFUSION RATE

The rate at which the Chern-Simons number changes is
known as the Chern-Simons diffusion rate, denoted by ΓCS.
This rate represents the probability of a Chern-Simons
number changing process to occur per unit volume and per
unit time interval.
The Chern-Simons rate is given by the symmetrized

Wightman correlator of topological charge in the zero
frequency and momentum limit. In holography, the sym-
metrized Wightman function is related to the retarded
Green’s function using the fluctuation-dissipation theorem
(assuming detailed balance) [48]. The Chern-Simons dif-
fusion rate in a magnetic field (without any other matter
fluctuations and anomalies present) was calculated in [25].4

In the setup we are considering there is no axial charge left at
late times (ω → 0 limit). If axial charge relaxes sufficiently
slowly, we can still describe the weakly explicitly broken
symmetry within the framework of quasihydrodynamics.
The axial charge relaxation rate is then related to the Chern-
Simons diffusion rate by [50]

dn5
dt

¼ −2q ¼ −
2ΓCS

χ5T
n5 ¼ −Γn5; ð13Þ

where q is the topological charge density and χ5 the axial
charge susceptibility. Since χ5 has an anomalous dimension
due to the anomalous dimension of the axial current,ΓCS also
inherits this anomalous dimension. In Fig. 2, we show the
Chern-Simons diffusion rate at finite magnetic field normal-
ized to theChern-Simons diffusion rate at zeromagnetic field
as a function of the strength of the non-Abelian anomaly for
three different values of the Abelian anomaly (α ¼ 0, black;
α ¼ 6=19, red; α ¼ 2, blue). In all three cases, the Chern-
Simons diffusion rate increases even though the effect is
smaller for smaller α. It is evident, that theChern-Simons rate
tends linearly to zero for msL → 0. Note that in our macro-
scopicmodel (2) the fermion current is always coupled to the
gluons, andwe did not introduce anymechanism to decouple
them from one another. This implies that since the fermion
current interacts with the gluons, fluctuations of Chern-
Simons numberwill induce the non-Abelian anomaly. In this
model, setting the non-Abelian anomaly to zero implies then
that we remove fluctuations of Chern-Simons number. In
order to connect our results to [25] which computed the
Chern-Simons rate in strong magnetic fields, we studied the

scaling of the Chern-Simons rate for small and large
magnetic fields. As shown on the left side of Fig. 8 in
Appendix B, ΓCS increases quadratically for smallB=T2 and
linearly at largeB=T in agreementwith [25].On the right side
of Fig. 8, we show that the Abelian anomaly α increases the
Chern-Simons diffusion rate, an effect that becomes more
pronounced at larger magnetic fields.

V. CORRELATIONS OF ELECTRIC CURRENT

In this section, we study the correlations of electric
current fluctuations. Our procedure is the following: for a
given value of the magnetic field, we numerically construct
the background geometry given by the magnetic black
brane. On top of this background we compute the retarded
two-point correlators of the electric current (along the
magnetic field) as a function of the three momentum k
at finite ω. To isolate the topological dynamics from other
correlations such as thermal fluctuations and to subtract any
contact terms, large k divergences, and finite ω contribu-
tions, we define the following subtracted correlator:

ΔGret
JzJzðω; kÞ≡Gret

JzJzðω; k; msÞ − Gret
JzJzðω; k; 0Þ; ð14Þ

which is the difference of the two-point function with
topological fluctuations and the two-point function with
topological dynamics switched off (only Abelian anomaly).
Considering this observable has several advantages from a
physical and technical point of view. The subtracted
correlator isolates the topological dynamics since we
subtract any other contributions. The CME current hJzi
has conformal dimension three independent of the value of
ms. From a technical point of view we note that the
asymptotic expansions of the fluctuations have logarithmic
divergences proportional to the source, momentum, fre-
quency, and magnetic field. These divergences have to be
removed by the appropriate counter terms which break
conformal invariance and thus inherently cause scale
dependent contact terms (see [56,57] for a discussion).

FIG. 2. Chern-Simons diffusion rate for B ≈ 0.22T2 normalized
to the Chern-Simons rate at B ¼ 0 for α ¼ 2 (blue), α ¼ 6=19
(red), and α ¼ 0 (black).

4The Chern-Simons diffusion dynamics was also considered
in [48–55].
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However, since these divergences are independent ofms we
automatically remove any scheme dependent contact terms
by considering (14) since they cancel exactly. Finally, it is
advantageous to consider the subtracted correlator (14)
over the two-point function Gret

JzJzðω; k; msÞ for the follow-
ing reason: the two-point functions generally diverge for
large momentum and frequency. The large momentum
frequency could be subtracted by subtracting the zero
temperature result.5 However, since we are working at
finite frequency the two-point function would still not go to
zero for large momenta (as we prefer for performing the
inverse Fourier transform). Considering (14) removes this
unwanted correlation elegantly. We consider the absolute
value of the retarded two-point function in position space
which is motivated by the standard definition of correlation
radius from a form factor, where it is defined through a
modulus squared of this quantity.
After computing the subtracted correlator (14) numeri-

cally, we translate the result into real (position) space by
performing an inverse (discrete) Fourier transform. In order
to characterize the range of correlations, we compute the
root mean square defined by

xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dxx2jΔGret

JzJzðxÞjR
dxjΔGret

JzJzðxÞj

s
: ð15Þ

At finite ω the two-point functions are generally complex
and we consider the absolute value. Since we subtract all
other correlations, the fluctuations of electric current are
driven by the axial charge induced by the topological
transition and the spatial profile of the electric current two-
point function encodes the information about spatial profile
of induced axial charge for a given magnetic field and time
interval.

A. Spatial distribution

To illustrate the real-time dynamics, Fig. 3 depicts the
spatial profile of the subtracted electric current two-point
function (14) at different moments in time. The top panel
captures the buildup of the correlations at early times, and
the lower panel depicts the late time dynamics. Transverse
and longitudinal refer to the direction of the momentum
(Fourier space) or Cartesian coordinate with respect to the
direction of the magnetic field. For the earliest shown time
interval (black curve, top panel) the transverse (left) and
longitudinal distribution (right) show two peaks. This
might be the strong coupling analog of the two chiral
fermions in the weak coupling picture. Increasing the
length of the time interval the distributions increase in
spatial extent and magnitude. From the top panel it is

FIG. 3. Initial spatial distribution (top panel) and late time spatial distribution (lower panel) of the subtracted electric current two-point
function defined in Eq. (14). We fixed B ≈ 0.22T2, α ¼ 6=19, and msL ¼ 0.04. The plots are shown in units of temperature.

5Instead of the zero temperature result one could also subtract
the result at a different temperature as done in [49]. In our setup,
this is not possible since changing the temperature means also
changing the magnetic field.
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evident that the area between the two off axis peaks fills up
corresponding to filling up the sphaleron shell. After reach-
ing the axial charge relaxation time τ5;rel ¼ 2501=T, the
magnitude of the distributions starts to decrease while
their spatial extent continues to increase (lower panel).
Furthermore, the two peaks start appearing again in the
longitudinal distribution (lower right panel).

B. Spatial extent of the correlations

Before we give an estimate for the spatial extent of the
electric correlations, we investigate the dependence on the
strength of the non-Abelian anomaly msL which governs
the anomalous dimension of the axial current. At small
msL, the coupling dependence is well fitted by

x⊥T ¼ 1.90 − 2.18ðmsLÞ2.00 ð16Þ

x⊥T ¼ 2.95 − 2.10ðmsLÞ2.00 ð17Þ

as indicated by the red dashed in Fig. 4. It makes sense
that the size decreases for increasing ms since we observed
in Fig. 2 that the Chern-Simons diffusion rate increases with
ms making topological transitions more likely. At large

couplings the data are best fitted by an exponential (green
dashed line in Fig. 4) and we find x⊥T ¼ 1.32þ
1.38e−3.86ðmsLÞ as well as xkT ¼ 2.45þ 1.69e−4.92ðmsLÞ. If
we extrapolate this fit to msL →

ffiffiffi
3

p
(which corresponds to

the largest anomalous dimension allowed for the current) and
compare the size to the fit at small coupling extrapolated to
msL ¼ 0, we find

xkðmsL ¼ ffiffiffi
3

p Þ
xkðmsL ¼ 0Þ ¼ 0.83;

x⊥ðmsL ¼ ffiffiffi
3

p Þ
x⊥ðmsL ¼ 0Þ ¼ 0.70: ð18Þ

However, for the specific value of B=T2 ¼ 0.22 that we
chose for most simulations, the axial charge relaxation rate
and thus msL should be very small; otherwise the dynamics
could not be captured successfullywithin hydrodynamics (as
seems to work very well in the case of heavy-ion collisions)
and the variation of the size should be much smaller than the
upper limit we estimated in Eq. (18). Hence, in the following
we fix msL ¼ 0.04.
In the left panel of Fig. 5, we depict the growth of the

root mean squared of the transverse distribution as a func-
tion of time at fixed B, α and ms. The axial charge
relaxation time is indicated by the vertical black line.

FIG. 4. Root mean square xrms;f⊥;kg (15) as a function of the strength of the non-Abelian anomaly msL. We fixed B ≈ 0.22T2; TT ¼
15.21 and α ¼ 6=19.

FIG. 5. Transverse (left) and longitudinal (right) size characterized by the root mean square xrms;f⊥;kg (15) as function of the time
interval T . We fixed B ≈ 0.22T2, α ¼ 6=19, and msL ¼ 0.04.
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There are two different regimes in which the growth of the
root mean square is diffusive with different growth rate:

x⊥T ¼ 0.12þ 0.46
ffiffiffiffiffiffiffi
T T

p
; for T T small ð19Þ

x⊥T ¼ 4.46þ 0.29
ffiffiffiffiffiffiffi
T T

p
; for T T large: ð20Þ

The growth of the size in direction along the magnetic
field is shown in the right panel of Fig. 5. We observe two
different scaling regimes which may be fitted by

xkT ¼ 0.027þ 0.75
ffiffiffiffiffiffiffi
T T

p
; for T T small; ð21Þ

xkT ¼ 7.14þ 0.024T T; for T T large: ð22Þ

At early times the growth of the longitudinal size is diffusive
as in the transverse case. However, at later times we observe
ballistic growth which scales linear in the time interval. The
real part of the subtracted correlator in longitudinal direction
changes sign at very late times, and the real and imaginary
part become oscillatory (even though the absolute value is
still well behaved); we decided to cut the plot there.

C. Dependence on magnetic field

To complete our discussion, we investigate the root mean
square as a function of the magnetic field. In Fig. 6, we show
themagnetic field dependence of the transverse size (left) and
longitudinal size (right), respectively. Since there is a one to
one correspondence between strength of the magnetic field
and temperature, we normalize the size to the length of the
time interval instead of the temperature as in previous plots
while keeping the dimensionless quantity T T fixed. The
dependence of the transverse size on the magnetic field is
depicted in the right panel of Fig. 6. The transverse size
decreases with the magnetic field according to

x⊥=T ¼ 0.12 − 0.00047

�
B
T2

�
2.00

for
B
T2

small;

x⊥=T ¼ −0.00011þ 0.35

�
T2

B

�
0.50

; for
B
T2

large:

The longitudinal size grows with the magnetic field

xk=T ¼ 0.19þ 0.31

�
B
T2

�
2.00

; for
B
T2

small;

as shown in the right panel of Fig. 6. In the longitudinal
case, the peaks become increasingly sharp for larger
magnetic fields, making them difficult to reliably resolve
numerically. Thus, we decided to not depict the large B
behavior. For increasing the magnetic field, the sphaleron
becomes more elongated along the magnetic field where its
size grows rapidly and the dynamics becomes effectively
1þ 1 dimensional at large magnetic fields where the
physics is determined by the lowest Landau level dynamics.
The lowest Landau picture also explains the 1=

ffiffiffiffi
B

p
scaling

of the transverse size.

VI. CONCLUSIONS

In conclusion, we addressed the Chern-Simons diffusion
real-time dynamics in strongly coupled field theories
subject to strong (external) magnetic field, with a focus
on the interplay of non-Abelian and Abelian anomalies.
We showed that correlations of electric currents are

sensitive to correlations of Chern-Simons densities at
large distances, which is directly relevant for experimental
measurements of the CME [58]. The range of correla-
tions grows with time, exhibiting diffusive behavior
perpendicular to the direction of the magnetic field and
ballistic behavior parallel to it. This behavior is consistent
with sphaleronlike dynamics.

FIG. 6. Transverse (left) and longitudinal (right) size as a function of the magnetic field B. The size is normalized to the time interval
T . We fixed TT ¼ 15.21, α ¼ 6=19, andmsL ¼ 0.04. The red dashed line and the green dashed line are a fit to the small and largeB=T2

behavior, respectively.
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At strong magnetic field, the perpendicular size
decreases with the inverse square root of the magnetic
field strength (consistent with the lowest Landau level
picture). The corresponding longitudinal size grows with
the magnetic field. This can be viewed as a consequence of
the absence of backscattering (which would introduce
chirality nonconservation) in the longitudinal direction at
large magnetic fields. The dynamics is confined to the
direction parallel to the magnetic field and is effectively
1þ 1 dimensional. We checked that the scalings are not
dependent on the specific value of msL that we used by
performing analogous fits for larger msL leading to the
same exponents.
In order to give a realistic estimate of the spatial sizes

of the electric current correlations, let us express our
dimensionless quantities in dimensionful units. For T ¼
300 MeV, B ¼ 1m2

π , T ¼ 10 fm (for msL ¼ 0.04), we
estimate the transverse and longitudinal sizes as

x⊥ ¼ 1.25 fm and xk ¼ 1.94 fm:

At zero temperature and without a magnetic field, the
average instanton size has been estimated to be ≃0.3 fm
[59–61]. We see that the correlations between electric
currents in our case have a significantly larger range. At
weak coupling g, the size of the sphaleron at temperature T
can be estimated as ∼1=ðg2TÞ, as the sphaleron is a purely
magnetic configuration at the top of the barrier, and its size
should be determined by magnetic screening. So sphaler-
ons are large objects (on thermal scale 1=T) at weak
coupling; our study suggests that they are large at strong
coupling as well.
It would be interesting to address the transport effects

we investigated in this work within the framework of
quasihydrodynamics by extending the hydrodynamic
theory of [62] to Uð1ÞV ×Uð1ÞA and then breaking

Uð1ÞA explicitly. In the context of explicitly broken
Uð1Þ symmetry, it was shown within holography that such
extensions of hydrodynamics are consistent for sufficiently
small explicit breaking [46].
In realistic heavy-ion collisions, the plasma is rapidly

expanding. In [34], we studied the homogeneous dynamics
of the topological axial charge dynamics. It would be very
valuable to extend this discussion to include the spatial
dynamics as presented in this work and make the magnetic
field time dependent.
Finally, in our holographic model, we are restricted to

sufficiently high temperatures in the plasma phase,
T ∼ 300 MeV, since we do not include a realistic
behavior of the entropy density near the QCD phase
transition. In light of the beam energy scan at RHIC, it
would be interesting to investigate the dynamics at
lower temperatures and high baryon density by employ-
ing holographic models more closely tailored to phe-
nomenology such as V-QCD (see [63] and references
therein). Considering these improved holographic mod-
els is also interesting (even without magnetic field) in
order to compare to lattice QCD results where the
sphaleron rate was recently computed in three flavor
QCD [64].
We plan to report on some of these studies in future

publications.
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APPENDIX A: CHIRAL MAGNETIC WAVE

For the sake of completeness, we show the momentum
dependence of the gapped chiral-magnetic wave (with

FIG. 7. Real (right) and imaginary (left) part of the dispersion relation ωðkkÞ for finite wave vector (parallel to the magnetic field) at
fixed B=T2; α ¼ 6=19, and ms ¼ 0.001. Finite ms breaks the Uð1ÞA explicitly and the chiral magnetic wave s is purely diffusive for
small wave vectors.
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momentum aligned with the magnetic field) in Fig. 7.6

For small momenta the chiral magnetic wave is non-
propagating and purely diffusive. Above a certain scale,
the symmetry is restored and the chiral magnetic wave
starts propagating. At zero momentum the imaginary part
of the mode corresponding to the unbroken Uð1ÞV sym-
metry connects to zero while the imaginary part of the
explicitly broken Uð1ÞA is gapped with the gap we referred
to as Γ determining the axial charge relaxation time. For a
detailed discussion of this behavior in the context of
explicitly broken symmetries see for example the review
[65] and references therein.

APPENDIX B: CHERN-SIMONS DIFFUSION
RATE AND CHIRAL ANOMALY

In this section, we give some additional plots for the
Chern-Simons diffusion rate discussed in Sec. IV. The
Chern-Simons diffusion rate for the decoupled axion in a
strong magnetic field (neglecting anomalies and matter)
was calculated in [25]. Since we took a different approach

to calculate the Chern-Simons diffusion rate, we connect
our results to the calculation in [25]. In the right panel of
Fig. 8, we show the enhancement of the Chern-Simons
diffusion rate in a magnetic field compared to the zero B
case as a function of the magnetic field (for three different
choices of α). The scaling at small and large B is given by

ΓCS

ΓCS;B¼0

T4þ2Δ
B¼0

T4þ2Δ ∼
�
1þ 0.001ð BT2Þ2.0; for B

T2 ≪ 1

0.64þ 0.03ð BT2Þ1.0; for B
T2 ≫ 1:

ðB1Þ

Both scalings are in agreement with [25]. Finally, to
demonstrate the effect of the Abelian anomaly, we defined
the quantity

ΔΓCS ¼ 2
ΓCS;α1 − ΓCS;α0

ΓCS;α0 þ ΓCS;α1

: ðB2Þ

For the right panel in Fig. 8 we set α1 ¼ 6=19 and α0 ¼ 0.
We conclude that the Abelian anomaly enhances the
Chern-Simons rate and the effect is becoming more
pronounced for stronger magnetic fields. For weak mag-
netic fields the growth is exactly quadratic: ΔΓCS ∼
2.01 × 10−6ðB=T2Þ2.00.
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