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We investigate the asymptotic symmetries of three-dimensional AdS Einstein gravity in the Weyl-
Fefferman-Graham gauge, which is a generalization of the Fefferman-Graham gauge inducing a Weyl
connection as part of the boundary structure. We show that this gauge arises as a natural intermediary step of
the gauge-fixing procedure in the Chern–Simons formulation. We prove that the diffeomorphism required to
go to the usual Fefferman–Graham gauge can be charged, and thus its implementation has physical
repercussions. We discuss the holographic renormalization and the variational principle offering a new
holographic take on this gauge and its charges.
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I. INTRODUCTION

Three-dimensional Einstein gravity is a perfect play-
ground to study gravitational physics, due to its simple
features [1–3]. Indeed, albeit without propagating degrees
of freedom, there are two important aspects of this theory
that makes it useful. The first one is the presence of
black holes [4–6], while the second is the asymptotic
symmetry enhancement with respect to the isometries of
the vacuum [7–10]. Since the precursory work of Brown
and Henneaux [7], it has been appreciated that AdS3 with
Dirichlet conditions at its conformal boundary has a
centrally extended double copy Virasoro algebra of
charges. This has been later interpreted as the algebra
of modes of the stress tensor in the boundary conformal
field theory [11], a particularly rich instance of the
AdS=CFT correspondence [12–16]. One of the advantages
of three-dimensional gravity is that we can exploit its
topological nature and rephrase it as a Chern–Simons (CS)
theory [17–26].

The AdS=CFT correspondence is rooted in the geometric
construction of the ambient space formulated by Fefferman
and Graham [27,28]. These authors introduced a gauge,
called Fefferman-Graham (FG) gauge, that exploits all the
diffeomorphism freedom to completely lock the radial
structure of the bulk metric. It is a theorem that this gauge
is always attainable and, for the purposes of setting up the
holographic dictionary, it has the virtue of explicitly
realizing the boundary conformal multiplets as series in
the holographic coordinate, see e.g. [29]. It has already been
noted in [30] that restoring some of the diffeomorphism
freedom allows one to realize theWeyl connection as part of
the induced boundary structure, and consequently, to restore
the boundary Weyl covariance. For this reason, this partial
gauge has been called the Weyl-Fefferman-Graham (WFG)
gauge, which has received more attention recently [31,32].
While not often used in the AdS=CFT correspondence,

the framework of charges and the covariant phase space
formalism have produced over the last decades a lot of new
understanding on the concept of observables in gravity and
generically in gauge theories. In particular, in the presence of
boundaries of interest, it is firmly established that Noether’s
second theorem gives a prescription to identify the physical
asymptotic symmetries [8,33–38]. In gravity, the latter form
the subgroup of the bulk diffeomorphisms that are compat-
ible with the falloffs and boundary conditions and produce a
nonvanishing Noether’s charge, which has support on
codimension-2 surfaces. Classifying the asymptotic sym-
metries is of particular interest for holography since they
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correspond to the symmetries of the dual theory through
the holographic dictionary. Several attempts have been made
to find the most general boundary conditions in three-
dimensional gravity [39–56] and provide a physical inter-
pretation from the boundary perspective. In this spirit, the
corner proposal has offered an interesting angle of attack to
address this problem by identifying some universal struc-
tures associated with codimension-2 surfaces [57–69].
Among these previous works, the results of Grumiller
and Riegler [42] stand out. In the latter, the most general
solution space compatible with a well-defined variational
principle has been derived. In this paper, we consider a field
content which is encompassed in [42], but we refrain from
constraining the boundary geometry. Moreover, we compute
the charges in the metric formalism and show that they are
finite approaching the boundary.
One of the main results in the theory of asymptotic

symmetries is that a charged diffeomorphism is a physical
symmetry, mapping inequivalent physical configurations.
Utilizing a charged diffeomorphism to reach a particular
gauge is therefore a delicate procedure, as it restricts the
physical fields of the theory. The main result of this
manuscript is to show that the diffeomorphism mapping
WFG to FG can be charged, and thus nontrivial. This
generalizes to WFG previous enhancements of boundary
conditions in FG [7,50,70] and proves that even though the
FG gauge is always reachable, it could constrain the
physical solution space of our bulk theory.
This opens the fascinating prospect of a more general

holographic dictionary, geometrically formulated in the
WFG gauge, with extra charges and observables playing a
role in the dual field theory. We explore the first steps
toward this endeavor by revisiting the holographic
renormalization and variational principle in WFG gauge,
and identify the phase space variables with sources
and VEV in the dual theory. We show that the extra
physical charges coming from the partial gauge-fixing in
the bulk can be modified exploiting different boundary
Lagrangians and prescriptions to compute the charges,
such as [56,61,71–73]. In particular, we focus on three
different symplectic structures. In the first one, there are
no extra charges with respect to the FG gauge, and thus
Weyl covariantization can be attained for free. In the
second, the Weyl connection appears as a source in the
boundary dual theory, but the renormalization procedure is
not covariant. Lastly, we propose a symplectic structure
that gives rise to a boundary Weyl-invariant extra source
(on top of the boundary metric), with a covariant renorm-
alization procedure. While all of them are mathematically
sound, they lead to different physical interpretations and
consequences for the boundary dual theory.
The paper is organized as follows. We start in Sec. II

revisiting the gauge-fixing procedure in the CS formulation.
We explain how WFG naturally arises as an intermediate
step in the gauge-fixing toward the FG gauge. We then

comment on why the WFG gauge is useful, reviewing the
appearance of Weyl symmetry. Section III contains the
novelties of this paper. Specifically, we compute the asymp-
totic symemtries and charges, showing explicitly that the
diffeomorphism bringingWFG to FG is charged. Section IV
discusses some holographic aspects of the WFG gauge. The
variational principle is presented and the holographic Ward
identities are derived. We then conclude offering possible
outlooks in Sec. V. Two Appendixes are offered, where we
report conventions and some technical details used in the
main body of the manuscript.

II. GAUGE-FIXING PROCEDURE

In this section, we introduce theWeyl-Fefferman-Graham
gauge [30]. In Sec. II A, we begin by studying a natural way
to relax the Fefferman-Graham gauge using the Chern-
Simons formulation, realizing the radially leading part of the
WFG gauge. This will turn out to be sufficient for the
asymptotic analysis we are interested in. We then review in
Sec. II B the results of [30–32], where the WFG gauge was
introduced to restore the Weyl covariance of the boundary
theory.

A. From FG to WFG

In this section, we relax the gauge conditions leading to
the Fefferman-Graham gauge. We show that there is a
natural intermediate gauge obtained in this way, which is
the Weyl-Fefferman-Graham gauge where only the Weyl
connection, appearing at the leading radial order of the bulk
metric expansion, is turned on. This relaxation was initially
studied in [30,42] and further analyzed in [31,32].
The Fefferman-Graham gauge of three-dimensional anti-

de Sitter space consists in choosing bulk coordinates
xμ ¼ ðρ; xiÞ, where ρ ≥ 0 is a radial coordinate and xi ¼
ðt; θÞ the boundary coordinates such that the boundary is
located at ρ ¼ 0, as well as the line element [27,28,74–76]1

ds2FG ¼ gμνdxμdxν ¼
dρ2

ρ2
þ hijðρ; xÞdxidxj; ð2:1Þ

where we have fixed the AdS radius, l ¼ 1. The rewriting
of this line element in the Chern-Simons formulation
leads to a natural relaxation of this gauge. We refer to
Appendix A 1 for a review of the CS formalism. In this
context, the slð2;RÞ connection decomposes as

A ¼ Aμdxμ ¼ Aρdρþ Aidxi; ð2:2Þ

and similarly for Ã. The associated CS action is invariant
under SLð2;RÞ gauge transformations

A → U−1AU þU−1dU; ð2:3Þ

1We follow conventions similar to [48,49,77].
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whose infinitesimal version is

δλA ¼ IVλ
δA ¼ dλþ ½A; λ�; ð2:4Þ

where λ∈ slð2;RÞ and U ¼ expðλÞ is its related group
element. Depending on the holographic description we
want to study, we can exploit this gauge invariance to
select a specific gauge for the CS fields A. An arbitrary
radial expansion is treated in Secs. II B and III. In this
subsection we consider a gauge leading to a finite ρ
expansion, as the Fefferman-Graham one. Indeed, if we
impose that

Aρ ¼ −
1

ρ
L0; Ãρ ¼

1

ρ
L0; ð2:5Þ

we get the following FG gauge-fixing condition

gρρ ¼ −tr
�
Aρ − Ãρ

�
2 ¼ 1

ρ2
; ð2:6Þ

where we employed the following slð2;RÞ basis2:

½L1;L−1� ¼ −L0; ½L1;L0� ¼ L1; ½L−1;L0� ¼ −L−1:

ð2:8Þ

In three spacetime dimensions, the on-shell FG line
element has a truncated radial expansion. This motivates
the radial gauge choice for the CS connections

A ¼ b−1abþ b−1db; Ã ¼ b̃−1ã b̃þb̃−1db̃: ð2:9Þ

The one-forms a ¼ aidxi and ã ¼ ãidxi encode then all the
information contained in the metric. The group elements b
and b̃ are fixed to satisfy

Aρ ¼ b−1∂ρb; Ãρ ¼ b̃−1∂ρb̃; ð2:10Þ

leading to

b ¼ exp ð− log ρL0Þ; b̃ ¼ b−1: ð2:11Þ

We note that this gauge choice is always possible (at least
locally): one can always find such a group element U that
gives the identity at the boundary, see [78]. Using one of the
equations of motion, that is,

Fρi ¼ ∂ρAi þ AρAi − ðρ ↔ iÞ ¼ 0; ð2:12Þ

the slð2;RÞ-valued one-forms a and ã depend only on the
boundary coordinates. This fact constitutes a considerable
advantage in the calculation of surface charges, compared
to the metric formalism. Indeed, we will not need to recur to
holographic renormalization, because the radial depend-
ence is completely captured by the gauge transformation
and factors out. We will comment on this last fact below
Eq. (3.30). The remaining equations of motion simply tell
us that these connections are flat,

daþ a ∧ a ¼ 0: ð2:13Þ

If we expand them in the above basis (2.8) as

ai ¼ a1i L1 þ a0i L0 þ a−1i L−1; ð2:14Þ

and similarly for ã, one can deduce that

gρi ¼ −
1

2ρ

�
a0i − ã0i

�
: ð2:15Þ

Therefore, without further restriction, this does not verify
the FG gauge-fixing condition gρi ¼ 0. This then leads us
to a natural relaxation of the FG gauge (2.1), where the bulk
metric takes the form

gμνdxμdxν¼
�
dρ
ρ
−kiðρ;xÞdxi

�
2

þhijðρ;xÞdxidxj; ð2:16Þ

such that

kiðρ; xÞ ¼ kð0Þi ðxÞ ¼ 1

2

�
a0i − ã0i

�
; ð2:17Þ

and

hijðρ; xÞ ¼
1

ρ2
hð0Þij ðxÞ þ hð2Þij ðxÞ þ ρ2hð4Þij ðxÞ; ð2:18aÞ

hð0Þij ¼ −
1

4
a1i ã

−1
j ; hð2Þij ¼ 1

4

�
a1i a

−1
j þ ã−1i ã1j

�
;

hð4Þij ¼ −
1

4
a−1i ã1j : ð2:18bÞ

It is worth noting that the gauge choice (2.16) can be
imposed off-shell as the starting point, as we will do in
Sec. III. Wewill also show that the line element (2.16) can be
obtained from (2.1) acting with the diffeomorphism (2.26).
This gauge was first introduced in [19] in the Chern-

Simons formulation, and systematically analyzed in [42]. It
was studied geometrically in [30] in the metric formalism
for any dimension. In the latter, it was named Weyl-
Fefferman-Graham since it was shown that it induces a
Weyl connection as part of the boundary geometry. We will

2A possible matrix realization of this basis is

L1 ¼ −
1ffiffiffi
2

p
�
0 0

1 0

�
; L−1 ¼ −

1ffiffiffi
2

p
�
0 1

0 0

�
;

L0 ¼
1

2

�
1 0

0 −1

�
: ð2:7Þ
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review this in Sec. II B. We note that (2.17) incorporates
only the zero radial order of the new structure kiðρ; xÞ. In
Ref. [42], it has been proposed to choose another group
element instead of (2.11), i.e.,

bðρÞ ¼ expðL−1Þ expð− logðρÞL0Þ; ð2:19Þ

leading to

kiðρ; xÞ ¼
1

ρ
kð−1Þi ðxÞ þ kð0Þi ðxÞ þ ρkð1Þi ðxÞ; ð2:20Þ

while in [30] the following infinite expansion was
considered:

kiðρ; xÞ ¼
X
n≥0

ρ2nkð2nÞi ðxÞ: ð2:21Þ

In the following, we will focus on the latter. In particular,
in Sec. II B we will geometrically motivate the introduction
of the WFG gauge via the second-order formalism. On the
other hand, in Sec. III we will come back to the first-order
formalism and determine whether the new fields introduced
have associated nonvanishing charges or not. This is an
important and delicate step, because one has to determine
whether restricting the radial expansion (2.9) to be finite is
a pure gauge choice, or instead it is a physical restriction on
the asymptotic phase space. Moreover, from a CS view-
point, it is always possible to go back to the FG metric (2.1)
by performing a residual gauge transformation which
yields the following gauge-fixing [79]:

a0i ¼ ã0i ⇒ gρi ¼ −
1

ρ
ki ¼ 0: ð2:22Þ

This has been shown in [23] and is related to the FG
theorem [28]. However, as just stated, the radial and FG
gauge-fixing transformations can be physical, which is
determined via the study of surface charges in this theory.

B. Why WFG

In this subsection, we briefly review the WFG
geometry [30–32]. Even though the FG gauge (2.1) is
convenient in the AdS=CFT correspondence, it breaks
the explicit Weyl covariance of the boundary by inducing
the Levi-Civita connection from the bulk. The WFG gauge
was precisely introduced to restore the Weyl covariance of
the boundary.
In the FG gauge, a radial rescaling must be accompanied

by a diffeomorphism in the transverse space, so to preserve
the gauge. Such a transformation is called a Penrose-
Brown-Henneaux transformation [7,22,30,80–83], and has
the form

ρ → ρ0 ¼ ρ

BðxÞ ; xi → x0i ¼ xi þ ξiðρ; xÞ: ð2:23Þ

Therefore, if we want to induce a Weyl transformation on
the boundary in the FG gauge we have to simultaneously
introduce the diffeomorphism ξiðρ; xÞ, which vanishes at
the boundary ρ ¼ 0. This transformation impacts the sub-
leading terms in the asymptotic radial FG expansion so that
they do not transform Weyl-covariantly under (2.23).
This issue can be overcome by relaxing the FG ansatz to

the WFG gauge [30]

ds2WFG¼gμνdxμdxν¼
�
dρ
ρ
−kiðρ;xÞdxi

�
2

þhijðρ;xÞdxidxj:

ð2:24Þ

In the last equation, we introduced the quantities ki and hij,
which can be asymptotically radially expanded as

hijðρ; xÞ ¼
1

ρ2
X
n≥0

ρ2nhð2nÞij ðxÞ; kiðρ;xÞ ¼
X
n≥0

ρ2nkð2nÞi ðxÞ;

ð2:25Þ

where hð0Þij is the boundary metric and kð0Þi is a boundary
Weyl connection. In the following, we will review why
this is the right interpretation. It is worth noting that (2.24)
is the metric (2.16) we obtained by a natural gauge
relaxation in the CS formulation, but with an arbitrary
radial dependence of ki. As we will explain later, this
arbitrary radial dependence can be fixed to recover exactly
(2.16) by using pure-gauge residual diffeomorphisms.
We start observing that the form of (2.24) is now

preserved under the following radial diffeomorphisms
inducing boundary Weyl transformations:

ρ → ρ0 ¼ ρ

BðxÞ ; xi → x0i ¼ xi; ð2:26Þ

so that

kiðρ; xÞ→ k0iðρ0;x0Þ ¼ kiðBðxÞρ0;xÞ− ∂i lnBðxÞ; ð2:27aÞ

hijðρ; xÞ → h0ijðρ0; xÞ ¼ hijðBðxÞρ0; xÞ: ð2:27bÞ

This then solves the above highlighted problem, because
the subleading terms in the radial expansion are now
covariant under Weyl transformations. Thanks to the last
equations, we can also see that

kð2nÞi ðxÞ → kð2nÞi ðxÞBðxÞ2n − δn;0∂i lnBðxÞ;
hð2nÞij ðxÞ → hð2nÞij ðxÞBðxÞ2n−2: ð2:28Þ
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Except for the leading term in ki, all terms in the ρ
expansion transform as Weyl tensors, with a definite
Weyl weight given by the power of BðxÞ. The leading
term in ki, on the other hand, transforms inhomogeneously,
i.e., as a Weyl connection,

kð0Þi → kð0Þi − ∂i lnB: ð2:29Þ

One also notices that the leading order of hij, the boundary
metric, varies as

hð0Þij → B−2hð0Þij : ð2:30Þ

In the following, we define a Weyl-covariant derivative
in the boundary that parallel transports the boundary metric

hð0Þij . The idea is to choose the following dual form basis3 of
the metric (2.24)

Eρ ¼ dρ
ρ
− kiðρ; xÞdxi; Ei ¼ dxi; ð2:31Þ

and its corresponding vector basis

Eρ ¼ ρ∂ρ ≡Dρ; Ei ¼ ∂i þ ρkiðρ; xÞ∂ρ ≡Di: ð2:32Þ

The basis fDρ; Dig spans the tangent space at any point
ðρ; xiÞ of the bulk manifold M, and the spatial vectors
fDig span a two-dimensional distribution D on M. Their
Lie brackets are given by

½Dρ; Di� ¼ DρkiDρ; ½Di;Dj� ¼ fijDρ; ð2:33Þ

where

fij ≡Dikj −Djki ð2:34Þ

is the curvature associated to ki. Using the standard
definition, the coefficients of the bulk Levi-Civita connec-
tion ∇ in the frame fDρ; Dig are

∇Di
Dj ¼ Γk

ijDk þ Γρ
ijDρ: ð2:35Þ

Taking into account the radial expansions (2.25) to compute
Γk
ij, one obtains

ðΓð0ÞÞkij ¼
1

2
hklð0Þ

�
ð∂i − 2kð0Þi Þhð0Þjl þ ð∂j − 2kð0Þj Þhð0Þil

− ð∂l − 2kð0Þl Þhð0Þij

�
ð2:36Þ

at leading order. We emphasize that the coefficients
Γk
ij define the induced connection coefficients on D,

see e.g. [84], while their radial zero order (2.36) provides
the coefficients of a torsion-free connection with Weyl
metricity [30,85,86].
Therefore, the WFG gauge has the novelty of being

equipped with a Weyl geometry and a metric hð0Þij at the
boundary. The induced connection ∇ð0Þ acts as follows:

∇ð0Þ
i hð0Þjk ¼ 2kð0Þi hð0Þjk : ð2:37Þ

For a genericWeyl-weightωT tensor T of arbitrary type, we
can construct the Weyl covariant connection as

∇̂ð0Þ
i T ≡∇ð0Þ

i T þ ωTk
ð0Þ
i T: ð2:38Þ

So the connection ∇̂ð0Þ is metric and ∇̂ð0Þ
i T is Weyl

covariant. Moreover, thanks to this, all geometric quantities
built with this connection are Weyl covariant.
We end this subsection with an important remark. If the

Weyl curvature fij is zero, that is, ½Di;Dj� ¼ 0, the
distribution D is integrable according to the Frobenius
theorem. In FG gaugeD becomes f∂ig and foliatesMwith
ρ-constant surfaces, which is not necessarily true for WFG.

III. ASYMPTOTIC SYMMETRIES

In this section, we come back to the Chern-Simons
formulation of the WFG gauge (2.24). More specifically, in
Sec. III Awe determine the bulk asymptotic solution space
in a conformal parametrization of the boundary, while we
compute the asymptotic symmetries and the associated
surface charges in Sec. III B. We show that the trans-
formation (2.22), which further gauge fixes WFG down to
FG, is charged, whereas the radial gauge-fixing (2.9) is a
pure gauge diffeomorphism.

A. Solution space

We derive the asymptotic solution space in the WFG
gauge (2.24) in the first-order formalism. Using
gμν ¼ eμBηBCeνC, with (B ¼ þ1;−1, 0), we consider the
following dreibein:

e0 ¼ eμ0dxμ ¼ −
dρ
ρ
þ kiðρ; xÞdxi;

e�1 ¼ eμ�1dxμ ¼ 1

ρ
ei�1ðρ; xÞdxi; ð3:1Þ

where we employed the basis (2.8) and the Minkowski
metric

3It should not be confused with the dreibein used in the first-
order formulation as in, e.g., Eq. (3.1).
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ηBC ¼ 2trðLBLCÞ ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA: ð3:2Þ

Using (2.25), we have the following radial expansion:

kiðρ; xÞ ¼
X
n≥0

ρ2nkð2nÞi ðxÞ;

ei�1ðρ; xÞ ¼
X
n≥0

ρ2nðei�1Þð2nÞðxÞ: ð3:3Þ

One can determine the associated spin connection and the
CS forms using the formulas collected in Appendix A 1, in
particular (A6) and (A11). It is then possible to solve the
flatness conditions reported in (A16) order by order in the
radial expansion. Since the boundary is two-dimensional,
we can always express its metric in a conformally flat
parametrization

hð0Þij ðxÞ ¼ e2ϕðxÞηij; ð3:4Þ

where ϕ is an arbitrary conformal factor and ηij is the two-
dimensional Minkowski metric. We introduce the light-
cone coordinates

x� ¼ �tþ θ; ð3:5Þ

for which ∂t ¼ ∂þ − ∂− and ∂θ ¼ ∂þ þ ∂−. The boundary
metric takes the form

ds2bdy ¼ hð0Þij dx
idxj ¼ e2ϕðxþ;x−Þdxþdx−: ð3:6Þ

The corresponding bulk metric is then

ds2bulk¼ gμνdxμdxν¼
�
dρ
ρ
−kiðρ;xÞdxi

�
2

þhijðρ;xÞdxidxj;

ð3:7Þ

where

hijðρ; xÞ ¼
1

ρ2
hð0Þij ðxÞþhð2Þij ðxÞþ ρ2hð4Þij ðxÞþOðρ4Þ ð3:8Þ

such that

hð0Þ�� ¼ 0; ð3:9aÞ

hð2Þ�� ¼ l� − ðKð0Þ
� Þ2 − ∂�K

ð0Þ
� ; ð3:9bÞ

hð4Þ�� ¼ −e−2ϕ∂�K
ð0Þ∓ hð2Þ�� − kð2Þ�

�
∂�ϕþ 2Kð0Þ

�
�
−
1

2
∂�k

ð2Þ
� ;

ð3:9cÞ

and

hð0Þþ− ¼ 1

2
e2ϕ; ð3:10aÞ

hð2Þþ− ¼ −
1

2

�
∂−K

ð0Þ
þ þ ∂þKð0Þ

−

�
; ð3:10bÞ

hð4Þþ− ¼ 1

4
e−2ϕ

�
2∂þKð0Þ

− ∂−K
ð0Þ
þ − e2ϕ

�
∂−k

ð2Þ
þ þ ∂þkð2Þ−

þ 2kð0Þþ kð2Þ− þ 2kð0Þ− kð2Þþ
�
þ 2hð2Þþþhð2Þ−−

�
: ð3:10cÞ

Here we defined

Kð0Þ
� ¼ kð0Þ� − ∂�ϕ; ð3:11Þ

which is the Weyl gauge connection shifted by a pure
gauge factor, see (2.29). Moreover, the equations of
motion impose

∂�l∓ ¼ 0: ð3:12Þ

Note that the higher orders hð2nÞij depend on kð2nÞi . Just like
in [50] and as opposed to [40], we also notice that we do
not perform a chiral split of the solution space, because we
consider here arbitrary boundary functions ϕ and ki. We
can derive the following flat CS connections:

Aρ ¼ −
1

ρ
L0 þ 2

ffiffiffi
2

p
ρ2e−ϕ

�
kð2Þ− L1 − kð2Þþ L−1

�
þOðρ3Þ;

ð3:13aÞ

Aþ ¼
ffiffiffi
2

p

ρ
eϕL1 þ

�
2kð0Þþ − ∂þϕ

�
L0

þ
ffiffiffi
2

p
ρe−ϕhð2ÞþþL−1 þ 2ρ2kð2Þþ L0 þOðρ3Þ; ð3:13bÞ

A− ¼ ∂−ϕL0 −
ffiffiffi
2

p
ρe−ϕ∂−K

ð0Þ
þ L−1 þOðρ3Þ: ð3:13cÞ

A straightforward observation is that, unlike the FG gauge
in three dimensions, the WFG gauge has an infinite radial
expansion. If we turn on only the leading order of the Weyl
connection, the expansion reduces to a finite sum. As is
customary in the literature, we focus on the first slð2;RÞ
copy in the next steps. We collect the main results on the
second copy in Appendix B.
To summarize the solution space is given by one free

function parametrizing the boundary metric ϕðx�Þ, the
Weyl connection kiðρ; x�Þ, and two chiral functions
l�ðx�Þ whose zero mode encode a combination of the
mass and the angular momentum.
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B. Charges

We now turn to the identification of the residual
symmetries of the solution space and their associated
surface charges.

1. Residual symmetries

We have to determine the gauge transformations (2.4)
preserving the form of the boundary values of A in (3.13).
We assume the following basis expansion for the gauge
parameters:

λðρ; xþ; x−Þ ¼ ϵBðρ; xþ; x−ÞLB; ð3:14Þ

where the basis is introduced in (2.8). Then the components
are given by

ϵ1 ¼
ffiffiffi
2

p

ρ
eϕYþ þOðρ3Þ; ð3:15aÞ

ϵ−1 ¼ ρffiffiffi
2

p e−ϕ
h
∂
2þYþ − 2Hð0Þ

þ þ 2
�
lþYþ − ðKð0Þ

þ Þ2Yþ

þ Kð0Þ
þ ∂þYþ

�i
þOðρ3Þ; ð3:15bÞ

ϵ0 ¼ σ − ∂þYþ þ 2YþKð0Þ
þ ; ð3:15cÞ

where σ and Hð0Þ
� are arbitrary functions of the boundary

coordinates while Y� ¼ Y�ðx�Þ. In analogy with (3.11),

we introduce hð0Þ� defined via

Hð0Þ
� ¼ hð0Þ� − ∂�σ: ð3:16Þ

Then, the asymptotic Killing vectors are given by4

ξρ ¼ ρωþOðρ3Þ; ξ� ¼ Y� þ ρ2ζ� þOðρ4Þ; ð3:17Þ

where we renamed

ωðxþ; x−Þ ¼ −σ þ 1

2
∂iYi þ Yi

∂iϕ; ð3:18aÞ

ζ�ðxþ; x−Þ ¼ e−2ϕ
�
Kð0Þ∓ ∂∓Y∓ −Hð0Þ∓ −

1

2
∂∓∂iYi

þ Yi
∂iK

ð0Þ∓
�
; ð3:18bÞ

such that ξρ and ξ� have parameters ω and Hð0Þ
� that do

not mix.
In particular, we see that the Weyl parameter ω is

given by

ω − kð0Þi Yi ¼ −
1

2

�
ϵ0 − ϵ̃0

�
; ð3:19Þ

which shows a link between radial rescalings and slð2;RÞ
gauge transformations along the Cartan direction L0.
Indeed, the bulk radial rescaling (2.23) acts on the boundary
metric as [81]

hð0Þij → e2ωhð0Þij ; ð3:20Þ

that is, it induces a Weyl transformation with parameter
ωðxÞ. We note that our expression (3.19) is Weyl covar-
iant, since the standard relation would rather be ω ¼
− 1

2
ðϵ0 − ϵ̃0Þ, see [22,79,87]. Once the residual gauge

transformations are identified, we can compute their
commutation relations. Since these generators are field
dependent, one has to use a modified commutator5

½λ1; λ2�M ≡ ½λ1; λ2� − δλ1λ2 þ δλ2λ1; ð3:22Þ

where, e.g., δλ1λ2 denotes the variation of λ2 under λ1.
A similar relation applies for the second copy, whose

generators are called λ̃. Taking δσ ¼ δHð0Þ
� ¼ δY� ¼ 0, the

gauge parameters close respectively the Lie algebras
½λ1; λ2�M ¼ λ12 and ½λ̃1; λ̃2�M ¼ λ̃12, where λ12 and λ̃12
depend on

Y�
12¼Y�

2 ∂�Y
�
1 −Y�

1 ∂�Y
�
2 ; σ12¼0; Hð0Þ

�12¼0: ð3:23Þ

The residual symmetry algebra is given by the direct sum
of two Witt algebras generated by Yi, an Abelian sector
generated by σ and another one generated by the boundary

vector Hð0Þ
i .

If we introduce the following Fourier mode expansions
of the symmetry parameters

Y� ∼ einx
�
; σ∼ eipx

þ
eiqx

−
; Hð0Þ

� ∼ eipx
þ
eiqx

−
; ð3:24Þ

with n; p; q∈Z, we gather

4These are obtained using ξμ ¼ 1
2
eBμðλB − λ̃BÞ, see [18].

5It is analogous to its metric counterpart: the residual diffeo-
morphism algebra is closed under the modified Lie bracket of two
asymptotic Killing vectors [88,89]

½ξ1; ξ2�M ≡ ½ξ1; ξ2� − δξ1ξ2 þ δξ2ξ1; ð3:21Þ

where ½ξ1; ξ2� is the standard Lie bracket. The modified bracket
takes into account the dependence of the vectors on fields that
transform themselves under the symmetry.
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½λY�
n ; λY

�
m �M ¼ iðn −mÞλY�

nþm;

½λY�
n ; λY

∓
m �M ¼ ½λY�

n ; λσpq�M ¼ ½λY�
n ; λ

Hð0Þ
�

pq �M ¼ 0;

½λσpq; λσrs�M ¼ 0; ½λσpq; λH
ð0Þ
�

rs �M ¼ 0;

½λH
ð0Þ
�

pq ; λ
Hð0Þ

�
rs �M ¼ 0; ½λH

ð0Þ
�

pq ; λ
Hð0Þ

∓
rs �M ¼ 0: ð3:25Þ

In these commutation relations, for example, we have
denoted by λY

�
n the gauge parameters where we turned

on only Y� expanded as in (3.24) and set the other

parameters σ and Hð0Þ
� to zero.

2. Surface charges

Using (2.4), the variations of the boundary data under the
above transformations read

δðλ;λ̃Þl� ¼ Y�
∂�l� þ 2l�∂�Y� −

1

2
∂
3
�Y

�;

δðλ;λ̃Þϕ ¼ σ; δðλ;λ̃Þk
ð2nÞ
� ¼ hð2nÞ� ; ð3:26Þ

with n∈N. In particular, we have that

δðλ;λ̃ÞK
ð0Þ
� ¼ Hð0Þ

� : ð3:27Þ

We summarize the covariant phase space formalism applied
to Chern-Simons theories in Appendix A 2. Following [19],
the surface charges evaluated at fixed value of the time
coordinate t are given by

δQλ ¼ −
κ

2π

Z
2π

0

dθ tr
�
λδAθ

�
;

δQ̃λ̃ ¼ −
κ

2π

Z
2π

0

dθ tr
�
λ̃δÃθ

�
; ð3:28Þ

where κ ¼ 1=4G. We provide in (A24) a derivation of this
result. In three-dimensional WFG gauge, the symplectic
structure does not diverge and the charges are thus finite in
the limit ρ → 0. Substituting the gauge parameters, one
obtains, up to integration by parts,

δQΛ ¼ lim
ρ→0

�
δQλ − δQ̃λ̃

�

¼−
κ

2π

Z
2π

0

dθ

�
δlþYþ− δl−Y− − δϕHð0Þ

t þ σδKð0Þ
t

�
;

ð3:29Þ

where we denoted Λ ¼ ðλ; λ̃Þ. Note that we have used
A� ¼ 1

2
ð�At þ AθÞ in this computation. The above varia-

tion is manifestly integrable for δσ ¼ δHð0Þ
� ¼ δY� ¼ 0,

therefore the total surface charges are

QΛ ¼ −
κ

2π

Z
2π

0

dθ
h
lþYþ − l−Y− − ϕHð0Þ

t þ σKð0Þ
t

i
:

ð3:30Þ

The charge associated to Y is conserved. This is not the case

for the charges associated to σ and Hð0Þ
t , as expected as we

did not impose any conditions on the conformal factor of
the boundary metric and the Weyl connection.
We would like to offer some remarks. Firstly, the fields

associated with the higher radial orders of theWeyl structure

kð2pÞi , for p∈N0, and the component Kð0Þ
ϕ do not contribute

to the asymptotic charges. This means that they are pure
gauge and so we can set them to zero by a trivial diffeo-
morphism. Hence, we are allowed to reduce the asymptotic
expansion of the Weyl connection to the leading order
only, which in turns makes the metric expansion finite. In
this way, we recover the gauge (2.17) where one can
perform a radial gauge-fixing as in (2.9). On the other
hand, using (2.22) to further fix the gauge fromWFG to FG
would set to zero a physical charge. This does not contradict
the FG theorem, which states that the FG gauge is always
reachable, and that could happen at the expenses of setting
some charges to zero. This is one of the main results of this
paper, that proves how the complete FG gauge-fixing is
exploiting a charged diffeomorphism, and thus it is restrict-
ing the set of physical states. Notice therefore that, in the
holographic setup where this charge is nonvanishing, the
associated current is physical. It was important to perform
the asymptotic symmetry analysis to reply to this question,
raised in [30,31].
Secondly, in the conformal parametrization (3.4), the

Ricci scalar associated to the boundary metric reads as

Rð0Þ ¼ −8e−2ϕ∂þ∂−ϕ; ð3:31Þ

while the Weyl curvature is given by

fð0Þ ¼ 1

2
Eijfð0Þij ¼ 2e−2ϕ

�
∂−k

ð0Þ
þ − ∂þkð0Þ−

�
: ð3:32Þ

In the last expression, we have used (2.34) and introduced

Eij ¼
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
εij with ε01 ¼ þ1 and EikEkj ¼ δij. Then,

imposing the additional constraints

kð0Þ� ðxþ; x−Þ ¼ ∂�ζðxþ; x−Þ;
ϕðxþ; x−Þ → ϕðxþ; x−Þ þ ζðxþ; x−Þ; ð3:33Þ

we set fð0Þ ¼ 0, and we match the CS boundary conditions
(3.13) studied in [54]. Nonetheless, in the latter a different
framework has been considered, where the main focus was
to obtain a smooth flat limit of the bulk metric, attainable by
focusing on a relaxed Bondi gauge. The main difference is
that in WFG the boundary Weyl scalar curvature contributes
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to the charges,6 while in the relaxed Bondi gauge it is the
boundary Weyl curvature that is charged, instead. We leave
a better understanding of the link between the different
gauge relaxations in three dimensions for future work.
Finally, we notice that ϕ andKð0Þ

t are Heisenberg partners

in the sense that δξϕ ¼ σ and δξK
ð0Þ
t ¼ Hð0Þ

t . This implies
that they purely come from a corner term in the symplectic
potential, as they can be written as dC, see (A20). In Sec. IV
we discuss different variational principles switching on or

off these charges. This is the manifestation that ϕ and Kð0Þ
t

are kinematic charges, unlike the charges associated to l�
that are constrained due to Einstein equations.

3. Charge algebra

As a last step in this analysis, we show that, under the
Poisson bracket, the charges form a projective representa-
tion of the asymptotic symmetry algebra (3.25)

fQΛ1
; QΛ2

g ¼ δΛ2
QΛ1

¼ Q½Λ1;Λ2�M þK½Λ1;Λ2�; ð3:34Þ

where K½Λ1;Λ2� is the central extension satisfying the
2-cocycle condition

K½½Λ1;Λ2�M;Λ3�þK½½Λ2;Λ3�M;Λ1�þK½½Λ3;Λ1�M;Λ2�¼0:

ð3:35Þ

Indeed, we obtain that the Witt ⊕ Witt part gives rise to a
double copy Virasoro algebra with

K½ΛY�
1 ;ΛY�

2 �¼−
κ

4π

Z
2π

0

dθ
�
Yþ
1 ∂

3þY
þ
2 þY−

1 ∂
3
−Y−

2

�
; ð3:36Þ

while the other parts are promoted to affine algebras with
central extensions

K½Λσ
1;Λ

Hð0Þ
�

2 � ¼ −
κ

2π

Z
2π

0

dθσ1H
ð0Þ
�2: ð3:37Þ

In terms of the mode expansions (3.24), the charge algebra
(3.34) can be written

fQΛY�
n
; QΛY�

m
g ¼ iðn −mÞQΛY�

nþm
− im3

c
12

δnþm;0;

fQΛσ
pq
; Q

Hð0Þ
�

Λrs
g ¼ c

3
e2iðqþsÞtδpþr;qþs; ð3:38Þ

where c ¼ 3=2G is the Brown-Henneaux central charge [7].
Note that we find the same time dependency in the central
charge as in [50]. The charge algebra of the phase space is
then a double copy of the Virasoro algebra in direct sum
with an Heisenberg algebra. This is precisely the same

algebra appearing in the Bondi-Weyl gauge [53] and in the
analysis of generic hypersurfaces [47,55,90].

IV. HOLOGRAPHY AND VARIATIONAL
PRINCIPLE

In this section, we discuss the holographic renormaliza-
tion of the action principle in second-order formalism. We
propose different prescriptions of finite counterterms yield-
ing different expressions for the holographic stress tensor
and the holographic Weyl current, as well as for the
charges. In particular, we show that the above discussion
in first-order formalism corresponds to a specific choice of
counterterms in the action.

A. Holographic renormalization

1. Variational principle

In previous works, the holographic renormalization in
the WFG gauge has been performed using dimensional
regularization [30,31]. In this section, we revisit this
problem using the cutoff regularization. Starting from
the WFG solution space (2.16), the renormalized action is

Sren ¼
1

16πG

Z
d3xðRþ 2Þ þ 1

8πG

Z
d2x

ffiffiffiffiffiffi
−γ

p ðK − 1Þ

þ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−γ

p
kiγijkj þ

ρ2 logρ
16πG

Z
d2x

ffiffiffiffiffiffi
−γ

p
R̂ð0Þ;

ð4:1Þ

where we denote nμ the normal- to constant-ρ hyper-
surfaces nμ ¼ − ffiffiffiffiffiffi−γp

δρμ, γμν ¼ gμν − nμnν the induced met-
ric, and K ¼ gμν∇μnν the extrinsic curvature. The first term
in the right-hand side of (4.1) is the Einstein-Hilbert bulk
action, the second is the Gibbons-Hawking-York boundary
term, and the last two terms are boundary counterterms
ensuring the finiteness of the on-shell action in WFG
gauge. The variation of the on-shell action yields

δSren ≈
Z

d2xΘren; ð4:2Þ

with, following the prescription [61,71–73] (see also
Appendix A 2), the renormalized symplectic potential7

Θren ¼ lim
ρ→0

�
Θρ

EH þ δ

�
1

8πG
ffiffiffiffiffiffi
−γ

p ðK þ 1Þ

þ 1

16πG
ffiffiffiffiffiffi
−γ

p
kiγijkj

�
− ∂iϑ

i
GHY

�
: ð4:3Þ

6The two-dimensional Weyl scalar curvature differs from the
Levi-Civita scalar curvature only by total derivatives [30].

7In an abuse of vocabulary, we refer to Θ as the symplectic
potential, although at this stage it should be called presymplectic,
since it is degenerate.
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Here, Θμ
EH ¼

ffiffiffiffi−gp
16πG ½∇νðδgÞμν −∇μðδgÞνν� is the Einstein-

Hilbert symplectic potential, and limρ→0ϑ
i
GHY ¼

1
16πG

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
δðhijð0Þkð0Þj Þ is the Gibbons-Hawking-York sym-

plectic potential. Explicitly, we have

Θren ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p �
1

2
Tijδhð0Þij − Jiδkð0Þi

�
ð4:4Þ

where the holographic stress tensor Tij and the holographic
Weyl current Ji read as8

Tij ¼ −
2ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p δSren

δhð0Þij

≈
1

8πG

�
hijð2Þ þ

1

2
hijð0ÞR

ð0Þ þ ∇̂ði
ð0Þk

jÞ
ð0Þ

�
;

ð4:5Þ

Ji ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p δSren

δkð0Þi

≈
1

8πG
kið0Þ: ð4:6Þ

Notice the presence of the ∇̂ði
ð0Þk

jÞ
ð0Þ term in the holographic

stress tensor compared to the usual Brown-York expression
in FG gauge. In the holographic dictionary, the renormal-
ized symplectic potential (4.4) has the standard form
VEV × δðsourcesÞ. The sources correspond to the boun-
dary geometry which, in WFG gauge, is provided by the

conformal class of boundary metric hð0Þij and the Weyl

connection kð0Þi . As a result, in addition to the VEV of the

holographic stress tensor associated with the source hð0Þij ,
there is a VEV for the Weyl current operator Ji associated
with the source kið0Þ. The unusual feature, which appears in

three bulk dimensions, is that the Weyl current is given on
shell by the Weyl connection (4.6).

2. Holographic Ward identities

As discussed in Sec. III B, the residual gauge diffeo-
morphisms of the WFG gauge are given by ξρ ¼ ρωþ
Oðρ3Þ and ξi ¼ Yi þ ρ2ζi þOðρ4Þ at leading order. Under
these residual diffeomorphisms, the boundary geometry
transforms as

δðY;ω;ζÞh
ð0Þ
ij ¼ LYh

ð0Þ
ij − 2ωhð0Þij ;

δðY;ω;ζÞk
ð0Þ
i ¼ LYk

ð0Þ
i − ∂iω − 2ζi; ð4:7Þ

while the holographic stress tensor and Weyl current
transform as9

δðY;ω;ζÞTij ¼ LYTij þ 4ωTij −
1

8πG
∇̂ði

ð0Þ∂
jÞω

þ 1

8πG
hijð0Þ∇̂k

ð0Þ∂kω −
1

2πG
kðið0Þζ

iÞ

þ 1

4πG
hijð0Þk

ð0Þ
k ζk; ð4:8Þ

δðY;ω;ζÞJi ¼ LYJi þ 2ωJi −
1

8πG
∂
iω −

1

4πG
ζi: ð4:9Þ

The holographic Ward identities are obtained by evaluating
the variation of the on-shell action (4.2) on the above
symmetries. Under the action of boundary diffeomor-
phisms, we have

δYSren ¼ −
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p �
1

2
TijδYh

ð0Þ
ij − JiδYk

ð0Þ
i

�

¼ −
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
Yj

�
−∇ð0Þ

i Ti
j þ Jifð0Þij

þ∇ð0Þ
i Jikð0Þj

�
ð4:10Þ

where fð0Þij ¼ ∇ð0Þ
i kð0Þj −∇ð0Þ

j kð0Þi is the Weyl curvature
corresponding to the leading order of (2.34). To obtain
the second equality, we used the explicit transformation of
the sources in (4.7) under boundary diffeomorphisms and
integrated by parts to isolate the symmetry parameter Yj.
Einstein equations imply that this expression vanishes

∇ð0Þ
i Ti

j ¼ Jifð0Þij þ∇ð0Þ
i Jikð0Þj ; ð4:11Þ

which yields the invariance of the renormalized on-shell
action under boundary diffeomorphisms. Equation (4.11)
can then be interpreted as the holographic Ward identity
associated with boundary diffeomorphisms. Notice the
presence of the additional terms in the right-hand side
due to the Weyl connection compared to the usual covariant
conservation of the stress tensor.
The variation of the action under boundary Weyl trans-

formations is

δωSren ¼ −
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p �
1

2
Tijδωh

ð0Þ
ij − Jiδωk

ð0Þ
i

�

¼
Z

d2x
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
ω
�
Ti

i þ ∇̂ð0Þ
i Ji

�

¼ c
24π

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
ωR̂ð0Þ: ð4:12Þ

In the last equality, we used Einstein equations to make the
Weyl-Ricci scalar appear. This shows that the renormalized
on-shell action is not invariant under Weyl, which unveils
the presence of a holographic Weyl anomaly [91,92].

8We denote by the round brackets the symmetrization on the
corresponding indices, AðijÞ ¼ 1

2
ðAij þ AjiÞ.

9The currents Ji and Ti
j are by construction of weight þ2, the

dimension of the boundary. Moreover, one has ∇ð0Þ
i Ji ¼ ∇̂ð0Þ

i Ji.
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Thus, the anomalous Ward identities associated with Weyl
rescalings give

Ti
i þ ∇̂ð0Þ

i Ji ¼ c
24π

R̂ð0Þ: ð4:13Þ

Plugging (4.13) into (4.11), we find a suggestive rewriting
of the Ward identity for boundary diffeomorphisms

∇̂ð0Þ
i Ti

j ¼ Jifij þ
c

24π
R̂ð0Þkð0Þj : ð4:14Þ

As we shall now discuss, the symmetries ζi are pure gauge
for the phase space obtained from the holographic renorm-
alization of the action (4.1), and therefore do not lead to
additional holographic Ward identities.

3. Charges

We compute the charges using the covariant phase
space formalism [8,36,38,93,94] (see Appendix A 2 and,
e.g., [77,95–98] for recent reviews). First, we contract the
renormalized symplectic current

ωren ¼ δΘren ¼ −
1

2
δð

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
TijÞ ∧ δhð0Þij

þ δð
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
JiÞ ∧ δkð0Þi ð4:15Þ

with the symmetries encoded in the variations (4.7)
and (4.8). Then, to compare with the analysis of
Sec. III B in Chern-Simons formulation, we choose the
conformal gauge (3.4) for the boundary metric. After the
redefinitions (3.11) and (3.16), assuming δσ ¼ δY ¼ 0, we
find that the canonical charge is finite and given by

Qξ ¼
Z

qξ ¼
1

8πG

Z
2π

0

dθ½Yþlþ − Y−l− þ ∂tσϕ− σ∂tϕ�:

ð4:16Þ

Notably, the charges (4.16) match precisely with the
expressions found in the FG gauge in [50]. In contrast
with the analysis of Sec. III B, the charge associated with
the symmetry ζi vanishes, which implies that this residual
gauge diffeomorphism is now pure gauge and can be
quotiented out. Note that this result holds for arbitrary
boundary metric and not only in the conformal gauge. We
observe that the charge algebra is unaffected, and again
given by two copies of the Virasoro algebra in direct sum
with a Heisenberg algebra. However, here this Heisenberg
factor is realized solely by the zero mode of the conformal
factor and its first derivative, while in (3.30) the
Heisenberg pair comes from different boundary fields.
Therefore, the phase space controlled by the action after

holographic renormalization (4.1) differs from the one in
the Chern-Simons formulation discussed in Sec. III B. In
this framework, theWeyl connection can be consistently set

to zero. The holographic interpretation is that there are no
observables that are sensitive to the latter, and thus theWeyl
covariantization of the boundary geometry can be achieved
without enlarging the physical phase space. On the other
hand, this is not the case in Sec. III, where there is a
nonvanishing charge, and we would like to understand how
to derive this result in second-order formulation, to gain a
better holographic perspective.
It is well known that the renormalized action (4.1) is not

uniquely defined: one can add finite counterterms. As we
shall now explain, a judicious choice of boundary or corner
counterterms will allow one to recover the phase space
found in the Chern-Simons formulation.

B. Boundary counterterm

We now connect the holographic discussion in the WFG
gauge presented in Sec. IVAwith the results of Sec. III B. In
the holographic renormalization procedure, one can always
add a finite boundary counterterm to the action (4.1) as

S̄ren ¼ Sren þ S∘; S∘ ¼
Z

d2xL∘½hð0Þij ; k
ð0Þ
i � ð4:17Þ

where L∘½hð0Þij ; k
ð0Þ
i � is a boundary Lagrangian involving the

boundary geometry. Defining

Tij
o ¼ −

2ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p δSo

δhð0Þij

; Jio ¼
1ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p δSo

δkð0Þi

ð4:18Þ

and using the standard procedure to treat boundary
terms [61,71–73], the variation of the renormalized on-
shell action reads as

δS̄ren ≈
Z

d2xΘ̄ren ð4:19Þ

with

Θ̄ren ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p �
1

2
T̄ijδhð0Þij − J̄iδkð0Þi

�
: ð4:20Þ

The new currents are given by T̄ij ¼ Tij þ Tij∘ and
J̄i ¼ Ji þ Ji∘. Choosing the boundary term

L∘ ¼ lim
ρ→0

�
1

16πG
kiγij∂j

ffiffiffiffiffiffi
−γ

p �
¼ 1

16πG
kð0Þi hijð0Þ∂j

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
;

ð4:21Þ

we find explicitly

T̄ij ¼ Tij þ Jði∂jÞ
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
þ 1

2
hij∇kJk;

J̄i ¼ Ji þ 1

16πG
∂
i log

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
: ð4:22Þ

SYMMETRIES AND CHARGES IN WEYL-FEFFERMAN-GRAHAM … PHYS. REV. D 108, 126003 (2023)

126003-11



Notice that the boundary Lagrangian (4.21) is not covariant
with respect to boundary diffeomorphisms. However, the
phase space associated with this choice allows one to
reproduce the results of the Chern-Simons formulation in
Sec. III B. Indeed, starting from (4.20), one reproduces
exactly the charge expressions (3.30) after imposing the
conformal gauge condition (3.4) and performing the rede-
finitions (3.11) and (3.16). In particular, with this choice of
counterterms one finds new symmetries compared to the FG
gauge, as explained in the CS, Sec. III.
We see therefore that there is a trade-off: one can promote

the Weyl connection to a physical source at the expense of
introducing a noncovariant boundary Lagrangian. In this
framework, we are reproducing the holographic aspects
explored in [30,31], where it was proposed that the Weyl
connection should be treated as an independent source. In
this setup, the extra current should be added to the boundary
partition function, and thus there will be nontrivial corre-
lation functions involving it. This is an open road to explore
further.

C. Corner counterterm

Interestingly, there is another procedure to extract the
symplectic potential from the variational principle [56],
which yields the charges of Sec. III B. This procedure
amounts to including corner contributions of the bulk
symplectic potential. Concretely the renormalized sym-
plectic potential is

Θ̃ren ¼ lim
ρ→0

�
Θρ

EH þ ∂i

Z
dρΘi

EH þ δLb

�
ð4:23Þ

where Lb are the boundary Lagrangians (that can include
corner Lagrangians). This differs from the prescriptions
applied in Secs. IVA and IV B for which C defined in
Eq. (A20) is equal to minus the symplectic potentials
associated to the boundary Lagrangians.
Let us describe the choice of boundary and corner

Lagrangians for the case of interest. We add a finite corner
term to the renormalized action (4.1):

S̃ren ¼ Sren þ SC; SC ¼
Z

d2x∂iLi
C½hð0Þij ; k

ð0Þ
i � ð4:24Þ

where Li
C½hð0Þij ; k

ð0Þ
i � is a corner Lagrangian involving the

boundary geometry. We take

Li
C ¼ lim

ρ→0

�
−

1

16πG
ffiffiffiffiffiffi
−γ

p
γijkj

�
¼ −

1

16πG

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
hijð0Þk

ð0Þ
j :

ð4:25Þ

This corner Lagrangian (4.25) has the advantage of being
covariant with respect to boundary diffeomorphisms. The
corner contribution of the bulk symplectic potential ΘEH

turns out to be δ-exact, limρ→0∂iΘi
EH ¼ δð− 1

16πG×

log ρ
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
R̂ð0ÞÞ, precisely cancelling the log-term con-

tribution from the boundary Lagrangians. Then the renor-
malized symplectic term is

Θ̃ren ¼ lim
ρ→0

�
Θρ

EH þ ∂i

Z
dρΘi

EH þ 1

8πG
δ

� ffiffiffiffiffiffi
−γ

p ðK þ 1Þ þ 1

2

ffiffiffiffiffiffi
−γ

p
kiγijkj þ

ρ2 log ρ
2

Z
d2x

ffiffiffiffiffiffi
−γ

p
R̂ð0Þ −

1

2
∂ið ffiffiffiffiffiffi

−γ
p

γijkiÞ
��

¼
ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p �
−
1

2
T̃ijδhð0Þij þ JiδKð0Þ

i

�
; ð4:26Þ

where

T̃ij ¼ Tijþ 1

2
hijð0Þ∇̂ð0Þ

k Jk; Kð0Þ
i ¼ kð0Þi −

1

2
∂i ln

ffiffiffiffiffiffiffiffiffiffiffi
−hð0Þ

p
:

ð4:27Þ

These transform under the residual symmetries ξρ ¼
ρωþOðρ3Þ and ξi ¼ Yi þ ρ2ζi þOðρ4Þ as

δðY;ω;ζÞK
ð0Þ
i ¼ LYK

ð0Þ
i − 2ζi −

1

2
∂i∂jYj; ð4:28Þ

δðY;ω;ζÞT̃ij ¼ LYT̃ij þ 4ωT̃ij −
1

8πG

�
∇̂ði

ð0Þ∂
jÞω

−
1

2
hijð0Þ∇̂k

ð0Þ∂kωþ 4kðið0Þζ
iÞ

þ hijð0Þ

�
∇̂ð0Þ

k ζk − 2kð0Þk ζk
��

: ð4:29Þ

With this prescription, the holographic interpretation
of (4.26) as VEV × δðsourcesÞ leads to the identification

of hð0Þij and Kð0Þ
i (called Weyl source from now on) as

sources. However, the latter is not a Weyl connection.
Rather, it has been dressed by a Weyl pure-gauge shift, so
that it is now Weyl invariant. It would be interesting to
study the holographic repercussions of this choice, where
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the two sources transform independently of each other,
similar to what happens when adding a Uð1Þ gauge field in
the bulk—and indeed one could perhaps gain insights by
treating Einstein-Maxwell bulks with this analogy. In
particular, the transformation of the Weyl source is now
reminiscent of a one-form symmetry, and thus, from the
dual perspective, there could be a Wilson line associated to
it. Understanding this from the intrinsic boundary field-
theoretical perspective is a thrilling open question.
Repeating the same manipulations as above in conformal

gauge, the phase space associated with the symplectic
potential (4.26) reproduces exactly the result (3.30) of the
charge in the first-order formulation. Finally, since the
boundary terms in the action and the symplectic corner
terms only contribute to δ-exact terms in the symplectic
potential (4.26), the symplectic current coincides precisely
with the Einstein-Hilbert symplectic current. Therefore, the
charges obtained here and in the first-order formulation
coincide with those obtained in the covariant phase space
formalism, without renormalization or any modification
related to boundary terms in the action.

V. CONCLUSIONS

In this work, we have argued that the Weyl-Fefferman-
Graham gauge is more suitable than the standard Fefferman-
Graham gauge for two reasons: (i) theWeyl rescalings at the
boundary are induced by purely radial bulk diffeomor-
phisms (2.26). This contrasts with the Weyl rescalings in
Fefferman-Graham gauge which necessarily involve a
mixing with the transverse components. As a consequence,
each order in the radial expansion transforms with a well-
defined Weyl weight, see Eq. (2.38). (ii) The Weyl-
Fefferman-Graham gauge induces the full Weyl geometry
(i.e. a conformal class of metrics together with a Weyl
connection) at the boundary. This allows us to exploit the
full Weyl covariance of the boundary theory. In particular,
the Weyl anomaly derived in (4.12) is Weyl covariant since
it involves the Weyl-Ricci scalar.
To obtain the WFG gauge, one has to relax the FG gauge

and allow fluctuations of kiðρ; xÞ in (2.16) on the phase
space. Relaxing this gauge condition implies the appearance
of a larger set of independent residual gauge symmetries in
the subleading order of the transverse bulk diffeomor-
phisms, ζ� in (3.17). The novelty of our work is to compute
the charges associated with the residual diffeomorphisms of
the WFG gauge. We have shown that, for a suitable choice
of symplectic structure, these additional residual sym-
metries are nonvanishing and therefore carry physical
information. These results were discussed both in first-
order Chern-Simons formulation of gravity, as well as in
second-order metric formulation. The new charge associ-
ated to the Weyl connection combines with the Weyl charge
to form a Heisenberg algebra. These two charges are then
purely corner charges unconstrained by the equations of
motion. The derivation of the symplectic structure from the

renormalized action has also been provided. These results
confirm previous works [42,43,46–49,52–55] advocating
that, in presence of boundaries, the complete gauge-fixing
might eliminate potentially interesting physical degrees of
freedom.
Investigating the implications of these additional physi-

cal symmetries for the dual field theory is an interesting
question for future endeavors. A first glance revealed that
the holographic interpretation turned out to be polyvalent:
either the Weyl connection is a new source, but there is a
noncovariant boundary Lagrangian, or the new source is a
Weyl-invariant combination of the Weyl connection and
the metric, and the boundary Lagrangian employed is
covariant. We have commented on both instances, and we
in particular noted that the Weyl connection and the Weyl-
source transformation laws underHð0Þ are reminiscent of a
one-form symmetry. When the associated charge is non-
vanishing, then there are physical states at the boundary
sensitive to this operator, which can be interpreted as a
Weyl Wilson line, and would be a primer in the realization
of higher form symmetries from bottom-up holography.
We refer e.g. to [48,49,54] for a holographic interpretation
of symmetries obtained beyond the complete gauge-
fixing.
While the analysis here has been performed in three

dimensions of bulk, we expect similar results to hold for
higher dimensions. For instance, it would be worth extend-
ing the systematic phase space analysis provided in [51] for
the WFG gauge. While in three-dimensional bulks the
boundary is always conformally flat and thus the full
conformal isometries group is realized, in higher dimen-
sions there are situations in which the boundary is not
conformally flat (e.g. three-dimensional boundaries with
nonvanishing Cotton tensor), and thus the conformal
isometries group is smaller. Nonetheless, the dual theory
enjoys Weyl covariance, because this symmetry arises
solely from the fact that the boundary sits at conformal
infinity. This means that we are dealing in these cases with
a conformal field theory on curved spaces with Weyl
symmetry, i.e., a Weyl field theory. Extending our analysis
to higher dimensions could potentially shed light on these
theories, of which little is known.
As a general statement, we have shown that new charges

might arise from boundary Lagrangians. Therefore, this
raises the important question of classifying new charges
associated to choices of symplectic spaces. As a general
guideline, one could argue that the more physical charges
the better, as this would lead to larger algebras that are more
powerful to organize observables of the theory. This
specific example treated here is therefore opening the door
to a more fundamental problem, which is the classification
of charges steaming from partial gauge-fixings. While this
is an interesting avenue in the theory of asymptotic
symmetries, we foresee far-reaching repercussions in both
AdS and flat holography, yet to be unveiled.
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APPENDIX A: CONVENTIONS

1. Chern-Simons formulation

In this appendix, we recall the salient features of the
Chern-Simons formulation of three-dimensional anti-de
Sitter (AdS3) Einstein gravity. This allows us to fix the
notations used in the main body of the paper. The isometry
algebra of AdS3 is the soð2; 2Þ algebra

½MB;MC� ¼ ϵBCDMD; ½MB;PC� ¼ ϵBCDPD;

½PB; PC� ¼
�
G
l

�
2

ϵBCDMD; ðA1Þ

where PB andMB denote, respectively, the transvection and
Lorentz generators. The latter are related to the customary
Lorentz generators as

MB ¼ 1

2
ϵBCDMCD: ðA2Þ

In the above algebra, G is Newton’s constant and l denotes
the AdS radius while we choose the convention ϵ012 ¼ 1
for the Levi-Civita symbol. Labeling by μ; ν;… the bulk
base-manifold indices and introducing the soð2; 2Þ-valued
differential one-form

A ¼
�
1

G
eμBPB þ ωμ

BMB

�
dxμ; ðA3Þ

where eμB is the bulk dreibein and ωμ
B is its associated

dualized spin connection, one can rewrite the three-
dimensional Einstein-Hilbert action as a CS action [17,18]

SEH ¼ 1

16π

Z
M

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ðA4Þ

The operator d is the exterior derivative on the manifold
M ¼ AdS3, such that d2 ¼ 0. In this expression we
introduced the Killing metric

TrðMBMCÞ ¼ TrðPBPCÞ ¼ 0; TrðMBPCÞ ¼ ηBC; ðA5Þ

with ηBC the Minkowski metric whose signature is
ð−;þ;þÞ, and used the Cartan equation

deB þ ϵBCDωC ∧ eD ¼ 0: ðA6Þ

For negative cosmological constant, Λ ¼ −l−2 < 0 (in the
main body of the paper we set l ¼ 1), one can take
advantage of the isomorphism soð2; 2Þ ≅ slð2;RÞ ⊕
slð2;RÞ to rewrite (A4) as

SEH ¼ SCS½A� − SCS½Ã�; ðA7Þ

with

SCS½A� ¼
κ

4π

Z
M

tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
ðA8Þ

where κ ¼ l=4G, and a similar expression holds for Ã. In the
latter we have introduced the slð2;RÞ–valued gauge con-
nections A ¼ ABJB, where we introduced the slð2;RÞ
generators

½JB; JC� ¼ ϵBC
DJD; trðJBJCÞ ¼

1

2
ηBC: ðA9Þ

In terms of the soð2; 2Þ generators, they can be written as

JB ¼ 1

2

�
MB þ l

G
PB

�
: ðA10Þ

The dreibein and the spin connection are related to the CS
forms A and Ã via

AB ¼ ωB þ 1

l
eB; ÃB ¼ ωB −

1

l
eB: ðA11Þ

These are the main quantities that we scrupulously analyze
in the paper.

2. Covariant phase space formalism

In Sec. III, we determined the solution space, the asymp-
totic symmetries, and the associated corner charges in the CS
formulation. To do this,we could have usedmethods from the
Hamiltonian approach as in, e.g., [19–21,34,93,95,99–102].
Inspired by the metric formulation, we instead used the
covariant phase space formalism. The latter was introduced
in [103–105], refined in [8,36,38,94],10 and it focuses on the

10See, e.g., [77,96,98] for pedagogical reviews.
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Lagrangian approach. Its main idea is to put together
spacetime and phase space.
The differentiable manifold that we consider is the three-

dimensional AdS spacetime,M ¼ AdS3. In Appendix A 1,
we have introduced the exterior derivative, d, on this
manifold. We denote ι its interior product. The Lie
derivative along the flow of a diffeomorphism ξ∈TM is

Lξ ¼ dιξ þ ιξd: ðA12Þ

One can put together this calculus with the one on field
space Γ. We denote by δ and I the exterior derivative and
the interior product on the latter, respectively, with δ2 ¼ 0.
Given a vector field V ∈TΓ, we analogously have

LV ¼ δIV þ IVδ: ðA13Þ

The CS Lagrangian form can be derived from its
associated action principle (A8),

SCS ¼
Z
M
L; L¼ κ

4π
tr

�
A∧ dAþ2

3
A∧A∧A

�
: ðA14Þ

An arbitrary field variation A → Aþ δA of the latter yields,
after iterative applications of the inverse Leibniz rule,

δL ¼ ðeomÞδAþ dΘ; ðA15Þ

where (eom) denotes the equations of motion of the theory

ðeomÞ ¼ dAþ A ∧ A ≈ 0; ðA16Þ

and the symbol ≈ indicates that we are on-shell of the
equations of motion. Here, Θ is the local symplectic
potential form

Θ ¼ −
κ

4π
trðA ∧ δAÞ: ðA17Þ

We define the local symplectic two-form as

ω ¼ δΘ ¼ −
κ

4π
trðδA ∧ δAÞ: ðA18Þ

This local expression can be integrated on an arbitrary
Cauchy slice Σ ⊂ M to give the symplectic two-form

Ω ¼
Z
Σ
ω: ðA19Þ

In particular, we consider that the 3-manifold M ¼ R × Σ
has the topology of a cylinder, foliated by the spatial
slices, such that the boundary of the 2-manifold Σ is a
circle, ∂Σ ¼ S1.
Specifying a bulk Lagrangian is not enough to com-

pletely determine the theory. Indeed, different choices of

boundary Lagrangians give different associated charges. In
the following, we keep using the language of ambiguities,
for historical reasons, with the understanding that different
choices of the latter truly imply different physical theories,
as indeed our holographic analysis reveals. The symplectic
potential possesses two types of ambiguities in its defi-
nition (A15), which do not affect the equations of motion,

Θ → Θþ δB − dC: ðA20Þ

Adding a boundary term to the bulk Lagrangian
L → Lþ dB leads to the first type of ambiguity (B) whose
contribution to the symplectic form ω vanishes since
δ2 ¼ 0. The nilpotent aspect and the definition of Θ as a
boundary term in δL yields the second type of ambiguity
(C). It is worth noting that the latter alters ω,

ω → ω − δdC ¼ ωþ dδC≕ωþ dωC; ðA21Þ

reflecting our ignorance on how to select the boundary
terms ωC, called corner terms, in the symplectic form.
This is related to the corner proposal [56–68]. Ambiguities
can be used to renormalize the symplectic potential
whenever the latter diverges as one approaches the
boundary [56,71,73,75,76,92,106–114], and can be further
used to restore integrability [53,115]. It turns out that
such a renormalization procedure is always possible at
the level of the symplectic potential as recently shown
in [56,110,113].
In the main text, we are using two different prescriptions

to compute the charges. The first one is due to Compère and
Marolf [71]. It takes B to be the boundary Lagrangians that
are used for the renormalization of the action and C to be
minus the boundary symplectic potential associated to B.
The other prescription [56] also takes the same B but C to
be the corner contributions of the bulk symplectic potential,
and hence solely relies on the bulk symplectic potential to
compute the charges.
In the presence of gauge symmetries, which is the case

we are interested in, Noether’s second theorem applies,
which associates a codimension-2 conserved quantity to
a given local symmetry. The gauge symmetry of the CS
field is

δλA ¼ IVλ
δA ¼ dλþ ½A; λ�: ðA22Þ

Applying Noether’s second theorem to this symmetry

IVλ
Ω ¼ −δQλ; ðA23Þ

one can obtain the associated on-shell corner charges

δQλ ≈
Z
S1
δqλ; δqλ ¼ −

κ

2π
trðλδAÞ: ðA24Þ
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In three dimensions, we can always find integrable slicings
for the charges [47,50,52,53,116,117]. This is related to the
fact that, in this case, there is no propagation of local
degrees of freedom.

APPENDIX B: SECOND COPY

In this appendix, we collect the main results of the
second copy of the CS fields, since in Sec. III we
exclusively focus on the first copy in order to compute
the asymptotic symmetries and the charges. The bulk CS
connections using our boundary conditions are

Ãρ¼
1

ρ
L0þ2

ffiffiffi
2

p
ρ2e−ϕ

�
kð2Þ− L1−kð2Þþ L−1

�
þOðρ3Þ; ðB1aÞ

Ã− ¼ −
1

ρ

ffiffiffi
2

p
eϕL−1 −

�
2kð0Þ− − ∂−ϕ

�
L0

−
ffiffiffi
2

p
ρe−ϕhð2Þ−−L1 − 2ρ2kð2Þ− L0 þOðρ3Þ; ðB1bÞ

Ãþ ¼ −∂þϕL0 þ
ffiffiffi
2

p
ρe−ϕ∂þKð0Þ

− L1 þOðρ3Þ: ðB1cÞ

If we expand the gauge parameters of the second
copy as

λ̃ðρ; xþ; x−Þ ¼
Xþ1

B¼−1
ϵ̃Bðρ; xþ; x−ÞLB; ðB2Þ

one obtains that

ϵ̃−1 ¼ −
ffiffiffi
2

p

ρ
eϕY− þOðρ3Þ; ðB3aÞ

ϵ̃1 ¼ ρffiffiffi
2

p e−ϕ
�
∂
2
−Y− þ 2Hð0Þ

− − 2

�
l−Y− − ðKð0Þ

− Þ2Y−

− Kð0Þ
− ∂−Y−

��
þOðρ3Þ; ðB3bÞ

ϵ̃0 ¼ −σ þ ∂−Y− − 2Y−Kð0Þ
− : ðB3cÞ
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