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In this work, we use gauge/gravity duality to study potential energy and string breaking of triply heavy
baryons at finite temperature and chemical potential. Two different possible configurations of triply heavy
baryon are considered. The effect of temperature and chemical potential on string-breaking distance is
investigated. With increasing temperature/chemical potential, the sting-breaking distance decreases and
then increases in symmetric collinear geometry while steadily increasing in equilateral triangle geometry.
Our study provides insights into triply heavy baryon configuration and string-breaking behavior.
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I. INTRODUCTION

In the SU(3) quenched lattice QCD, the three-quark
potential is found to be well-reproduced by

V3Q(r1,r2,r3) :63QLmin_Z|r4;r.|+C3Q' (1)
i<j N1 J

Here ry, r,, and r5 are the positions of the three quarks, and
L i 1 the minimum flux-tube length connecting the three
quarks. The strength of quark confinement is controlled by
the string tension o3, of the flux tube. In the hadron model,
baryons are composed of three quarks, which are linked
together by a Y-shaped configuration [1-5].

AdS/CFT is a useful means to deal with QCD problems.
The results can provide important information about the
QCD properties of the nonperturbative energy region [6—8].
Oleg Andreev has proposed effective multiquark potential
models from holography at vanishing temperature and
chemical potential [9-15], we recently studied the triply
heavy baryon at finite temperature and chemical potential
from holography [16].

The fragmentation methods of the three-quark QQQ are
as follows [13]:
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/'00q + 0q
000 - 0g+20qq (2)
\9qq9 +303.

According to lattice calculations in SU(3) gauge theory, the
potential energy between three heavy quarks increases
linearly with distance as they are pulled apart [17]. The
potential energy becomes saturated when the distance
between quarks reaches a certain length, causing the string
connecting the three quarks to break. As a result, new quark
states and quark-antiquark pairs are generated [18]. In
string models of hadrons, such a phenomenon is interpreted
as string-breaking [1-3]. This particular distance sets a
characteristic scale called the string-breaking distance
[19,20]. This scale is obtained from the following formula:

Eqq(fqq) = 2Eqq- (3)

We apply the same method to determine the string-breaking
length in the three-quark state. Three quarks exhibit dif-
ferent potential energies at the same chord distance depend-
ing on finite temperatures and chemical potentials. If we
assume that hadrons are noninteracting, the total energy is
the sum of the energies of individual hadrons [13]. When
we observe that quark models of different states possess
equal energy and their linear potentials are identical, it is
inferred that they have the potential to undergo string
breaking.

The study of the triple heavy quark potential and its
string breaking has been one of the key issues in quantum
chromodynamics [21]. QCD string fracture research has a
long history [22-26]. The lattice calculations and AdS/
CFT approaches have been studied accordingly [27-29].
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The existing literature primarily focuses on the stability and
decay mode of triple-heavy quarks under zero-temperature
chemical potential conditions [18,30,31], while the effect
of the temperature chemical potential is less considered
[16,32]. In order to gain a deeper understanding of the
configuration behavior of triple-heavy quarks, we have
systematically investigated, for the first time, the effect of
the temperature chemical potential on the string-breaking
distance of triple heavy quarks using holographic theory.
Studying the string-breaking process helps to reveal the
breaking mechanism of triple-heavy quarks.

The article is organized as follows. In Sec. II, we will
provide the potential energy calculation formulas for QQQ,
00q, 0g, Qqq, and qqq, respectively. In Sec. III, we will
draw potential energy diagrams for various hadrons and
calculate the string-breaking results. In Sec. 1V, we will
summarize the results of our work.

II. MODEL

We choose the deformed anti-de Sitter—Reissner-
Nordstroom (AdS-RN) metric. It is not a self-consistent
solution to the Einstein equation. However, it gains some
insights into problems without predictions from pheno-
menology and lattice QCD. The background is of the
form [9,33]

R2
ds? = e — [f(r)d* + dx* + f~'(r)dr?],
r
1
flr)=1- (r—4+q2ri) gt (4)
h

Here, ¢ is the black hole charge, and r}, is the position of the
black hole horizon. The Hawking temperature of the black
hole is defined as

af

dr

R
g

_ (i 1y
r—rhﬂrh<1 2Q>’ <5)

where Q = gr; and 0 < Q < /2 [34]. It is observed that,
on dimensional grounds, the low-r behavior of the bulk
gauge field Ay(r) is [35]

Ao(r) =p—nr’, (6)

where n = kg with x being a dimensionless parameter.
Together with the condition that A, vanishes at the horizon
Ag(ry,) =0 and Ay(0) = pu, we can determine a relation
between p and the black hole charge g,

ﬂ:qw%:lcg. (7)
T
We fix the parameter x to 1 in this paper. The AdS/CFT
dictionary defines u as the baryon number chemical
potential. Thus, we can get

2 2

1
flr)=1- <—4+'M—2>r4+ﬂ—4r6,

Vh rh rh
1 1
T—=—|[1=Z2 2.2
ﬂrh< 2//‘ rh>’
}"2
Aolr) ==’ ®)
T

The first is the fundamental string governed by the
Nambu-Goto action. By using the static gauge t =7,
o = x, the Nambu-Goto action of the U-shape string is [36]

1 /
SNG = 27[—(1//de0 detgaﬂ, (9)

with

oxt ox?

Gap = ””ﬁﬁ’ (10)

where X* and G, are the target space coordinates and the
metric, respectively, and 6% with ¢ = 0, 1 parametrize the
world sheet.

The baryon vertex is given by [37,38]

e—Zxr2
Svert:T’u/dt f(r)’ (11)
r

where 7, is a dimensionless parameter defined by
7, = TsRvol(X), and vol(X) is a volume of X. We
consider the light quarks at string endpoints as tachyon
fields. Thus, we add to the world sheet action Sq = f dreT,
which is the usual sigma-model action for strings propa-
gating in a tachyon background [38]. The action written in
the static gauge is

S, —m/dteir VI, (12)

r

where m = RT,. We immediately recognize it as the action
of a point particle of mass T at rest [39]. In the presence of
a background gauge field, the string endpoints with
attached quarks couple to it. So the world sheet action
includes boundary terms given by

1
Sa=7F g/dmo, (13)

where the minus-plus sign corresponds to a quark and an

antiquark, respectively. We will choose model parameters
R2

as follows: g = 57—,

k=2 andn="
3g,ad o

A. QQQ model
The total action of three-quark potential is the sum of the
three Nambu-Goto actions plus the vertex action and the
boundary action terms
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SO+ Syert + 3S4l,—o (14)
1

3
S:

1

Thus, the action can now be written as

3 Srz
S = ?g/dxer2 \/f(r) + (0,7)?

3kge 2" Ap(0)
— ) — , 15
RV - (15)
with T = fOT dt. The Lagrangian is written as
esrz >
L= \JF0) + @), (16)

altogether, with the constraint

SI

L ES0)
o' \JF(r)+ (9,r)?

At the points rj and r,, we have

= constant.  (17)

2

6;2 f(l") _ e’
VI +@r?
sr2
e_ZHf ry 6”5
A =—Vf(ro). (18)

f(r,) + tan’a 1

)8

f(ro),

The above equations can determine the relation between r,
r,, and a. We can also get

2
—2sr73

£, = (o, 0, -3gkd,,

v

2
2
g'”O

A f2<r0)
0,x = . . (19)

2512

G L (o) =S P ro) (1)

and

sr2 srk
" 1) = VI F ) e =0 (20)

At this step, we must find the relationship between r,
and a. We can obtain the result through the equilibrium
condition at the baryon vertex. This differs between the
three-quark (A) and three-quark (B) models. The force
balance equation at the point r = r,, is

e1+e2+e3+fv:0, (21)

where e; is the string tension and f, is the gravitational
force acting on the vertex. The presence of this force is the
main difference between string models in flat spaces and
those in curved spaces. In this model, f, only has one
nonzero component in the r-direction. A formula for this
component can be derived from the action E oy = T - Syer-
Explicitly, f = —6E,/6r and r is the coordinate of the
vertex. The possible configurations of the triply heavy
baryon are shown in Fig. 1.

1. QQQ(A) equilateral triangle geometry
In the three-quark(A), each force is given by

() L),

Vf(r,) + tan2a’ - V 1+ f(r,)cota

sr2

e = _ge_2 <cosﬂ f(ry) ,sin 8
Ty V f(rn) + tan’a
sr2

e, = —ge—z <— cos 3 flr) sin
rl/'

() L),

P Vf(r,) + e’ V1+ f(r,)cota

T r\el €27 q s
W4
Vv
| v
\ Q
v fy
Q QX

(@)

FIG. 1.

! > (22)

T™r
eir 2 €2
\
€3
fy y
Q Q QX

(b)

(a) The heavy quarks are at the vertices of the equilateral triangle for QQQ. (b) Symmetric collinear geometry for QQQ.
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FIG. 2. The potential energy for three-heavy quarks (heavy
baryons) as a function of the separation distance at vanishing
temperature. The dots are the results of lattice QCD [40]. Here
s = 0.450 GeV [41], g = 0.176 [20], k = —0.102 [42], and ¢ =
0.623 GeV [13].

Regarding the symmetry in x and y, we only need to
consider the force balance in the r direction. The force-
balance equation leads to

2

sr5 1 —2s77
¢ V) =0. (23)
1 —kf(r,L,)cot2
Therefore, L and E can be calculated as
L= \/§</ro 6,xdr+/r0 drxdr)
0 ry
2rr
fz("o)
= \/—/ ) dr
)f( o)—) (ro)f(r)
err%f2( )
r "o
+V3 / = i dr. (24)
" )f(ro) = °f2(ro)f(r)

ro 57 1
E:3g</0 erz \/l—i-f(r)(a,x)z—pdr
+ / " 62 Ji+ f(r)(a,x)2dr)

\/ )+ 3c— (25)

Eqaaq (4) (GeV)

2 === T=0.13GeV,u=0
=== T=0.1GeV,u=0
0 — TG0 L (fm)
v 05 10 15 20

FIG. 3.

The potential energy of the three-quark ground state is
shown in Fig. 2 and the potential energy of model A at
different temperatures and chemical potentials is shown
in Fig. 3.

2. QQQ(B) symmetric collinear geometry
In the three-quark(B), each force is given by

—23‘)‘%
£, — <o, —3gka, ©

o= g5 ( f(rv) ! )

' ri \Wf(r,) + tan’a’ \/1+f eot’a

0= _go (_ f(r) I )

? r Vf(r,) + tan’a’ \/1 + f(r,)cot’a
e=-2%5(0.1) (26)

with the force balance equation

esr% 1 esr% —2sr
-2 +-—+3ko,, v/ f(r,)=0.
2 1+ f(r,)cota T3
(27)
Thus, we can similarly obtain interquark distance
o o
L —/ O,xdr—i-/ d,.xdr
0 T,
ro (ro)
= / 2 252 dr
0N\ &L ) G2 (r0)f(r)
ry (ro)
+ / . — dr, (28)
S|Py 2 () f(7)

and the potential energy as in Model A.

Eqaaq 4) (GeV)

D

(b)

S

—’——

--- §=0.3GeV,T=0.1GeV
-+ =0.1GeV,T=0.1GeV
— §=0,T=0.1GeV

OH 05 10 15 20
-2

=X
ot
=
o
s

N

L (fm)

Model A: Panel (a) shows the potential energy diagram for different temperatures at a zero chemical potential. Panel

(b) presents the potential energy diagram for different chemical potentials at a temperature of 7= 0.1 GeV.
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FIG. 4. Model B: Panel (a) represents the potential energy diagram for different temperatures at zero chemical potential.

Panel (b) illustrates the potential energy diagram for different chemical potentials at a temperature of 7 = 0.1 GeV.

r 5" 1 The full action can be written as
£=2s( [\ 1+ 007 -
;
o o812 sr‘ 3k 2512
/Oe 1+ () ,x%lr) S = dx )+ ( ge
v bor M)
2g e 1 g ngesr, _gA‘)(O) _ 1 Aolry
R pdr—r—v tr, V3T oy
—29r
+ 3gk VIf(r,) +3c—pu. (29)  Thus, we have

The potential energy diagram of Model B with different
temperatures and chemical potentials is shown in Fig. 4. L= W(’” ) f(r)+ (o.r )2, W(V ) =

B. QQq model

and
In this section, we will focus on discussing the cases of
QQgq. The configuration of QQq will vary with the distance oL w(r)f(r)
between the quarks, and for our model, QQq is divided L -1 — = ——=-—==— = constant.
into three cases. The different configurations of QQq are or F(r) + (0,r)?

depicted in Fig. 5.

Using the conservation of energy, we have
1. QQq small
In this case, the total effect can be expressed as w(r)f(r) w(r,)f(r,)

V) + (0,0 /f(r,) +tan’a

3
S =5+ Swen +Sq +284|—o + Sal,—p. . (30)
=1

i

r
T r
v
q
\4
v
Q Q )

Q X
(@) (b)

=X

o
>

o
il

Vi)

(31)

(32)

at the U-shape string maximum point r,. Thus, we get

FIG. 5. According to different string distances, we classify QQq into three distinct states. In the subsequent part, we will discuss the
calculation methods for the potential energy of each state. For our model calculations, we adopt the following parameters:

s = 0.450 GeV, g =0.176, n = 3.057 [20], k = —}—16% [20], and ¢ = 0.623 GeV. Here, we use different values for the k-value

because we are using a specific model [13].
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EQQq (GeV)
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02 04 06 08 1.0

FIG. 6.
T =0.1 GeV.
. w(r, ) f(r,)
' (f(r,) + an’@)a(r)f(r)? = f(r)w(r,)*f(r,)*
(34)
For the force equilibrium in the model,
e—ZSr%
fv = (07 _3gkar,,. (7‘ f(rv))) s
and string tensions are
- O ! )
fe gw(r,,)( VanZa+ f(r,) /f(r,)cola+1/)"
_ f(ry) _ 1 )
e =gw(r) (\/tanza +f(r,) /f(r,)cota+1)"

e; = gw(r,)(0,1).
Therefore, after imposing force equilibrium at the vertex

e1+e2+e3+fV:0 (35)

L= 2/ 0,xdr
0

o8 1o fv(fm) -2

(a) a as a function of r,. (b) Separation distance L as a function of r,. (c) The energy E as a function of L at y = 0.1 GeV,

we obtain the force balance equation given by

Trz er.
20 et 1 _ge' i
1o 1+ f(r)coa = 13
—2s12 !
+3ek( V) =0 (36)

As the string distance increases, the baryon vertex v also
arises. The limiting case for the first state is when the
baryon vertex v and the light quark ¢ are heavy. The
limiting case of the first configuration is that the position of
the light quark reaches the vertex one. We can figure it out
using the following formula:

eSr%, e%sré
g +ng
Tq g

1) = (3a00m)) =0 o7

The first term is the string tension, the second is the force
of the light quark, and the third is the force of the world
sheet action.

Therefore, L and E can be calculated as

w?(r,)f(ry)

=2 \/ W NN () + tan?a) = w2 (r,) f2(r) 1 ()

and

dr, (38)

- rﬁw , ; Wz(rv)fz(rv) _i r
=2 | (>\/1+f()Wz(r)fz(r)(f(m)+tanza)—w2(m)f2(ry)f(r) 24

—2s12 %srg 2
SR 4 g () - 2 A(0) = 2 Ag(r,) + 2. (39)

r, rq 3 3

Tq

28y g/ w(r)dr + 3gk
rl} T

v

The plots for a, L, and E for the QQgq small configuration are shown in Fig. 6.
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a L (fm)
0.20 0.8 (b)
0.15 0.6
0.10 0.4
0.05 0.2

u=0.1GeV,T=0.1GeV p=0.1GeV,T=0.1GeV

f 1y (fm)

120 125 130 135 140 145

FIG. 7. (a) a as a function of r,.
T = 0.1 GeV.

2. QQq intermediate

The total action in this configuration reads as

2
S =" 5 + Seen + Sq +284l—o + Sal—,. .

i=1

(40)
that can be explicitly written as

2g e 3kg e 2"
:?/dx ) \/f(r)+(5xr)2+TT

V f(rf/")

)
ng exsr? 2 A4(0) IAO( )
= )———= 41
T, VST T (41)
The force balance equation at the point r = r, is
e1+e2+fv+fq+fA:0, (42)

where each force is given by

£, = (0,9, (Ao(r,))).
ﬂ%0>,

e%”g
f, = O,—ngdrq "

[, - (0, _3gkd,, <e_::r% f(rv)>>,

e; = gw(r,) <_ \/tan{cirj—)f(m)’ VI, cloton— ))

e, =gw(r,) (\/tanfo(crff(m)’ VI iotzaJr ))
(43)

with ry = r,. The force balance equation leads to

2

esr,‘ 1 e—2sr$,
— 3gk —_— :
(1+ f(r,))cot’a e a”( ry f(m))

281
+ ng()rv <er f(ry)) - ar,, (Av(rv)) =0.

2g

(44)
v
The QQq becomes the second configuration, where the
baryon vertices coincide with the light quarks. As the string
distance increases, the baryon vertices and the light quarks
move away from the heavy quarks. The angle « will tend to

120 125 1.30 1.35 1.40 145rv

(b) Separate distance L as a function of r,,.

EQQq(GeV)

6 (c)

4

2 —_—

p=0.1GeV,T=0.1GeV

L (fm)
05 10 15 20

(fm) -2

(c) The energy E as a function of L at u = 0.1 GeV,

zero in the second configuration. When « tends to be
negative, the third state has to start. Now, the force equilib-
rium becomes

2

2572 %srﬂ
3gko,, (e . f(r,)) +ngo,, (er f (r@-))
- ar (AU( 1)) =0. (45)

The solution to the equation is the limiting position of the
second state.
Therefore, L and E can be calculated as

L= 2/”0 xdr

_}/¢ W(r)f(r) N
o) Htan’a) f2(r)— f(r)w?(r,) f2(r,)
(46)
and
E:%/”wn1+AA@WL%m=2§
25"1 2srl
+ng Vf +3gk f(r )‘%AO(O)
—%Ao(rq) + 2c. (47)

Plots for a, L, and E of QQgq intermediate configuration
are shown in Fig. 7.

3. QQq large

The total action for this configuration is the same as
Eq. (40). Thus, the total action becomes

2 sr2
=22 [ xS\ 1)+ 0+ F V)
P 240(0) _ 140(r,)
Er CLC i e e S

The Lagrangian density is written as
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1.50
1.48
1.46 p=0.1GeV,T=0.1GeV
r, (fm)
146 1.47 148 1.49 1.50 1.51
FIG. 8. ry, as a function of r, at u=0.1 GeV and
T =0.1 GeV.
s
L= f(r)+ (0,r)% (49)
with the constraint
L Sf0)
a r
’2—2 = constant.  (50)
Cor T TN + (0.r)

At the points r( and r,, we have

e f(r) b
(CERCT A
%%2” (rv) 692

—V/f(ro). (51)

f(r,) + an?a 5

The above equations can determine the relation of ry, r,,
and a. We can also obtain

(ro)

2
2w 2”0

< PANf(r >—f,g P ()

and

eYV,

f(ro) ) + tan’a = (53)

We can obtain the relationship between the highest point
1o, the baryon vertex, and the position r, of the light quark.
The result is depicted in Fig. 8.

The force balance equation at the point ry = r, is

e1+e2+fv+fq+fA=0. (54)

Each force is given by

£4=10,9,,(Ao(ry)));

1,2
e’
f,= <0,—ngarq< . f(rq)>>,
q
e—Zsr%
fv: <07_3gkar,( f(rﬂ)))’
v r/’;

:gw(rv)< f(ry) ! )

Vianla+ f(r,) \/f(r,)(cofa+1)
e )<¢tan Za+1(r) VI,

f(ry) 1
The force balance equation leads to

)(cot?a+ 1)) - (59

2

—2sr3
1 3gka, (e
! r

v

e”2 1

(1+ f(r,))cot’a
f(rb)> - arl.(Av(rv» =0. (56)

—28 o f(m))

1
25Ty

+nga,, (e
’

v

Therefore, L and E can be calculated as

L= 2</r0 0,xdr + /ro a,xdr>
0 r,

2rr

B /ro fz(ro)
0 ei+’2f2<r>f<ro>—f,g (ro)f(r)

2rr

ro fz(r())
+2 / - dr, (57)
PO - S P )

i 1 1
E:2g</0w(r) 14 f(r)or’x ——dr——
0 r

o

1,2
5577

+/r0 w(r) 1—|—f(r)0r2xdr> —|—nger

T, v

VI Ao(r

f(ry)

—2sr,

+3gk —Ao( )4+2¢c.  (58)

Plot for a, L, and E for the QQgq large are shown in
Fig. 9. Finally, we get the potential energy of QQgq
in Fig. 10.

C. 04, 0qq, qqq models

Now, let us examine the potential energy of the other three
models. To do this, we must determine the positions of the
light quarks ¢ and g. We can achieve this by utilizing the
following three force equilibrium equations. The different
configurations are shown in Fig. 11. For deeper explanations,
see [43-45] whose conventions we generally follow.
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FIG. 9. Panel (a) a as a function of r,. Panel (b) separation dista
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FIG. 10. QQg model: (a) The potential energy diagram for different temperatures at a chemical potential 4 = 0. (b) The potential
energy diagram for different chemical potentials at a temperature of 7 = 0.1 GeV.
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FIG. 11. Panel (a) is the configuration of Qg. Panel (b) is the
s =0.450 GeV, g =0.176, k = —%ei, and ¢ = 0.623 GeV.

In Qg models, we get the force balance equation is

)+

3

1.,2
ei‘\r[—]

+ng
r

and the we can get the r;.

Then, in the Qgq models, we get the force balance
equation r, and r,

eSV;,

g

. A Ao(”q))/ —0 (59)

q

q

esr% e—ZSr,Z. !
e -3k (S V) =0 (@
and
2 1 !/
srg s 1 /
e n(S5V700) = (300)) =0 (o)

126

configuration of Qgq. Panel (c) is the configuration of ggq. Here

Finally, in ggq models,r, force balance is

e—Zsrg / e%srf] /
k(S 109)) 4 ane(< 1)
q q
— (Ao(rg))" = 0. (62)
The potential energy of Qg, Qqq, and qqq are
sr2 g 3572 1
r; e 2°0q
Epo=g | '——=dr—-= ~Ao(0
04 gA 5 dr rq—l—ng . +3 0(0)
1
_gAO(rEI) + c, (63)
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r esr
+2g/ ! 5
r, T

ry, esrz 1 g
EQqq:gA 2 _ﬁd”_r_y
%srq2 —2s12

+ 2ng +3gk
q v

—2sr121

E, g =3gk + 3ng
q

2

=2 A0lr) =3 40(0) .
(64)
T Adr). (69)

Therefore, we can compute the potential energy in case 3
and case 4. These energies can be calculated as

res” 1 g ry @57
0qq T 2E0q gl R rv"' g 2
1 2 2
e’q 6_2‘"7’ 2
2 3gk ——A
+ 2ng - +3gk——-3 0(rg)
1 e 1
—~Ay(0) +2 ——d
3 0( ) + gA 7'2 r2 r
1.2
g 2‘\7‘{—’
_2—7+21'1g - —|—§A0(rq)
q q
2
— §A0<0) + 3(,',
E(GeV)
B[ qaa+sag (@)
Qqq+2Q7 /
QQq+Qg
2 QQQ(A)
0 u=0,T=0
0.5 1.0 1.5 2.0
-2

dr

(66)

L (fm)

—2sr% Lor2
e q 7
quq + 3EQq = 3gk , + 3ng , —Ao(rq)
q q
e 1
+3g/ qT—idV—:sg
0 r r rq
lsr::l
+ 3ng . +Ag(0) = Ag(rz) +3c.  (67)

q

III. NUMERICAL RESULTS

We calculated the potential energy diagram for the ground
state of triply heavy baryons, as shown in Fig. 12. This
ground-state potential energy diagram is obtained under the
conditions 7 =0 and p = 0.

After analyzing the three-quark ground state, we calcu-
lated the potential energy diagrams for the finite temper-
ature and finite chemical potential case. These diagrams are
depicted in Fig. 13.

With these results, we can focus our study on two
geometric configurations of the triply heavy quark system:
QQQ(A) with an equilateral triangular geometry and
QQQ(B) with a symmetric collinear geometry. The fol-
lowing contents will discuss the distinct patterns of string-
breaking distances exhibited under these two configura-
tions separately as the thermodynamic conditions are
modulated.

E(GeV)
6 qqq+307 (b)
Qqq+2Qg
[ Qaq+Qg
2t QQQ(B)
p=0,T=0
0 L (f
05 10 15 20 -
-2

FIG. 12.  Under the conditions 7 = 0 and p = 0, we plot the potential energy graphs of the quark states in four cases as a function of
the distance between quarks. Panel (a) corresponds to the equilateral triangle geometry, and panel (b) corresponds to the symmetric

collinear geometry.
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FIG. 13.

1.0

1.5

2.0

L (fm)

E(GeV)
(b)
999+3Qg
Qqq+2Qq
4 QQg+Qq
2 QQQ(B)
u=0.1GeV,T=0.1GeV
0 . . : . L(fm
0.5 1.0 1.5 2.0 (fm)
-2

By varying the temperature and chemical potential, we can analyze the impact of each one separately to obtain the

fragmentation distance. In this context, panel (a) corresponds to the equilateral triangle geometry, and (b) corresponds to the symmetric

collinear geometry.
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M(GeV) 0.20

M(GeV) 0.20

FIG. 14. Effect of temperature/chemical potential on the string-breaking distance. Panel (a) equilateral triangular geometry.

Panel (b) symmetric collinear geometry.
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FIG. 15.
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The string-breaking distance of the QQQ(A) configuration as a function of temperature and chemical potential is shown

in the graph. Panel (a) represents the string-breaking distance at different temperatures when the chemical potential y = 0.
Panel (b) represents the string-breaking distance at different chemical potentials when the temperature 7 = 0.1 GeV.

Based on the potential energy functions of inter-quark
distances presented in Figs. 12 and 13, we have concluded
that for the QQQ(A) configuration with equilateral tri-
angular geometry, the most likely decay mode is into
Qqq and 2Qgq, while for the QQQ(B) configuration with
symmetric collinear geometry, the most likely decay mode
is into QQgq and Qg.

We plotted the 3D landscapes showing the string-
breaking distances for QQQ(A) and QQQ(B) varying
with temperature and chemical potential.

The 3D relationships are depicted in Fig. 14. From the
3D landscapes, we extracted 2D distance-temperature and
distance-chemical potential plots, as presented in Figs. 15
and 16, to investigate the effect of each thermodynamic
factor individually.

Lg (fm)

1.100 (a)
1.098
1.096

1.094 4=0

0.02 0.04 0.06 0.08 0.10 0.12T(Gev)

It can be observed from the 2D plots that the effect
of temperature and chemical potential on the string-
breaking distance is more homogeneous in the equi-
lateral triangular geometry while more complex in the
symmetric collinear geometry. This phenomenon indi-
cates the significant role of geometric configurations in
determining the response of string-breaking distances
to thermodynamic variations, which provides valuable
insights.

For QQQ(A) equilateral triangular geometry, the string-
breaking distance exhibited a monotonic increasing trend
as the temperature and chemical potential arose. This
behavior indicates that the unique triangular configuration
contributes to the consistent increment of string-breaking
distance.

Ly (fm)
1.115
(b)
1.110
1.105
1.100
T=0.1GeV
0.05 0.10 0.15 0.20 0.25H(Gev)

FIG. 16. The string-breaking distance of the QQQ(B) configuration as a function of temperature and chemical potential is shown
in the graph. Panel (a) represents the string-breaking distance at different temperatures when the chemical potential y = 0.
Panel (b) represents the string-breaking distance at different chemical potentials when the temperature 7 = 0.1 GeV.
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In contrast, for QQQ(B) symmetric dyadic geometry,
the string-breaking distance exhibits a nonmonotonic trend,
decreasing and then sharply increasing before exceeding a
threshold. This nonlinear behavior implies a complex
transformation of the mechanical equilibrium conditions
associated with the dyadic configuration. The underlying
mechanisms need to be further investigated.

Importantly, chemical potential has a more pronounced
effect on changing the string-breaking distances than temper-
ature. This underscores the vital role of chemical potential in
the dynamics and hadronization of triply heavy quarks.

IV. SUMMARY AND CONCLUSION

The deformed AdS-RN background model discussed in
this work effectively explores the string-breaking processes
of triply heavy quarks. We systematically investigated the
dependence of string-breaking distances on two geometric
configurations of triply heavy quarks (equilateral triangular

and symmetric collinear), finding that the differences in
configurations significantly impact the trends in distance
changes. We discovered that chemical potential has a more
pronounced influence on changes in string-breaking dis-
tances compared to temperature. This study provides
valuable new insights into the string-breaking distances
of triply heavy quarks under varied temperature and
chemical potential conditions.
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