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We provide a group theory approach to coherent states describing quantum space-time and its properties.
This provides a relativistic framework for the metric of a Riemmanian space with bosonic and fermionic
coordinates, its continuum and discrete states, and a kind of “quantum optics” for the space-time. New
results of this paper are: (i) The space-time is described as a physical coherent state of the complete
covering of the SL(2C) group, e.g., the metaplectic group Mp(n). (ii) (The discrete structure arises from its
two irreducible even ð2nÞ and odd (2nþ 1) representations, (n ¼ 1; 2; 3…), spanning the complete Hilbert
spaceH ¼ Hodd ⊕ Heven. Such a global or complete covering guarantees the CPT symmetry and unitarity.
Large n yields the classical and continuum manifold, as it must be. (iii) The coherent and squeezed states
and Wigner functions of quantum-space-time for black holes and de Sitter, and (iv) for the quantum space-
imaginary time (instantons), black holes in particular. They encompass the semiclassical space-time
behavior plus high quantum phase oscillations, and notably account for the classical–quantum gravity
duality and trans-Planckian domain. The Planck scale consistently corresponds to the coherent state
eigenvalue α ¼ 0 (and to the n ¼ 0 level in the discrete representation). It is remarkable the power of
coherent states in describing both continuum and discrete space-time. The quantum space-time description
is regular, there is no any space-time singularity here, as it must be.

DOI: 10.1103/PhysRevD.108.126001

I. INTRODUCTION AND RESULTS

Quantum space-time is a key concept both for quantum
theory on its own and for a quantum gravity theory.
Coherent states are a fundamental part in quantum physics
with multiple theoretical and practical realizations from
mathematical physics to quantum optics and wave packet
experiments, see for example Refs. [1–7] and references
therein. In this paper, within a group theory approach, we
construct generalized coherent states to describe quantum
space-time.
We describe quantum space-time as arising from a

mapping PðG;MÞ between the quantum phase space
manifold of a group G and the real space-time manifold
M. The metric gab on the phase space group manifold
determines the space-time metric of M after identification
of one component of the momentum P operator with the
time T. The signature of the metric depends on the compact
or noncompact nature of the group, but in the most cases of

physical interest, the real space-time signature and its
hyperbolic structure require non compact groups.
A group theory approach, a quantumalgebra, reveals a key

part in the quantum space-time description in order to obtain
the line element associated to a discrete quantum structure of
the space-time. Such an emergent metric is obtained here
from a Riemmanian phase space and described as a physical
coherent state of the underlying covering of the group SL
(2C): Interestingly, it appears necessary to consider the
complete covering of the symplectic group, that is the
Metaplectic group MpðnÞ, its spectrum for all n leading
in particular for very large n the continuum space-time. This
approach allows us to construct here coherent states of the
coset type for the quantum space-time and describe with
them coherent de Sitter and black hole states.
This quantum description is based on the phase space of

a relativistic particle in the superspace with bosonic and
fermionic coordinates, allowing to conserve at the quantum
level the square root forms of the geometrical operators
(e.g., the Hamiltonian or Lagrangian). The discrete space-
time structure arises from the basic states of the Metaplectic
representation with one interesting feature to remark
here: The decomposition of the SO(2,1) group into two*Norma.Sanchez@orange.fr
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irreducible representations span even j2ni and odd j2nþ 1i
states, (n ¼ 1; 2; 3…), respectively, whose totality is
covered by the Metapletic group. In the Metaplectic
representation the general or complete states must be the
sum of the two kind of states: even and odd n states
spanning respectively the two Hilbert sectors H1=4 and
H3=4, whose complete covering is H1=4 ⊕ H3=4. This
yields the relativistic quantum space-time metric with
discrete structure. For increasing number of levels n, the
metric solution goes to the continuum and to a classical
manifold as it must be. Such a global or complete covering
with the sum of the two sectors, even and odd states to have
the complete Hilbert space reflects the CPT symmetry and
unitarity of the description.
As we know, the metaplectic group Mpð2Þ acts irreduc-

ibly on each of the subspacesH1=4,H3=4 (even and odd) by
which the total Hilbert space (namely H) is divided
according to the Casimir operator:

K2 ¼ K2
3 − K2

1 − K2
2 ¼ kðk − 1Þ ¼ −

3

16
I

giving precisely the values k ¼ 1=4; 3=4. Then,

H1=4 ¼ Spanfjn eveni∶n ¼ 0; 2; 4; 6;…g ð1:1Þ

H3=4 ¼ Spanfjn oddi∶n ¼ 1; 3; 5; 7;…:g ð1:2Þ

Based on the highest eigenvalue of the number operator
T3jni ¼ − 1

2
ðnþ 1

2
Þjni occurring inH≡H1=4 ⊕ H3=4, the

two unitary irreducible representations (UIR) D of Mpð2Þ
are denoted as:

ðUIRÞ restricted toH1=4 → D1=4 ∈Mpð2Þ ð1:3Þ

ðUIRÞ restricted toH3=4 → D3=4 ∈Mpð2Þ ð1:4Þ

One of the clear examples of the group theory approach
presented here is the quantum space-time derived from the
phase space of the harmonic oscillator (Refs. [8–10]),
and themapping ðX;PÞ → ðX; TÞ, in the case of the inverted
(imaginary frequency) oscillator, or alternatively→ ðX; iTÞ,
in the normal (real frequency) oscillator. The inverted
oscillator in its different representations does appear in a
variety of interesting physical situations from particle phys-
ics to black holes and modern cosmology as inflation and
today dark energy, e.g., Refs. [11–23].
The group theory framework presented here to describe

quantum space-time and its coherent states allows to
correlate and extend the approaches of Refs. [8–10,24–26]
to obtain new results. Novel results of this paper are

(1) the generalization of the quantum light-cone to
include fermionic coordinates,

(2) the construction of coherent and squeezed states of
quantum space-time, their properties and interpre-
tation, their continuum and discrete representations,
and for both de Sitter and black hole space-times.

(3) The coherent states for the quantum space-imaginary
time instantons, for black holes in particular.

(4) We find that coherent states encompass the space-
time behavior in the semiclassical and classical de
Sitter and black hole regions, exhibit high quantum
phase oscillations of the space-time, and account for
the classical–quantum gravity duality and the trans-
Planckian scales.

(i) It is remarkable the power of coherent states in
describing both continuum and discrete space-time,
even in the Planckian and trans-Planckian domains:

(ii) The Planck scale consistently corresponds here to
the continuum coherent state eigenvalue α ¼ 0, (and
to the fundamental state n ¼ 0 in the discrete
representation). Higher values of α in the quantum
gravity (trans-Planckian) domain account for the
smaller and sub-Planckian sizes and higher exci-
tations.

(iii) One of the new features, for the space-imaginary
time instantons is the emergence of a maximum
eigenvalue α characterizing the coherent states due
to the minimal nonzero quantum radius because of
the minimal quantum uncertainty ΔXΔT ¼ ℏ=2, in
particular in the central and regular black hole
quantum region. The coherent state instanton re-
markably accounts for this quantum gravity feature
and determines the radius being

R0ðlP; tPÞ2 ¼
1ffiffiffi
π

p
�
1

lP
þ lP

ℏ

�
;

lP being the Planck length. The origin is flurried or
smoothed within this constant and bounded curva-
ture region.

(iv) In the quantum space-time description, there is no
any space-time singularity as it must be. The
consistent description by coherent states of such
quantum scales does appear here as a result of the
classical–quantum gravity duality across the Planck
scale, and reflected here in the double covering of
the SL(2C) group or Metaplectic symmetry.

This paper is organized as follows: In Sec. II we
construct the generalized or coset group coherent states
and squeezed states and the corresponding Wigner quasi-
probality functions. In Sec. III, we describe the Mp(n)
general group approach including bosonic and fermionic
coordinates, in particular Mp(2) and the geometrical
interpretation of high quantum oscillatory effects in this
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context. Section IV describes the Mp (n) associated
relativistic wave equation, the complete Hilbert space
and the discrete representations. The physical states, the
Mp(2) squeezed vacuum and the direct sum of the both odd
and even states, necessary to uncover the complete space-
time are discussed in this section. In Sec. V we find the
coherent states for the de Sitter and black hole space-times,
their properties and interpretation. Section VI deals with the
coherent states of quantum (imaginary time) instantons, for
black holes in particular and its new effects. In Sec. VII
provides a discussion in the context of our results and other
references, and Sec. VIII summarizes our remarks and
conclusions.

II. QUANTUM COHERENT STATES

We construct first coherent states within a group theory
approach of the Klauder-Perelomov type (Refs. [2,4]) or
coset group coherent states and then in sections and we
describe them in terms of the Metaplectic Mp(n) group and

the associated relativistic wave equation. For this purpose
we define the coset generators as the generalized displace-
ment operators by means of the creation and annihilation
operators a and aþ. These operators are analogous to those
corresponding to quadratic Hamiltonians but the change of
sign for the generalized coordinate introduces the imagi-
nary frequency into the definition, (by analogy to the
generalized inverted oscillator), namely

a ¼
�

iz
2ℏjzj

�
1=2
� ffiffiffiffiffiffiffi

mω
p

qþ pffiffiffiffiffiffiffi
mω

p
�
;

aþ ¼
�

iz�

2ℏjzj
�

1=2
� ffiffiffiffiffiffiffi

mω
p

q −
pffiffiffiffiffiffiffi
mω

p
�

ð2:1Þ

Precisely, the change in the character of the frequency
introduces the global phase factor eiπ=4.
Consequently, the general displacement operator DðαÞ

for any general complex parameter α and z takes the
following form

DðαÞSðzÞ ¼ exp ðαaþ − α�aÞ × exp
1

2
ðzaþ2 − z�a2Þ

¼ exp

��
i

2ℏjzj
�

1=2
� ffiffiffiffiffiffiffi

mω
p

dðα; zÞq −
pffiffiffiffiffiffiffi
mω

p dðα; zÞ
��

exp

�
−ijzj
2ℏ

ðqpþ pqÞ
�
; ð2:2Þ

dðα; zÞ≡ ðα ffiffiffiffiffi
z�

p
− α�

ffiffiffi
z

p Þ ð2:3Þ

The displacement operator DðαÞ is a unitary operator. In the coordinate representation p ¼ −iℏ∂q, the displacement
operator takes the form

DðαÞSðzÞ ¼ exp

��
i

2ℏjzj
�

1=2
� ffiffiffiffiffiffiffi

mω
p

dðα; zÞqþ iℏffiffiffiffiffiffiffi
mω

p dðα; zÞ d
dq

��
exp

�
−jzj

�
q
d
dq

þ 1

2

��
; ð2:4Þ

The operator DðαÞ Eq. (2.4) acts on the vacuum of the inverted oscillator, namely

hqj0iinv−osc ¼
�
imω

πℏ

�
1=4

exp

�
−
imω

2ℏ
q2
�

ð2:5Þ

Therefore, we obtain the generalized coherent states with the following form:

ψα;zðqÞ ¼
�
imω

πℏ

�
1=4

exp

�
−
1

2

�
jzj þ jαj2e−2jzj þ e−jzj

jzj ðα2z� cosh jzj − α�2z sinh jzjÞ
��

· ð2:6Þ

exp

�
−
imω

2ℏ
q2 þ

ffiffiffiffiffiffiffiffiffiffiffi
2imω

jzjℏ

s
ðα ffiffiffiffiffi

z�
p

cosh jzj − α�
ffiffiffi
z

p
sinh jzjÞe−jzjq

�
ð2:7Þ

These states are squeezed because the quantum uncertainty in space and momentum coordinates is not equally distributed in
the both directions. In particular, we can test it putting z ¼ 0, and we obtain the coherent state for the inverted harmonic
oscillator:
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ψαðqÞinv−osc ¼
�
imω

πℏ

�
1=4

e−
1
2
jαj2 exp

�
−
imω

2ℏ
q2 þ

ffiffiffiffiffiffiffi
mω

2ℏ

r
ð1þ iÞαq

�
ð2:8Þ

It is convenient to consider this type of coherent states as
being based in a Lie group G with a unitary, irreducible
representation T acting on some Hilbert spaceH. If we take
a fixed vector ψ0 ofH, we define the coherent state system
fT;ψ0g to be the set of vectors ψ ∈H such that ψ ¼
TðgÞψ0 for some g∈G. Then, generalized coherent states
are defined as the states jψi corresponding to these vectors
in H.
We can see that in the definition of the coherent state of

the Klauder-Perelomov type, the general displacement
operator contains, in the exponential representation of
the coset, a linear part in the annihilation and creation
operators and another quadratic part corresponding to the
“squeezed” sector, e.g., see Eq. (2.2): The latter belongs in
this representation to Mpð2Þ. Therefore, at least for this
purely squeezed part in the a2; aþ2 representation the
complete vacuum state is

ðjþ kaþÞhqj0iinv−osc

where (j, k) are constants determined by the normalization
of states and the boundary conditions. This is a conse-
quence of the action of the metaplectic group which
increases the spectrum of physical states: Δn ¼ �2,
because the complete states are spanned by both: the
H1=4 states (eg. even ð2nÞ states), and the H3=4 states
(e.g., odd (2nþ 1) states). Thus, the lowest level (n ¼ 0) is
in H1=4, while in H3=4 it is n ¼ 1.
Consequently, being the complete vacuum under the

action of an element of Mpð2Þ, Eq. (2.5) would take as a
wave function the precise form:

ψvacuumjMpð2Þ →
�
imω

πℏ

�
1=4

e−
imω
2ℏ q

2

�
1þ eiπ=4

ffiffiffiffiffiffiffi
mω

4ℏ

r
q

�
ð2:9Þ

A. Momentum representation

Analogously to the case of the representation of coor-
dinates, the generalized coherent states are calculated in the
same way but taking into account that in the moment
representation p remains the same but q ¼ iℏ∂p in all the
operators, from those of annihilation and creation, namely

ap ¼
�

iz
2ℏjzj

�
1=2
� ffiffiffiffiffiffiffi

mω
p

iℏ∂p þ
pffiffiffiffiffiffiffi
mω

p
�
;

aþp ¼
�

iz�

2ℏjzj
�

1=2
�
−
ffiffiffiffiffiffiffi
mω

p
iℏ∂p þ

pffiffiffiffiffiffiffi
mω

p
�

ð2:10Þ

as well as in the operators of displacement DðαÞSðzÞ
Eq. (2.4) acts on the vacuum of the inverted oscillator in
the momentum representation, namely

hpj0iinv−osc ¼
�

i
πℏmω

�
1=4

exp

�
−

ip2

2ℏmω

�
: ð2:11Þ

Therefore, we obtain the generalized coherent states with
the following form:

ψα;zðpÞ ¼
�

i
πℏmω

�
1=4

exp

�
−
1

2

�
jzj þ jαj2e−2jzj þ e−jzj

jzj ðα2z� cosh jzj − α�2z sinh jzjÞ
��

·

× exp

"
−

ip2

2ℏmω
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i

jzjℏmω

s
ðα ffiffiffiffiffi

z�
p

cosh jzj − α�
ffiffiffi
z

p
sinh jzjÞe−jzjp

#
:

These states are squeezed because the quantum uncertainty in the space and momentum coordinates is not equally
distributed. In particular, we can test it putting z ¼ 0, and we obtain the coherent state for the inverted harmonic oscillator in
the p representation:

ψαðpÞinv−osc ¼
�

i
πℏmω

�
1=4

e−
1
2
jαj2 exp

�
−

ip2

2ℏmω
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ℏmω

r
ð1þ iÞαp

�
:
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B. Wigner function quasiprobability

As we have made mention, the inverted Hamiltonian is
formally obtainable from the standard harmonic oscillator by
the change ω → �iω and it corresponds to the Hamiltonian
of the harmonic oscillator with purely imaginary frequency.
Therefore, this replacement transforms the eigenfunctions of
the harmonic oscillator into generalized eigenvectors of the
inverted harmonic oscillator, which, from the spectral point
of view, leads us to a discrete purely imaginary spectrum:
Einv−osc ¼ �iEh−osc: ¼ iℏωðnþ 1=2Þ. Notice that the
replacement ω → �iω generates in the fiducial or funda-
mental states of the inverted oscillator the following forms:

hqj0iinv−osc ¼
�
imω

πℏ

�
1=4

exp

�
−
imω

2ℏ
q2
�

and

ghqj0iinv−osc ¼ �−imω

πℏ

�
1=4

exp

�
imω

2ℏ
q2
�
:

Consequently, in this approach and in order to have functions
to be truly L2, one must consider hφ̃�

inv−osc:jφinv−osci to take
the square norms, (e.g., a biorthonormalization condition).
Note that according to these symmetries, both for the
oscillator states and for the coherent states obtained here,
it is fulfilled:

φ̃�
inv−oscðqÞ ¼ φðqÞ for the inverted oscillator

ψ̃�
αðqÞ ¼ ψαðqÞ for coherent states

and this is a consequence of the underlying symmetry of
Mpð2Þ since the generator T1¼ 1

4
ðqpþpqÞ¼ i

4
ðaþ2−a2Þ

is the one that produces the rotation or mapping on the states
of the harmonic oscillator, e.g.,

φinv−oscðqÞ ¼ e−
π
2
T1φHOðqÞ

φ̃inv−oscðqÞ ¼ e
π
2
T1φHOðqÞ

Taking this fact and symmetries into account, the Wigner
function quasiprobability will be defined as

Wðq; pÞ ¼
Z

dve−i
pv
ℏ ψ̃�

α

�
q −

v
2

�
ψα

�
qþ v

2

�
Obtaining explicitly:

Wðq; pÞ ¼ exp

�
−
�
mω

ℏ
q2 þ p2

ℏmω
− 2

ffiffiffiffiffiffiffi
mω

ℏ

r
αqþ jαj2

��
Similarly, in the momentum representation, the Wigner
function will be defined as

Wðq; pÞ ¼
Z

due
iqw
ℏ ψ̃�

α;0

�
p −

u
2

�
ψα;0

�
pþ u

2

�

Explicitly:

Wðq; pÞ ¼ exp
�
−
�
mω

ℏ
q2 −

p2

ℏmω
− 2

ffiffiffiffiffiffiffi
mω

ℏ

r
αpþ jαj2

��
We can also consider the Wigner function for the pure
squeezed case, namely

ψ zðqÞ ¼
�
imω

πℏ

�
1=4

e−
1
2
jzj exp

�
−
imω

2ℏ
q2
�

ð2:12Þ

Again, the Wigner function in this case will be defined as

Wsqðq; pÞ ¼
Z

dve−i
pv
ℏ ψ̃�

z

�
q −

v
2

�
ψ z

�
qþ v

2

�
with the result:

Wsqðq; pÞ ¼ e−jzj exp
�
−
�
mω

ℏ
q2 −

p2

ℏmω

��
ð2:13Þ

which shows a purely Gaussian behavior without the
α-shift tail.
As is it known the spectrum of the inverted oscillator

gives rise to complex generalized eigenvalues because from
the point of view of the potential this is unbounded from
below. Here we saw that the fact of considering the
mapping given by the T1 generator of the group Mp(2)
allows to treat in equal footing the respective solutions of
the inverted oscillator and the standard harmonic one. It is
worth mentioning that using quasi-Hermiticity techniques
[27] the problem can be analogously solved by considering
a scaling operator proportional to T1.
On the other hand, solutions for the singular case

(x-coordinates) lead to solutions of the parabolic cylinder
type. These solutions only reflect the symmetries of the
metaplectic vacuum, due that they are factorized, by means
of hypergeometric type functions, in an even part and an
odd part corresponding precisely to the two irreducible
sectors of Mpð2Þ. It is useful to remember that the
generators of Mpð2Þ are the following ones

T1 ¼
1

4
ðqpþ pqÞ ¼ i

4
ðaþ2 − a2Þ;

T2 ¼
1

4
ðp2 − q2Þ ¼ −

1

4
ðaþ2 þ a2Þ;

T3 ¼ −
1

4
ðp2 þ q2Þ ¼ −

1

4
ðaþaþ aaþÞ: ð2:14Þ

With the following commutation relations,

½T3; T1� ¼ iT2; ½T3; T2� ¼ −iT1; ½T1; T2� ¼ −iT3

being ðq; pÞ, alternatively (a; aþ), the variables of the
standard harmonic oscillator, as usual.
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In the following section we describe the generalized
coherent states in terms of the metaplectic groupMP(n), its
metric constructed in phase space and its associated
relativistic particle field equation.

III. METAPLECTIC GROUP MPðnÞ, ALGEBRAIC
INTERPRETATION OF THE METRIC AND THE

SQUARE ROOT HAMILTONIAN

One of the basis of the dynamical description is the
Hamiltonian or Lagrangian of the square root type, that is, a
nonlocal and nonlinear operator in principle. This is
because the invariance under reparametrizations as a
Lagrangian and as an associated Hamiltonian, generates
the correct physical spectrum. The essential guidelines of
our approach here are based on the items specifically
described in the sequel:

(i) The elementary distance function (positive square
root of the line element) is taken as the fundamental
geometric object of the space-time-matter structure,
the geometric Lagrangian (functional action) of the
theory.

(ii) From (i) the geometric Hamiltonian is obtained in
the usual way: this will be the fundamental classical-
quantum operator.

(iii) This universal Hamiltonian (square root Hamilto-
nian) contains a zero moment P0 characteristic of
the complete phase space at the maximum level,
from the point of view of the physical states. The
inclusion of a P0 prevents the arbitrary nullification
of the Hamiltonian, a fact that occurs in the proper
time system in which the evolution coincides with
the time coordinate: in this case time “disappears”
from the dynamic equations.
The method that we use to preliminarily expand

the phase space to determine later here (via
Hamilton equations) the physical role of P0 is the
Lanczos method [28], which is the most geometri-
cally consistent and mathematically simplest.

(iv) The Hamiltonian, when rewritten in differential
form, defines a new relativistic wave equation of
second order and degree 1=2. This can be reinter-
preted as a Dirac-Sudarshan type equation of pos-
itive energies and internal variables (e.g., oscillator
type variables), having a para-Bose or para-Fermi
interpretation of the solution-states of the system.

(v) The spectrum will be formed by states that are
bilinear in fundamental functions, which in the case
of Mpð2Þ are f1=4 and f3=4 having a spin weight
s ¼ 1=4 and 3=4 supported and connected by a
vector representation of the generators of MpðnÞ, or
those covered by this, e.g., SUðp; n − pÞ, SLðnRÞ,
etc. A characteristic physical state ofMpð2Þ is of the
form Φμ ¼ hsjLμjs0i with ðs; s0 ¼ 1=4; 3=4Þ, and Lμ

being the vector representation of one of the gen-
erators of Mpð2Þ.

A. Mp(2), SU(1,1), and Sp(2)

Following on the items (i) to (v) above, we use as a base
the line element in a N ¼ 1 superspace with differential
forms. Consequently, we extend our manifold to include
fermionic coordinates. Geometrically, we take as starting
point the functional action that describes the world
line (measure on a superspace) of the superparticle as
follows:

S ¼ ðx; θ; θ̄Þ ¼ −m
Z

τ2

τ1

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̊μω̊

μ þ γθ̇αθ̇α − γ� ˙̄θα̇ ˙̄θα̇
q

ð3:1Þ

where ω̊μ ¼ ẋμ − iðθ̇σμθ̄ − θσμ
˙̄θÞ, and the dot indicates

derivative with respect to the parameter τ as usual; the
complex constant γ allows generality to characterize the
states and describing limiting cases.
The above Lagrangian is constructed considering the line

element (e.g., the measure, positive square root of the
interval) of the nondegenerated supermetric introduced
in [24]

ds2 ¼ ωμωμ þ γωαωα − γ�ωα̇ωα̇;

where the bosonic term and the Majorana bispinor compose
a superspace ð1; 3j1Þ, with coordinates ðt; xi; θα; θ̄α̇Þ, and
where the Cartan forms of the supersymmetry group are
described by: ωμ ¼ dxμ − iðdθσμθ̄ − θσμdθ̄Þ, ωα ¼ dθα,
ωα̇ ¼ dθα̇ (obeying evident supertranslational invariance).
The generalized momenta from the geometric

Lagrangian are computed in the usual way:

Pμ ¼ ∂L=∂xμ ¼ ðm2=LÞω̊μ ð3:2Þ

Pα ¼ ∂L=∂θ̇α ¼ iPμðσμÞαβ̇θ̄β̇ þ ðm2γ=LÞθ̇α ð3:3Þ

Pα̇ ¼ ∂L=∂ ˙̄θα̇ ¼ iPμθ
αðσμÞαα̇ − ðm2γ=LÞ ˙̄θα̇: ð3:4Þ

We write them in a canonical form

Πα ¼ Pα þ iPμðσμÞαβ̇θ̄β̇ ð3:5Þ

Πα̇ ¼ Pα̇ − iPμθ
αðσμÞαα̇ ð3:6Þ

(Pα and Pμ being defined from the Lagrangian, as usual).
Then, we start with the equation (which will become the
wave equation):
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S½Ψ� ¼ HsΨ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − P0P0 −

�
PiPi þ 1

γ
ΠαΠα −

1

γ�
Πα̇Πα̇

�s
Ψ ð3:7Þ

As we have extended our manifold to include fermionic coordinates, it is natural to extend also the concept of a point
particle trajectory to the superspace. To do this, we take the coordinates xðτÞ, θαðτÞ and θ̄α̇ðτÞ depending on the evolution
parameter τ.
Consequently, there exist an algebraic interpretation of the pseudo-differential operator (square root) in the case of an

underlying Metaplectic group structure MpðnÞ:

ffiffiffiffi
F

p
jΨi≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − P0P0 −

�
PiPi þ 1

γ
ΠαΠα −

1

γ�
Πα̇Πα̇

�s
jΨi ¼ 0 ð3:8Þ

f½F �αβðΨLαÞgΨβ ≡
��

m2 − P0P0 −
�
PiPi þ 1

γ
ΠαΠα −

1

γ�
Πα̇Πα̇

��
α

β

ðΨLαÞ
�
Ψβ ¼ 0 ð3:9Þ

Then, both structures can be identified, e.g.,:ffiffiffiffi
F

p
jΨi ↔ f½F �αβðΨLαÞgΨβ; ð3:10Þ

being the state Ψ the square root of a spinor Φ (where the
“square root” Hamiltonian acts) such that it can be
bilinearly defined as Φ ¼ ΨLαΨ.
The operability of the pseudodifferential “square root”

Hamiltonian can be clearly interpreted if it acts on the
square root of the physical states. In the case of the
Metaplectic group, the square root of a spinor certainly
exist [29–32] making the identification Eqs. (3.8)–(3.9)
fully consistent both from the relativistic and group
theoretical viewpoints.
Is also possible to describe a complete multiplet span-

ning spins from ð0; 1=2; 1; 3=2; 2Þ. This is so because with
the fundamental states and the allowed vectorial generators,
the tower of states is finite and the states involved are all
physical, as it must be from the physical viewpoint.
The choice of Eq. (3.1) as a functional action in super-

space is justified because from the point of view of
symmetries, it contains the largest symmetry algebra of
the harmonic oscillator with 3 quadratic generators in a and
aþ (B0: even sector) and the two generators in the B1: odd
sector, describing the superalgebra Ospð1=2; RÞ with its
5 generators.
It is notable that in the general case, Spð2mÞ can be

embedded somehow in a larger algebra as Spð2mÞ þ R2m

admitting an Hermitian structure with respect to which it
becomes the orthosymplectic superalgebra Ospð2m; 1Þ.
Consequently the metaplectic representation of Spð2mÞ
extends to an irreducible representation (IR) ofOspð2m; 1Þ
which can be realized in terms of the space H of all
holomorphic functions h∶Cm→C=

R jhðzÞj2e−jzj2dλðzÞ<∞
with λðzÞ the Lebesgue measure on Cm. The restriction of

the MpðnÞ representation to Spð2mÞ, implies that the two
irreducible sectors are supported by the subspacesH� ofH,
where Hþ and H− are the spans (closed) of the set of
functions zn ≡ ðzn11 ;…:; znmm Þ with nθ ∈Z, jnj ¼P nθ,
even and odd respectively.

B. Geometrical spinorial SL(2C) description
of the Zitterbewegung

Let us briefly analyze in an algebraic description, the
origin of the quantum relativistic effects as the prolonged
highly oscillations effect or so called “Zitterbewegung.”
There are two types of states: the basic (nonobservable)
states and the observable physical states. The basic states
are coherent states corresponding to the double covering of
the SLð2CÞ, e.g., the metaplectic group [32,33] responsible
for projecting the symmetries of the 6 dimensional Mpð4Þ
group space to the 4 dimensional space-time by means of a
bilinear combination of the Mpð4Þ generators. The super-
multiplet solution for the geometric Lagrangian is given by

gabð0;λÞ ¼ hψλðtÞjLabjψλðtÞi
gabð0;λÞ ¼ exp½A�exp ½ξϱðtÞ�χfhψλð0Þjð½c�cÞabjψλð0Þi;

AðtÞ ¼−
�
m
jγj
�

2

t2þ c1tþ c2; ðc1; c2Þ∈C ð3:11Þ

where we have written the corresponding indices for the
simplest supermetric state solution, being Lab the corre-
sponding generators ∈MpðnÞ, and χf coming from the
odd generators of the big covering group of the symmetries
of the specific model. Considering for simplicity the
“square” solution for the three compactified dimensions
(spin λ fixed, ξ≡ −ðξ̄α̇ − ξαÞ), the exponential even fer-
mionic part is given by:
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ϱðtÞ≡ ϕ̊α½ðαeiωt=2 þ βe−iωt=2Þ − ðσ0Þαα̇ðαeiωt=2 − βe−iωt=2Þ�
ð3:12Þ

þ 2i
ω
½ðσ0Þαβ̇Z̄β̇ þ ðσ0Þαα̇Zα� ð3:13Þ

ϕ̊α; Zα; Z̄β̇ being constant spinors, and α and βC-numbers
(the constant c1 ∈C due to the obvious physical reasons
and the chirality restoration of the superfield solution. By
consistency, (and as in the string case), two geometric-
physical options are related to the orientability of the
superspace trajectory: α ¼ �β. We take without loss of
generality α ¼ þβ then, exactly, there are two possibilities:

(i) The compact case which is associated to the small
mass limit (or jγj ≫ 1):

ϱðtÞ ¼
 

ϕ̊α cos ðωt=2Þ þ 2
ωZα

−ϕ̊α̇ sin ðωt=2Þ − 2
ω Z̄α̇

!
ð3:14Þ

(ii) And the noncompact case, which can be associated
to the imaginary frequency (ω → iω generalized
inverted oscillators) case:

ϱðtÞ ¼
 

ϕ̊ cosh ðωt=2Þ þ 2
ωZα

− ̊ϕ̄α̇ sinh ðωt=2Þ − 2
ω Z̄α̇

!
ð3:15Þ

Obviously (in both cases), this solution represents a
Majorana fermion where the C (or hypercomplex)
symmetry wherever the case) is inside the constant
spinors.

The spinorial even part of the superfield solution in the
exponent becomes:

ξϱðtÞ ¼ θα
�
ϕ̊α cos ðωt=2Þ þ

2

ω
Zα

�
− θ̄α̇

�
− ̊ϕ̄α̇ sin ðωt=2Þ −

2

ω
Z̄α̇

�
ð3:16Þ

We easily see that in the above expression there appear a
type of continuous oscillation between the chiral and
antichiral part of the bispinor ϱðtÞ, or Zitterbewegung as
shown qualitatively in Fig. 1 for suitable values of the
group parameters. This oscillation reflects in our context
the underlying chiral and antichiral quantum structure of
the spacetime. Thus, the physical meaning of such a
relativistic oscillation (Zitterbewegung) does appear here
as an underlying geometrical supersymmetric effect,
namely a kind of duality between supersymmetric and
relativistic effects.
In the next section we provide more details about how

the quantum dynamics and space-time structure emerge
from this principle of symmetry.

IV. RELATIVISTIC WAVE EQUATION AND THE
COMPLETE HILBERT SPACE

The importance of illustrating with this model based on
the simplest N ¼ 1 supergroup is that it has a formal
equivalence with known cases containing the Poincare
group, generally coming from symmetry breaking models
with minimum group manifolds SO(1,4), SO(2,3) as
characteristic examples, SUSYN¼1 ∼ SOð1; 4Þ. Recalling
the geometric Lagrangian constructed from the line element
from the Maurer Cartan forms induced via pullback (e.g.,
nonlinear realization for example) of a fundamental sym-
metry group:

S ¼
Z

τ2

τ1

dτLðxÞ ¼ −m
Z

τ2

τ1

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωABω

AB
q

ð4:1Þ

A;B ¼ 0;…:; 5. The line element is based on the Cartan
forms of the symmetry group, for which it is induced and
reflected in the geometric Lagrangian. Consequently, for
SO(1,4), for example, we have 10 that agree with the
number of generators of the group, as it must be, the
indices of the forms run from 0 to 4. If by some process,
the symmetry is preferably dynamically broken, the
Cartan forms from the point of view of the algebra, are
divided into the 6 generators of SO(1,3) plus 4 generators
of the Cartan forms, namely → ωAB → ωμν;ωμ4 ∼

ffiffiffi
λ

p
θμ

(Poincaré—tetrad fields), μ; ν ¼ 0;…; 3

S ¼
Z

τ2

τ1

dτLðxÞ ¼ −m
Z

τ2

τ1

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμνω

μν þ ωμ4ω
μ4

q
with ωμ4ω

μ4 ¼ λθμθ
μ. Following on the arguments given

in the precedent paragraphs, we are going to see how wave
equations for physical states emerge from the very
spacetime structure.

FIG. 1. Oscillation between the chiral and antichiral part of the
bispinor ϱðtÞ, or Zitterbewegung, for suitable values of the group
parameters. This oscillation reflects the underlying chiral and
antichiral quantum structure of the spacetime.
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A. Mp (2)—Coherent basic and bilinear states

Now we will demonstrate how the sector of the meta-
plectic group becomes determinant in the problem of
determining the geometric structure and symmetries of
the interplay between physical states and spacetime. To this
end, we know from the so-called positive energy equations,
that these types of equations should emerge. We introduce
the transformation (evolution-type ansatz)

ΦγðtÞ ¼ e½BðtÞþpixiþξϱðtÞ�Φγð0Þ

Note that, in contrast to the case where only σ0 ¼ I2 comes
into play, here we include the parameters pi in order to
generate the complete and less trivial matrix structure.
Consequently,�

jγj2ð∂20 − ∂
2
i Þ þ

Δþ − Δ−

4
þm2

�
1=2

jΨi ¼ 0 ð4:2Þ

��
jγj2ð∂20 − ∂

2
i Þ þ

Δþ − Δ−

4
þm2

�
α

β

jΦαi
�

1=2
¼ 0 ð4:3Þ

where Δ� ≡ ½∂η ∓ ∂ξ � iσμ∂μðη� ξÞ�2 and we consider
the equivalence at the level of operators between the square
root on the basic state of the metaplectic jΨi defined as an
independent coherent state in each even or odd irreducible
sector, and the radicand on the bilinear Φα ¼ hΨjLαjΨi
written in the ket usual form: jΦαi ¼ ð a

aþÞαjΨi.
Consequently, the sector B0 (Bose) generates the system

jγj2ðB̈þ Ḃ2 − p2
i Þ þm2 ¼ 0

where the function B is determined by

B ¼ ln ½c2 cos bðtÞ�; bðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jγj2 − p2
i

s
ðt − t0Þ

It is important to notice that in the general case B ¼
ln ½c2 cos bðtÞ þ c02 sin bðtÞ�we take without losing general-
ity c02 ¼ 0 because we concentrate on the Mp(2) part. It is
easy to see that if c02 ¼ ic2, the solution for B is propor-

tional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jγj2 − p2
i

q
ðt − t0Þ and also to the Gaussian

resolvent packet with the factor ðm2

jγj2 þ p2
i Þ instead of

just m2

jγj2.
The sector B1 (Fermi N ¼ 1) gives us the equation

jγj2ξðρ̈þ 2 · ρḂÞ ¼ 0

with a general solution of the form

ϱðtÞ¼ 1

c22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jγj2−p2
i

q ϕ̊α½α tanbðtÞ−βðσ0Þαα̇ secbðtÞ� ð4:4Þ

The two parts are not independent (in chiral and antichiral
zones). Therefore, the equation reduces finally to:� −ipz − Ḃ −ipx − py

−ipx þ py ipz − Ḃ

�
α

β

jΦαi ¼ 0 ð4:5Þ

Knowing that (i) jΦαi ¼ LαjΨi is the generator in vector
representation based on annihilation and creation operators,
and that (ii) It transforms as a spinor under the group
SO(1,2), SU(1,1), and Mp(2) (with the respective mappings
between them), it is shown that jΨi is the coherent state
formed by two separate even and odd coherent states of the
considered metaplectic group. We explicitly have� −ipz − Ḃ −ipx − py

−ipx þ py ipz − Ḃ

�
α

β

�
a

aþ

�
α

jΨi ¼ 0 ð4:6Þ

which have exactly the same appearance as the equations of
the type of internal variables and positive energies of
Majorana and Dirac for example. This is easily seen by
introducing the choice of parameters: pz ¼ −iϵ; px ¼ 0;
py ¼ p: �

ϵþ Ḃ p

−p −ϵþ Ḃ

�
α

β

�
a

aþ

�
α

jΨi ¼ 0 ð4:7Þ

Notice that Ḃ would take the formal role of “mass” and
the transformations are just of the squeezed type.

B. The Mp(2) squeezed vacuum and physical states

The displacement operator in the case of the vacuum
squeezed is an element of Mp(2) written in the respective
variables of the canonical annihilation and creation oper-
ators.

SðξÞ ¼ exp
1

2
ðξ�a2 − ξaþ2Þ∈Mpð2Þ: ð4:8Þ

Seeing Eqs. (4.6) and (4.7) the relationship is shown
directly:�

a

aþ

�
→ SðξÞ

�
a

aþ

�
S−1ðξÞ ¼

�
λ μ

μ� λ�

��
a

aþ

�
ð4:9Þ

From Eqs. (4.8) and (4.9), we see that the dynamics of these
“square root” fields of Φγ , in the particular representation
that we are interested in, is determined by considering these
fields as coherent states in the sense that they are eigen-
states of a2 via the action of the Mp(2) group that is of
the type:
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jΨ1=4ð0; ξ; qÞi ¼
Xþ∞

k¼0

f2kð0; ξÞj2ki ¼
Xþ∞

k¼0

f2kð0; ξÞ
ða†Þ2kffiffiffiffiffiffiffiffiffiffiffið2kÞ!p j0i

jΨ3=4ð0; ξ; qÞi ¼
Xþ∞

k¼0

f2kþ1ð0; ξÞj2kþ 1i ¼
Xþ∞

k¼0

f2kþ1ð0; ξÞ
ða†Þ2kþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ 1Þ!p j0i ð4:10Þ

For simplicity, we will take all normalization and
fermionic dependence or possible fermionic realization,
into the functions fðξÞ. Explicitly, at t ¼ 0, the states are

jΨ1=4ð0; ξ; qÞi ¼ fðξÞjαþi
jΨ3=4ð0; ξ; qÞi ¼ fðξÞjα−i ð4:11Þ

where jα�i are the CS basic states in the subspaces λ ¼ 1
4

and λ ¼ 3
4
of the full Hilbert space. In other words, the

action of an element of Mpð2Þ keeps them invariant
(coherent), ensuring the irreducibility of such subspace,
e.g.,:

H ∼
�
H1=4

H3=4

�
Consequently, the two symmetric and antisymmetric com-
binations (�) of the two sets of states ð1=4; 3=4Þ will span
all the Hilbert space: H:

jΨ�i ¼ jΨ1=4i � jΨ3=4i; j�i ¼ jþi � j−i ð4:12Þ

And the general bilinear states are of the type:

h�jLαj ∓i and h�jLαj�i

where:

Lα ¼
�

α

α�

�
; Lα ¼

�
a2

ðaþÞ2
�

α

;

jΨ1=4i ¼ jþi; jΨ3=4i ¼ j−i

For example, we have for the states with the explicit form:

Φαðt; λÞ ¼ hΨλðtÞjLαjΨλðtÞi

¼ eAðtÞeξϱðtÞhΨλð0Þj
�

a2

ðaþÞ2
�

α

jΨλð0Þi ð4:13Þ

Φαðt; λÞ ¼ eAðtÞeξϱðtÞjfðξÞj2
�

α2λ
α�2λ

�
α

ð4:14Þ

λ being the helicity label or the spanned subspace, e.g., (�),
and AðtÞ is given by

A ¼ −
�
m
jγj
�

2

t2 þ c1tþ c2; ðc1; c2Þ∈C ð4:15Þ

The square root solution takes the following form

ΨλðtÞ ¼ e
1
2
AðtÞe

ξϱðtÞ
2 jfðξÞj

�
α

α�

�
λ

ð4:16Þ

where λ ¼ ð1=4; 3=4Þ. Notice the difference with the case
of the Heisenberg-Weyl realization for the states Ψ:

jΨi ¼ fðξÞ
2

ðjαþi þ jα−iÞ ¼ fðξÞjαi ð4:17Þ

where, the linear combination of the states jαþi and jα−i
span now the full Hilbert space, being for this CS basis
λ ¼ 1

2
. The “square” states at t ¼ 0 are

Φαð0Þ ¼ hΨð0ÞjLαjΨð0Þi ¼ f�ðξÞfðξÞ
�

α

α�

�
α

: ð4:18Þ

The square state and the obtained square root state at time t
are

ΦγðtÞ ¼ eAeξϱðtÞjfðξÞj2
�

α

α�

�
α

;

ΨðtÞ ¼ e
1
2
Ae

ξϱðtÞ
2 jfðξÞj

�
α1=2

α�1=2

�
: ð4:19Þ

Let us discuss the obtained results:
(i) We can see that the algebra, carrying the topological

information of the group manifold, is “mapped” over
the spinors solutions through the eigenvalues α and
α� from the dynamical viewpoint. The constants in
the exponential functions of the Gaussian type in the
solutions come from the action of a unitary operator
over the respective coherent basic states in each
Irreducible representation.

(ii) The Ospð1=2;RÞ supergroup allows a metaplectic
representation containing the complete superalgebra
in functions of a single complex variable z exactly
coinciding with the example treated here: it contains
SUð1; 1Þ as subgroup which can lead or explain the
fermionic factors of the type ½expðξϱðtÞ

2
Þ� × jfðξÞj in

the solutions.
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(iii) The K� and K0 generators operate over the Bose
states (B0 sector). The B1 sector of the algebra given
by a and aþ operates over the fermionic part. In this
case, the coherent and squeezed states that can be
constructed are eigenstates of the displacement and
squeezed operators respectively (as in the standard
case) but they cannot minimize simultaneously the
dispersion of the quadratic Casimir operator, such
that they are not minimum uncertainty states. This is
so because the only states which minimize the
Schrodinger uncertainty relation are those obtained
by applying the displacement or squeezed operator
on the lowest normalized state.

(iv) Geometrically, in the description of any physical
system through SU(1,1) coherent states (CS) or
squeezed states (SS), the orbits will appear as the
intersections of constant-energy surfaces with one
sheet of a two sheeted hyperboloid—the curved
phase space of SUð1; 1Þ or Lobachevsky plane—in
the space of averaged algebra generators. The group
containing SUð1; 1Þ as subgroup linear and bilinear
functions of the algebra generators, can factorize
operators as the Hamiltonian or the Casimir operator
(when averaged with respect to the group CS or SS):
this defines corresponding curves in the averaged
algebra space. If the exact dynamics is confined to
the SUð1; 1Þ hyperboloid, the validity of the
Ehrenfest’s theorem for the coherent or squeezed

states implies that it necessarily coincides with the
variational motion that derives from the Euler-
Lagrange equations for the Lagrangian

L ¼ hzji ∂̂
∂t

− Ĥjzi;

that will be different if jzi ¼ jαi or jzi ¼ jα�i, as it
is evident.

C. Discrete representation

Equation (4.16) describes a standard coherent state
(eigenstate of the operator (a) as a linear combination of
two states belonging toH1=4 andH3=4 respectively, (which
are two independent coherent states as eigenstates of (a2).
The corresponding metaplectic vacuum as fiducial vector
of the physical system is:

jz0iMpð2Þ ¼ Mð1þM2aþÞj0i ð4:20Þ

M≡ ½jm2 − ϵ2j þ p2signðϵ2 −m2Þ�1=4 ð4:21Þ

Notice that this vacuum is not singular at m → ϵ but is
analytically continued into the complex plane where it is
defined. Then, the solution for Eq. (4.7) is the following:

jΨiMpð2Þ ≡ Sðt; A; p; ϵÞjz0iMpð2Þ ð4:22Þ

jΨiMpð2Þ ¼
�
1þ p2signE

jEj
�
1=4

e
p=2

ðmþϵÞðaþÞ2
�
1þ

�
1þ p2signE

jEj
�

1=2

aþ
�
j0i

E ≡ ϵ2 − ðȦÞ2 ð4:23Þ

being Sðt; A; p; ϵÞ∈Mpð2Þ the operator Eq. (4.8) for the set of parameters and functions in Eq. (4.7). The total solution of the
system Eqs. (4.2) and (4.3) for these parameters being GjΨiMpð2Þ with G≡ eðAþξρÞðt;m;p;ϵÞeðpy−iϵzÞ.
The Bargmann representation of H associates an entire analytic function fðzÞ of a complex variable z, with each vector

jφi∈H in the following manner:

jφi∈H → fðzÞ ¼
X∞
n¼0

hnjφi znffiffiffiffiffi
n!

p ð4:24Þ

hφjφi≡ kφk2 ¼
X∞
n¼0

jhnjφij2 ¼
Z

d2z
π

e−jzj2 jfðzÞj2 ð4:25Þ

where the integration is over the entire complex plane. The above association can be compactly written in terms of the
normalized coherent states. Consequently:

(i) The H1=4 states occupy the sector even of the full Hilbert space H and we describe them as:

fðþÞðz;ωÞ ¼ ð1 − jωj2Þ1=4eωz2=2 ¼ ð1 − jωj2Þ1=4
X

n¼0;1;2;…

ðω=2Þ2n
ð2nÞ! z2n ð4:26Þ

Then, in the vector representation we have:
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jΨðþÞðωÞi ¼ ð1 − jωj2Þ1=4
X

n¼0;1;2;…

ðω=2Þ2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p j2ni: ð4:27Þ

Consequently, the H1=4 (or even) number representation is obtained as:

h2njΨðþÞðωÞi ¼ ð1 − jωj2Þ1=4 ðω=2Þ
2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p ; h2nþ 1jΨðþÞðωÞi≡ 0: ð4:28Þ

(ii) The H3=4 states occupy the odd sector of the full Hilbert space H and we similarly describe them as for H1=4:

fð−Þðz;ωÞ ¼ ð1 − jωj2Þ3=4zeωz2=2 ¼ ð1 − jωj2Þ3=4
X

n¼0;1;2;…

ðω=2Þ2nþ1

ð2nþ 1Þ! z
2nþ1 ð4:29Þ

and the vector representation is

jΨð−ÞðωÞi ¼ ð1 − jωj2Þ3=4
X

n¼0;1;2;…

ðω=2Þ2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p j2nþ 1i ð4:30Þ

The H3=4 (or odd) number representation is consequently:

h2nþ 1jΨð−ÞðωÞi ¼ ð1 − jωj2Þ3=4 ðω=2Þ2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p ; h2njΨð−ÞðωÞi≡ 0 ð4:31Þ

(iii) The full Hilbert space, defined by the direct sum H ¼ H1=4 ⊕ H3=4, is the following:

fðz;ωÞ ¼ fðþÞðz;ωÞ þ fð−Þðz;ωÞ ð4:32Þ

fðz;ωÞ ¼ ð1 − jωj2Þ1=4
X

n¼0;1;2;…

ðω=2Þ2n
ð2nÞ! z2n

�
1þ ð1 − jωj2Þ1=2

ð2nþ 1Þ z
�

ð4:33Þ

Then, in complete analogy with their even and odd subspaces, the corresponding states are

ΨðωÞ ¼ ΨðþÞðωÞ þ Ψð−ÞðωÞ ð4:34Þ

ΨðωÞ ¼ ð1 − jωj2Þ1=4
X

n¼0;1;2;…

ðω=2Þ2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p �
1þ ð1 − jωj2Þ1=2

ð2nþ 1Þ aþ
�
j2ni ð4:35Þ

hnjΨðωÞi ¼
8<: ð1 − jωj2Þ1=4 ðω=2Þ2n

ð2nÞ!
ffiffiffiffiffiffiffi
2n!

p
even states

ð1 − jωj2Þ3=4 ðω=2Þ2nþ1

ð2nþ1Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p

odd states
ð4:36Þ

where the link between the physical observables and the group parameters is given by the following expression
(measure): �

1þ p2signðϵ2 −m2Þ
jm2 − ϵ2j

�
1=4

→ ð1 − jωj2Þ1=4 ð4:37Þ

Figures 2 and 3 display the discrete spectra in the number representation of the coherent states inH1=4 (even n) andH3=4
(odd n).
The limit ϵ → m:
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This is precisely the limit jωj2 → 1, which from the point
of view of the Metaplectic analysis corresponds to the edge
of the complex disc. As we could easily see, the state
solutions span the full spectrum corresponding to H. What
happens is that in the limit ϵ → m the density of states
corresponding to H1=4 is greater than that of the odd
states belonging to H3=4. It is for this reason that the states
belonging to H1=4, will survive in this limit.

V. QUANTUM SPACE-TIME: DE SITTER AND
BLACK HOLE COHERENT STATES

A. Quantum space-time

We restrict in the sequel to the purely bosonic space-time
and consider the ðX; TÞ quantum space and time dimensions
which are relevant to the quantum space-time structure. The
remaining spatial transverse dimensions X⊥ are not consid-
ered here as fully quantum noncommuting coordinates.

Notice that although the transverse spatial dimensions ⊥
have zero commutators they can fluctuate. This corresponds
to quantize the two-dimensional space-time surface which is
relevant to determine the light-cone structure. This is enough
for considering the novel features arising in the global
quantum space-time and the quantum light cone.
The relevant quantum space-time ðX; TÞ structure is

described essentially by a quantum inverted oscillator type
algebra with discrete hyperbolic levels ðX2 − T2Þn ¼
ð2nþ 1Þ; n ¼ 0; 1; 2;…. The zero point energy (n ¼ 0)
being the Planck energy level. The truly quantum gravity
(trans-Planckian) vacuum in the quantum space time is
delimitated by the four quantum hyperbolae X2 − T2 ¼ �1
(in Planck units) of the Planck scale (n ¼ 0) level. This is
precisely a constant curvature de Sitter vacuum.
The de Sitter space-time can be described as a (inverted,

i.e., with imaginary frequency) harmonic oscillator, the
oscillator constant and length being [9,34]:

κosc ¼ H2; H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πGΛÞ

3

r
¼ c=losc ð5:1Þ

The oscillator length losc is classically the Hubble radius,
the Hubble constantH ¼ κ being the surface gravity, as the
black hole surface gravity is the inverse of (twice) the black
hole radius.
Interestingly, the description of de Sitter space-time as an

(inverted, classical, and quantum) harmonic oscillator
derives from three results:

(i) From the Einstein Equations on the one hand,
[9–11,35],

(ii) From the de Sitter geometrical description on the
other hand: an hyperboloid embedded in flat Min-
kowski space-time with one more spatial dimension:

−T2 þ X2 þ X2
i þ Z2 ¼ L2

QG ð5:2Þ

LQG ¼ ðLQ þ LGÞ ¼ lP

�
H
hP

þ hP
H

�
; ð5:3Þ

LQG is the complete length allowing to describe both
the classical, semiclassical and quantum (trans-
Planckian) gravity domains, lP the constant Planck
length:

LQ ¼ l2P=LG; lP ¼ ð2Gℏ=c3Þ1=2; hP ¼ c=lP

ð5:4Þ

(iii) From the hyperbolic quantum space-time structure
which delimitates a purely quantum trans-Planckian
central region of constant curvature, [8–10].

In the anti–de Sitter space-time, the description is the
same but with −T2 þ X2 þ X2

i þ Z2 ¼ −L2
QG, and there-

fore anti–de Sitter background is associated to a real

FIG. 2. The H1=4 discrete (number representation) states
occupy the even sector of the full Hilbert space H. This
irreducible representation of the Mp (2) group is not dense (in
a topological sense) but it contains the ground state j0i.

FIG. 3. The H3=4 discrete (number representation) states
occupy the sector odd of the full Hilbert spaceH. This Irreducible
representation of Mp (2) is not dense (in a topological sense) but
its lower or fundamental state is the first excited state j1i.
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frequency (noninverted) harmonic oscillator. Also, the
propagation of fields and linearized perturbations in the
de Sitter vacuum all satisfy equations which are like
the inverted oscillator equations, [12,13,36], or the normal
oscillator equations in anti–de Sitter space-time.
In the (Schwarzschild) black hole space-time: (quantum

interior constant curvature vacuum; semiclassical and
classical exterior regions), the physical magnitudes as
the oscillator constant H2 and the typical oscillator length
losc are related to the black hole mass M:

H¼ c=losc ¼ hP

�
mP

M

�
; Λ¼ λP

�
mP

M

�
2

; λP ¼ 3h2P=c
4

ð5:5Þ

Classical space-time regions or regimes are described by
the low values of Λ and of the gravitational density ρG, and
the large classical gravitational sizes LG ≫ lP:

LG ¼ lP

ffiffiffiffiffi
λP
Λ

r
¼ lP

�
M
mP

�
ð5:6Þ

Truly Quantum gravitational regimes, eg in the trans-
Planckian domain of very small sub-Planckian sizes, very
high quantum density ρQ and very high vacuum values ΛQ:

LQ ¼ lP

ffiffiffiffiffi
Λ
λP

s
¼ lP

�
mP

M

�
; ΛQ ¼ λ2P

Λ
ð5:7Þ

Consistently, the high value of the classical/semiclassical
gravitational entropy SG is equal (in Planck units) to such
high ΛQ value. This is clearly elucidated by the following
classical–quantum gravity duality relations in this context:

ρG
ρP

¼
�
lP
LG

�
2

¼
�
mP

M

�
2

¼
�
SQ
sP

�
ð5:8Þ

ρQ
ρP

¼
�
lP
Λ

�
¼
�
M
mP

�
2

¼
�
SG
sP

�
ρP ¼ 3h2P=8πG; sP ¼ πκB ð5:9Þ

The last right-hand side (rhs) of Eqs. (5.8) and (5.9) show
the link to the gravitational entropy: quantum gravitational
entropy SQ and classical/semiclassical SG entropy. (This last
is the Bekenstein-Hawking-Gibbons entropy [37–39]).
Lower case magnitudes with subscript P denote the corre-
sponding Planck scale fundamental constant magnitudes.
The external BH region is precisely a classical gravity

dilute vacuum, which ðΛ; ρGÞBH values in the present
universe cannot be larger than the observed very low
values of ðΛ; ρGÞ Refs. [14–22]. Their quantum duals
provide an upper bound to the high values ðΛQ; ρQÞ in

the quantum central BH vacuum region as determined by
Eqs. (5.8) and (5.9).

B. QST deS and BH. Minimal uncertainty
and Mp(2) vacuum

For the quantum space-time (QST) de Sitter states, the
oscillator parameters entering in the coherent states and
their representations Sec. II are the following:
As discussed above, de Sitter space-time is described by

an inverted oscillator with oscillator length losc ¼ c=H, and
the generic quantum coherent states built in Sec. II, have in
particular the inverted oscillator length losc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
.

The de Sitter quantum space-time coherent states are
described by the states Eqs. (2.2)–(2.4), Eq. (2.6) with the
corresponding oscillator constant given by:

l−2oscdS ¼
�
mω

ℏ

�
dS

¼ H2 ¼ Λ
3

ð5:10Þ

In the (Schwarzschild) black hole space-time, the physi-
cal magnitudes as the oscillator constant and the oscillator
length are related to the black hole mass M:

l−2oscBH ¼
�
mω

ℏ

�
BH

¼ l−2P

�
mP

M

�
2

lP ¼ ð2Gℏ=c3Þ1=2; hP ¼ c=lP ð5:11Þ

The complete length LQG in Eq. (5.2) covers both the
classical, semiclassical and quantum (trans- Planckian)
gravity domains. Quantum space-time derives from the
quantum non commutative space and momentum (phase
space) operators with the mapping of momentum into time,
Refs. [8–10,40]. As a consequence, quantum space-time
described by coherent states have minimal and equally
distributed uncertainty: ΔXΔT ¼ ℏ=2

ðΔXÞ2 ¼
�

ℏ
2mω

�
; ðΔTÞ2 ¼

�
ℏmω

2

�
: ð5:12Þ

Therefore, coherent states of quantum de Sitter space-time
have the spatial and temporal uncertainty:

ðΔXÞ2deS ¼
�

ℏ
2mω

�
deS

¼ ℏ
2H2

ð5:13Þ

ðΔTÞ2deS ¼
ℏH2

2
: ð5:14Þ

And for the Black Hole coherent states, the quantum
uncertainty in space and time is:

ðΔXÞ2BH ¼
�

ℏ
2mω

�
BH

¼ l2P
2

�
M
mP

�
2

ð5:15Þ
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ðΔTÞ2BH ¼ t2P
2

�
mP

M

�
2

ð5:16Þ

(lP and tP being the Planck length and time). The de
Sitter and black hole coherent states derive from the explicit
expressions Eqs. (2.2)–(2.4), Eq. (2.6) with the respective
(deS) and (BH) physical magnitudes given by Eqs. (5.10)
and (5.11). In particular, the quantum metaplectic Mp (2)
vacuum is given by:

ðψvacuumjMPð2ÞÞdeS
¼
�
i
π

�
1=4 ffiffiffiffi

H
p

e−
i
2
ðHXÞ2

�
HX

2
ffiffiffi
2

p ð1þ iÞ þ iHX

2
ffiffiffi
2

p
�

ðψvacuumjMPð2ÞÞBH
¼
�
i
π

�
1=4 ffiffiffiffiffiffiffi

2K
p

e−
i
2
ð2KXÞ2

�
KXffiffiffi
2

p ð1þ iÞ þ iKXffiffiffi
2

p
�

ð5:17Þ

where:

K ¼ 1=ð2RBHÞ ¼ 1=ð4GMÞ ð5:18Þ

Both vacuum states are expressed in terms of the surface
gravity (H orK) respectively, or similarly in terms of the de
Sitter or BH radius. Both states are totally regular, as it
must be for quantum space-time. For X ≫ RBH, (RBH being
the BH radius), and asymptotically for very large X, the
quantum coherent state consistently encompasses the
quantum space classicalization, as such exterior BH regions
are semiclassical and classical. We discuss below the
excited (α) states.

C. Continuum and discrete deS and BH coherent states

Quantum space-time de Sitter and black hole coherent
states follow from Eqs. (2.2)–(2.4) and Eq. (2.6) with
the physical magnitudes and uncertainty relations
Eqs. (5.13)–(5.16). The quantum space-time deS coherent
states have the following expressions:

ψαðXÞdeS ¼
�
i
π

�
1=4 ffiffiffiffi

H
p

e−
1
2
jαj2

× exp

�
αHXffiffiffi

2
p ð1þ iÞ − iH2X2

2

�
ð5:19Þ

ψαðTÞdeS ¼
�
i
π

�
1=4 1ffiffiffiffiffiffiffi

ℏH
p e−

1
2
jαj2

× exp

�
αTffiffiffi
2

p
ℏH

ð1þ iÞ − iT2

2ℏ2H2

�
: ð5:20Þ

A similar coherent state expression holds for the BH space-
time with the corresponding BH factor 2K instead of H,
being K the surface gravity Eq. (5.18).

α is the complex constant number, eigenvalue of the
displacement operatorDðαÞ, which characterizes the coher-
ent state excitations (displacement from the vacuum), and
their continuum spectrum.
(i) The quantum space-time coherent states Eqs. (5.19)

and (5.20) clearly display an exponential de Sitter expan-
sion term αT=ð ffiffiffi

2
p

ℏHÞ plus a phase (linear and quadratic)
in ½ðαT=ð ffiffiffi

2
p

ℏHÞ�, which is simply T=ð2 ffiffiffi
2

p
πTH, TH being

the Hawking de Sitter temperature. The quantum space-
time exhibits an accelerated expansion plus quantum
oscillations of the same sign (linear term), and of different
sign (quadratic term). The presence of these oscillations is a
new feature of quantum space-time.
(ii) The continuum (α)-coherent states Eqs. (5.19) and

(5.20) describe semi-classical, (or semiquantum), space-
time regimes and in agreement with the space-time
described by quantum oscillators. Quantum discrete
space-time becomes more and more continuous for large
n in agreement with its description by continuum coherent
states. Consistently, the continuum coherent states are
characterized by the Hawking temperature which is a
semiclassical (or semiquantum) temperature.
(iii) We see that:

jΨαðXÞdeSj2− jΨαðTÞdeSj2

¼ 1ffiffiffi
π

p exp−jαj2
				Hexp ½cðαÞHX�− 1

ℏH
exp

�
cðαÞ T

ℏH

�				
cðαÞ¼

ffiffiffi
2

p
ðReα− ImαÞ ð5:21Þ

which reflects the quantum hyperbolic space-time struc-
ture. Let us define:

RαðX; TÞ2 ≡ jΨαðXÞdeSj2 − jΨαðTÞdeSj2

(i) For α ¼ 0:

R0ðX; TÞ2 ¼
1ffiffiffi
π

p
				H −

1

ℏH

				 ð5:22Þ

which can be also expressed in terms of the quantum
uncertainties:

R0ðX; TÞ2 ¼
ffiffiffiffiffiffi
2

πℏ

r 				ΔT −
ΔX
ℏ

				 ð5:23Þ

(ii) For:

RαðX; TÞ2 ¼ 0 → jΨαðXÞdeSj ¼ �jΨαðTÞdeSj ð5:24Þ

Clearly, α ¼ 0, corresponds toH ¼ 1=
ffiffiffi
ℏ

p
, that is the Planck

scale. We see the power of coherent states in describing
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space-time and even accounting for the Planck scale,
at which:

ΔX¼ℏ=
ffiffiffi
2

p
; ΔT ¼ 1=

ffiffiffi
2

p
ðPlanckscaleÞ ð5:25Þ

Obviously, for coherent states it satisfies ΔXΔT ¼ ℏ=2.
For the squeezed states, particularly interesting is the

Wigner quasiprobability function, which have here the
following expression:

WsqðXTÞdeS ¼ exp

�
−
�
H2X2 −

T2

ℏ2H2

��
ð5:26Þ

This clearly shows the hyperbolic structure of quantum
space-time. The characteristic light-cone structure is mani-
fest here because there is no any α-deformation in this case.
Figure 4 displays the space-time squeezed state Wigner

function and its light-cone hyperbolic structure.
(iii) The discrete quantum space-time (Planckian and

trans-Planckian) regimes are described by discrete states,
e.g., the discrete coherent states of Sec. IV C. The discrete
spectrum of these states describes the different quantum
space-time excitation levels, the less excited (fundamental,
n ¼ 0) level corresponding to the Planck scale, (the cross-
ing or transition scale). Interestingly, as seen in Secs. IVand
IV C the metaplectic group states with its both sectors and
discrete representations, j2ni and j2nþ 1i, even and odd
states, fully cover the complete Hilbert space H

H ¼ HðþÞ ⊕ Hð−Þ ð5:27Þ
The (�) symmetric and antisymmetric sum of the two kind
(even and odd) states provides the complete covering of the
Hilbert space and of the space-time mapped from it:

ΨðnÞ ¼ ΨðþÞð2nÞ þ Ψð−Þð2nþ 1Þ ð5:28Þ

where ΨðþÞ and Ψð−Þ are obtained from Eqs. (4.34)–(4.36).
For de Sitter space, both sets of states are given by:

ΨðþÞð2nÞdeS ¼ j1 −H4j1=4 ðH
2=2Þ2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p ð5:29Þ

Ψð−Þð2nþ 1ÞdeS ¼ j1 −H4j3=4 ðH
2=2Þ2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p ð5:30Þ

where we take into account that in the fully quantum trans-
Planckian de Sitter phase [9]: the quantum H is H > 1 and
thus the analytic covering in this phase. In addition, the
quantum discrete levels of H are [9]: HQn ¼

ffiffiffiffiffiffi
2n

p
(even

levels), and HQn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
, (odd levels), which leads to:

ΨðþÞð2nÞdeS ¼ j1 − 4n2j1=4 ð2nÞ2n
22n

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p ð5:31Þ

Ψð−Þð2nþ1ÞdeS¼ ½4nðnþ1Þ�3=4 ð2nþ1Þ2nþ1

22nþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ1Þ!p ð5:32Þ

It is worth mentioning that independently of this Mp(n)
coherent state framework, we obtained in Refs. [8,9,40],
similar discrete levels in terms of the global cart X, or the
local ones x constructed from the global (complete)
classical–quantum duality including gravity [40]. In such
levels, the two kind of sectors and their global (�) covering
do appear, which reflects some kind of relation between the
MpðnÞ symmetry and classical–quantum duality:

Xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1

p
; or xn� ¼ ½Xn�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
n−1

q
�; n¼ 0;1;2;…:

ð5:33Þ

The condition X2
n ≥ 1 simply corresponds to the whole

spectrum n ≥ 0:

xn� ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi2nþ 1
p �

ffiffiffiffiffiffi
2n

p
�

xn¼0ðþÞ ¼ xn¼0ð−Þ ¼ 1∶ Planck scale; ð5:34Þ

which complete all the levels. The (�) branches consis-
tently reflect:

(i) The classical–quantum duality properties of the
global space-time.

(ii) The two
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp

and
ffiffiffiffiffiffi
2n

p
, even and odd (local)

sectors. Each symmetric or antisymmetric sum is
necessary to cover the whole manifold. The corre-
sponding (�) global states are complete, CPT and
unitary, the levels n ¼ 0; 1; 2;…., cover the whole
Hilbert space H ¼ HðþÞ ⊕ Hð−Þ and all space-time
regimes.

(iii) The total n states range over all scales from the
lowest excited levels to the highest excited ones

FIG. 4. The squeezed quasi-probability Wigner function
WðX; TÞ of quantum space-time. WðX; TÞ clearly shows the
hyperbolic light-cone space-time structure and with symmetric
form. For the coherent states, WαðX; TÞ endows the hyperbolic
structure but with a linear α tail deformation in X or T.
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covering the two dual branches (þ) and (−) or
Hilbert space sectors.

VI. IMAGINARY TIME. COHERENT STATES OF
QUANTUM GRAVITATIONAL INSTANTONS

Taking imaginary time T ¼ iT , t ¼ iτ, yields to the
elliptic (or circular) structure of space-time and of the phase
space, e.g., this corresponds in particular to the normal (non
inverted) oscillator description. That is to say, quantum
space-imaginary time instantons correspond to the real
frequency quantum oscillators of phase space. They
describe in particular, quantum tunneling effects between
different states or different vacua, or different phase (space)
regions. Besides being saddle points in an euclidean
quantum gravity path integral, they can describe thermal
features if the imaginary time endows periodicity.
In the classical (nonquantum) BH space-time, the iden-

tification T ¼ iT , t ¼ iτ, transforms the hyperbolic space-
time structure into a circular structure: The classical
horizon X ¼ �;T collapses to the origin X ¼ �T ¼ 0.
In the classical (nonquantum) BH instanton, the interior is
cutted, no horizon, and no central curvature singularity,
does appear: The classical BH instanton is regular but not
complete: The interior BH region is not covered by the
classical instanton.
In the complete quantum BH space-time, the quantum

hyperbole ðX2 − T2 ¼ l2PÞ replace the characteristic lines

due to the nonzero ½X; T� commutators, and in the corre-
sponding quantum BH instanton the horizon does not
collapse to the origin but to the Planck scale circle
ðX2 þ T 2 ¼ l2PÞ. The complete quantum BH instanton
includes the usual classical/semiclassical BH instanton
for radius larger than the Planck length, plus a new central
highly dense quantum core of Planck length radius and
high constant and finite curvature corresponding to the
black-hole interior, Ref. [10] which is absent in the
classical BH instanton.
Particularly interesting here is the Wigner quasiprob-

ability function for the squeezed states, which for the BH
have the following expression:

WsqðXT ÞBH ¼ 2 exp

�
−
�
4K2X2 þ T 2

4ℏ2K2

��
ð6:1Þ

where the BH oscillatory space-time parameters are
expressed in terms of the BH surface gravity K
Eq. (5.18). WsqðXT Þ clearly shows the circular structure
of the quantum space- imaginary time instantons. The
circular structure is manifest here without deformation
because the α tail present for the coherent states is absent
in this case.
The coherent states for the quantum gravitational instan-

ton, here we elucidate for the BH, follow similar expres-
sions as Eqs. (5.19) and (5.20) but with the BH factor 2K:

ΨαðXÞBH ¼
�
i
π

�
1=4 ffiffiffiffiffiffiffi

2K
p

e−
1
2
jαj2 exp ½

ffiffiffi
2

p
αKXð1þ iÞ − 2iK2X2� ð6:2Þ

ΨαðT ÞBH ¼
�
i
π

�
1=4

ffiffiffiffiffiffiffiffiffi
1

2ℏK

r
e−

1
2
jαj2 exp

�
−

αT

2
ffiffiffi
2

p
ℏK

ð1 − iÞ þ iT 2

8ℏ2K2

�
ð6:3Þ

Therefore:

jΨαðXÞBHj2 þ jΨαðT ÞBHj2 ¼
e−jαj2ffiffiffi

π
p

�
2K exp ½2cðαÞKX� þ 1

2ℏK
exp

�
cðαÞ T

2ℏK

��
cðαÞ ¼

ffiffiffi
2

p
ðRe α − Im αÞ ð6:4Þ

which reflects the quantum elliptic (circular) structure of
the space-imaginary time instanton. We define:

RαðX; T Þ2 ≡ jΨαðXÞBHj2 þ jΨαðT ÞBHj2 ð6:5Þ

We see that: For α ¼ 0:

R0ðX; T Þ2 ¼ 1ffiffiffi
π

p
�
2Kþ 1

2ℏK

�
ð6:6Þ

For ðX; T Þ → 0:

Rαð0Þ2 ¼ e−jαj2R2
0 ð6:7Þ

The origin is blurred or erased within a quantum circular
core of radius Rαð0Þ. This confirms with a coherent
state approach, the regular (nonsingular) quantum internal
BH region obtained in Ref. [10] by using quantum
Schwarzschild-Kruskal coordinates.
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At the Planck scale: ðX;T Þ→ ðlP;tPÞ, K→κP¼1=ð2lPÞ:

RαðlP; tPÞ2 ¼ e½cðαÞ−jαj2�
1ffiffiffi
π

p
�
1

lP
þ lP

ℏ

�
ð6:8Þ

As clearly seen, α ¼ 0 corresponds to the Planck scale (the
onset scale in the trans-Planckian domain). Consistently,
the values α ≠ 0, (0 < α < ∞), imply smaller sub-
Planckian radii and more excited states, entering deeper
in the quantum trans-Planckian region; α can be very high
but it is bounded, as the quantum radius cannot be zero
because of the quantum uncertainty, the notion of a
maximum value αmax does appear related here to a minimal
radius Rmin due to the quantum uncertainty:

Rmin ¼ Rα−maxð0Þ ¼ e−jαmaxj2=2R0 ð6:9Þ

R0ðX; T Þ Eq. (6.6) can be expressed in terms of the
quantum uncertainties here:

ΔX ¼ 1ffiffiffi
2

p
2K

; ΔT ¼
ffiffiffi
2

p
ℏK

R0ðX; TÞ2 ¼
ffiffiffi
2

π

r
1

ℏ
½ΔT þ ΔX� ð6:10Þ

which is always nonzero because here ΔXΔT ¼ ℏ=2,
(minimal uncertainty). αmax is thus given by:

α2max ¼ 2 log

�
1

π

�
1

ΔX
þ 2ΔX

ℏ

��
ð6:11Þ

Consistently, at the Planck scale, we have:

ðΔXÞP ¼ lP=
ffiffiffi
2

p
; ðΔTÞP ¼ ℏ=ð

ffiffiffi
2

p
lPÞ

R0ðlP; tPÞ2 ¼
1ffiffiffi
π

p
�
1

lP
þ lP

ℏ

�
ð6:12Þ

which coincides with Eq. (6.8) for α ¼ 0, as it must be. It is
remarkable how coherent states account for a consistent
quantum space-time description even at the Planckian and
trans-Planckian scales.
Finally, the total discrete n-states are given by the sum of

the even and odd states. The BH n-states are similar to
expressions Eq. (5.29) for deS space-time but, as we have
seen, the instanton corresponds to the normal (noninverted)
oscillator and then we have:

ΨðnÞ ¼ ΨðþÞð2nÞ þ Ψð−Þð2nþ 1Þ ð6:13Þ

where:

ΨðþÞð2nÞBH ¼ j1þK4j1=4 ðK2Þ2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p ð6:14Þ

Ψð−Þð2nþ 1ÞBH ¼ j1þK4j3=4 ðK2Þ2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p ð6:15Þ

In addition, we take into account the quantum K discrete
levels, [9,10]: KQn ¼

ffiffiffiffiffiffi
2n

p
(even levels), and KQn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

, (odd levels), which yields:

ΨðþÞð2nÞBH ¼ j1þ ð2nÞ2j1=4 ð2nÞ2n
22n

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p ð6:16Þ

Ψð−Þð2nþ 1ÞBH ¼ ½1þ ð2nþ 1Þ2�3=4 ð2nþ 1Þ2nþ1

22nþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þ!p

ð6:17Þ

which completes all the states. The total covering is given
by the sum of both (�) states which cover the full Hilbert
Mpð2Þ space H1=4 ⊕ H3=4. This also shows that when
considered in its full quantum discrete phase, quantum
gravity must be a theory of pure numbers.

VII. DISCUSSION

It is interesting to discuss in this context the work by
Ford Ref. [41] in which in a perturbative approach,
quantum metric fluctuations can act as a regulator of the
ultraviolet divergences of quantum fields. Metric fluctua-
tions, as those due to gravitons in a quantum vacuum state,
can modify the behavior of Green functions near the light
cone, smearing it (and for instance in the one-loop electron
self-energy). In other words, gravitons in a quantum
squeezed state could regulate ultraviolet divergences.
Our approach here is nonperturbative, the light cone is

fully quantum, the singularity is smeared out because of the
nonzero commutators [X; T; or P] or their quantum
uncertainties, and a whole quantum region of finite curva-
ture does appear: Thus, Ford perturbative proposal of
smearing the light cone is fully realized in our approach
nonperturbatively within a whole quantum space-time
description (and quantum light cone). Our transverse
spatial directions (or higher dimensions) to the lightcone
are commutative but can quantum fluctuate.
Other points of comparison between our work here and

Ref. [41] are the following:
(1) The line element in our case has in itself a quantum

structure (group valued manifold) consequently giv-
ing rise to all the symmetries of both space-time and
physically admissible states. The shift metric in
Ref. [41] is a perturbation that makes the resulting
line element remain as the standard one plus the shift.
Compared to our line element in the super-

Minkowski case (e.g., unperturbed metric), let us
notice that the shift looks like the part of our line
element that contains the complex (γ) coefficients: the

CIRILO-LOMBARDO and SANCHEZ PHYS. REV. D 108, 126001 (2023)

126001-18



B1 part of our ds2 (Sec. III .A), for instance Eq. (3.11),
and Sec. IV.
From the point of view of the obtained solutions in

both approaches: the same comparison is reflected in
the Gaussian part of our solutions with the role of the
complex parameters of the B1 part of our line element
in the super-Minkowski case similar to the role ofσ1 in
Eq. (10) of Ref. [41].

(2) The shift in the interval (distance between events) of
Ref. [41] plays a similar role to the “fermionic” part
(B1) of the line element described by us, not only
from the point of view of the line element, but from
the point of view of the Gaussian part of our
solutions and the Green functions constructed by
Ford in Ref. [41]: both the square norm of the metric
coefficients of the fermionic part of our line element
and the shift σ1 in the case of Ref. [41], locate the
Gaussian function.
Nevertheless, from a conceptual point of view,

they are different because in our case the coefficients
are not perturbations.

(3) In our approach the solution states are states with a
certain spin content, in particular the case of spin 2
that correspond to the graviton field, and does not
have singularity nor dynamic problems as we saw
throughout the work.

(4) We could conclude that the Ford approach could be
introduced or combined in our proposal but the
action of the perturbation is screened by the metric
coefficients of the fermionic part of the line element,
given that these are not perturbations. On the other
hand, as a quantum result, the zitterbewegung does
appear in our approach, which could approximately
resemble to the fluctuations described in detail in
Ford Ref. [41].

VIII. REMARKS AND CONCLUSIONS

We have presented a nonperturbative group theory
approach to describe quantum space-time and its states
with new results both for quantum theory in its own and
quantum gravity.
The results here provide further support to, and are

consistent with, the idea that a quantum theory of gravity
must be a finite theory, (in the Wilson-Kadanoff sense),
which is more than a renormalizable theory, as discussed in
Ref. [10]. And that a ultimate quantum theory of gravity
must be a theory of pure numbers.
(i) We constructed here coherent and squeezed states of

quantum space-time, in its continuum and discrete repre-
sentations, and for both, de Sitter and black hole space-
times. They are naturally expressed in terms of the surface
gravity.
(ii) We found that coherent and squeezed states of

quantum space-time encompass the space-time behavior

in the semiclassical and classical de Sitter and black hole
regions, they also exhibit high quantum phase space-time
oscillations and they account consistently the Planckian
and trans-Planckian scales.
(iii) We found the coherent states for the quantum space-

imaginary time instantons, black holes in particular, cover-
ing the whole complete manifold including the quantum
central region, absent in the classical black hole instanton.
(iv) The metaplectic group, the complete covering of

SL(2C), plays an important role in providing the phase space
symmetry of the coherent states and the complete Hilbert
space whose two irreducible sectors span both the odd and
even states, and whose total (symmetric or antisymmetric)
covering guarantee CPT symmetry and unitarity.
The results presented here confirm that classical–quantum

duality extended to gravity is a key part to understand the
quantum gravity physical magnitudes, in particular themass,
and the space-time structure: classical–quantum gravity
duality through the Planck scale (the crossing scale).

(i) It is remarkable the power of coherent states in
describing both continuum and discrete space-time,
even in the Planckian and trans-Planckian scales:

(ii) The continuum coherent state eigenvalue α ¼ 0,
(and the fundamental state n ¼ 0 in the discrete
representation), consistently correspond here to the
Planck scale. Higher values of α consistently ac-
count for the smaller and sub-Planckian sizes and
higher excitations in the quantum gravity domain.

(iii) We find a maximum eigenvalue α characterizing the
coherent states due to the minimal nonzero quantum
space radius because of the minimal quantum un-
certainty ΔXΔT ¼ ℏ=2, in particular in the central
and regular black hole quantum region.

(iv) In the quantum space-time description, there is no
any space-time singularity as it must be. The
consistent description of such quantum scales by
coherent states does appear as a result of the space
and time quantum uncertainties ðΔXΔTÞ and the
classical–quantum gravity duality.

A new support to CPT and unitarity of the quantum
gravity theory does appear here through the metaplectic
group description. In particular, recall that in semiclassical
gravity, QFT in curved space-times and its backreaction
effects, the necessity of considering complete or CPT
invariant states does appear in requiring unitarity of the
theory, most investigated in the context of the identification
of space-time (“IST”), [42–47]. See also [48] for a recent
account without IST. We have not used any identification of
space-time (“IST”) here, but our results here, as those in
[9,10,40], support CPT and IST in the full quantum theory.
In semiclassical gravity, the symmetric (or antisymmet-

ric) QFT provides a CPT symmetry of the theory. In the
euclidean (imaginary time) manifold, the different causally
disconnected regions became automatically identified. The
quantum instanton contains in addition the central regular
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constant curvature region of Planck scale radius not
covered by the classical instanton. The coherent state
instanton remarkably accounts for this quantum gravity
feature and determines the radius being

R0ðlP; tPÞ2 ¼
1ffiffiffi
π

p
�
1

lP
þ lP

ℏ

�
;

lP being the Planck length. The origin is flurried or
smoothed within this constant and bounded curvature
region.
The results of this paper confirm that the quantum de

Sitter vacuum and the quantum interior region of the black
hole are both of the same nature: totally regular without any
curvature singularity and of constant curvature. These
results provide too a quantum space-time support to the
effective or phenomenological models, [49–51], describing
the BH interior as a de Sitter core of bounded curvature and
being totally regular.
The results of this paper are expected to provide new

insights to explore the quantum space-time structure and its
signals, being from black holes, the gravitational wave
domaine and the high energy domain, or the de Sitter
primordial phases (inflation and before inflation),

cosmological structures and the late de Sitter cosmological
vacuum (today dark energy), Refs. [52–61]. The classical–
quantum gravity duality allows that signals in the quantum
gravity (trans-Planckian) domaine do appear as low energy
effects in the semiclassical/classical universe today.
Notice too that the quantum gravity regions, the black

hole interiors for instance, are present in all black holes of
allmasses, including the most macroscopic and astrophysi-
cal black holes.
Interestingly, the results of this paper can also provide

with the coherent states of quantum space-time a quantum
optics of the space-time and its tests, or find analogous of it,
in the wave packet type and laboratory experiments.
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