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We investigate the dissipation rate of a scalar field in the vicinity of the phase transition and the ordered
phase, specifically within the universality class of model A. This dissipation rate holds significant physical
relevance, particularly in the context of interpreting effective potentials as inputs for dynamical transport
simulations, such as hydrodynamics. To comprehensively understand the use of effective potentials and
other calculation inputs, such as the functional renormalization group, we conduct a detailed analysis of
field dependencies. We solve the functional renormalization group equations on the Schwinger-Keldysh
contour to determine the effective potential and dissipation rate for both finite and infinite volumes.
Furthermore, we conduct a finite-size scaling analysis to calculate the dynamic critical exponent z.
Our extracted value closely matches existing values from the literature.
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I. INTRODUCTION

Second-order phase transitions are fundamental phe-
nomena in physics, occurring in a wide range of micro-
scopically different classical and quantum systems. While
phase transitions in equilibrium are comparatively well
studied, transitions in nonequilibrium systems present a
significant challenge and remain much less explored.
Nonequilibrium phase transitions are particularly interest-
ing as they exhibit unique dynamical properties.
In the context of quantum chromodynamics (QCD) and

heavy-ion collisions, this is closely related to the search for
a potential critical end point. Utilizing the classification of
dynamical universality classes of Hohenberg and Halperin
[1], it is believed that the dynamics of the critical point is
captured by model H. Although the study of model H
remains challenging, it is interesting to study simpler
models such as model C (see, e.g., [2–5]), which includes
coupling to the conserved energy density.
Awell-known example of nonequilibrium universality is

the critical relaxational dynamics of statistical systems in

contact with a thermal reservoir, known as model A. It
corresponds to the Glauber dynamics of the Ising model,
which is perhaps the simplest case of critical dynamics,
characterized by the absence of conservation laws. This
model is even simpler than model C but is sufficient for our
study, described in detail below. For studies of this model,
see, e.g., [1,4–20].
Near second-order phase transitions, critical slowing

down occurs, indicating that the dynamics becomes sig-
nificantly slower on mesoscopic time scales near the phase
transition. Furthermore, in many cases, the computation of
evolution equations for the density matrix becomes imprac-
tical due to the involvement of many degrees of freedom.
As a result, it is often more convenient to describe the
system’s properties using a mesoscopic variable, which
considers observables that dictate the system’s behavior on
length and time scales larger than the microscopic ones. For
example, this mesoscopic variable could be a classical field,
such as the coarse-grained local magnetization field in a
magnetic system. The effective Hamiltonian, formulated in
terms of this field, provides a comprehensive description of
the system’s properties.
To investigate the near-equilibrium evolution of coarse-

grained systems, transport or hydrodynamic simulations
are often utilized; see, e.g., [21–23]. In this context, only a
limited set of variables, such as temperature and velocity, is
considered. The equation of motion in fluid dynamics often
simplifies the density conservation, reflecting the system’s
microscopic symmetries. Near a second-order phase tran-
sition, it is natural to include the order parameter as a state
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variable with temperature and velocity; thus, the usual
fluid-dynamic equation must be extended to include the
order parameter. The equation of motion of model A is the
simplest effective equation of motion that can appear since
the order parameter is not conserved and is decoupled from
any conserved charge. However, hydrodynamic methods
typically rely on classical Hamiltonians, which can limit
their ability to capture the system’s behavior accurately.
Instead, it is preferred to use an effective coarse-grained
Hamiltonian, which describes the system’s dynamics more
accurately on a larger scale. In this work, we discuss the
usage of coarse-grained input, such as the effective poten-
tial, in transport and hydrodynamic simulations. On a
technical level, this concerns the compatibility of the
convexity of the effective potential with such evolution
equations and the dissipation dynamics in its vicinity.
We employ the functional renormalization group (fRG)

(see, e.g., [24] and references therein) to study model A.
Previously, model A has been the subject of investigation
using the fRG technique in [5,8–11,14,17]. This approach
allows us to investigate coarse-grained quantities and
provides a unified framework for describing both the static
and dynamic properties of phase transitions, as well as the
nonuniversal behavior of the system. Methods such as the
fRG could provide valuable first-principle input to close
the resulting system of equations if the aforementioned
difficulties are overcome. A comprehensive description of
the process involved in achieving this outcome stands as
one of the main results of this work.
The paper is organized as follows. In Secs. II and III, we

introduce model A, its connection to hydrodynamics, and
how we gain access to the dissipation rate and the effective
potential within the fRG. The results are collected in
Secs. IVand V, focusing on critical and noncritical aspects,
respectively. Finally, we conclude our work with a sum-
mary and discussion in Sec. VI.
To aid the reader in understanding the details of our

work, we provide several Appendices that cover various
aspects related to model A formulated on the closed time
path and fRG flows, including flows in finite spatial
volumes. These Appendices (Appendices A and B) are
intended to provide additional context and insight into the
methods employed in our study. Additionally, we include a
detailed account of our numerical implementation in
Appendix C.

II. HYDRODYNAMIC DESCRIPTION

A standard procedure for describing dynamic critical
phenomena is identifying the relevant hydrodynamic
degrees of freedom. This approach is favored due to the
computational infeasibility of determining the density
matrix’s evolution equations, which involve many degrees
of freedom. In a hydrodynamic sense, the system we are
considering can be divided into microscopic (fast) internal
degrees of freedom that behave like a bath, which we

assume to be thermal equilibrium coupled to the more
macroscopic (slow) dynamics of the degrees of freedom.
The fluid dynamics approach allows for slow variations of
temperature, pressure, and velocity in space and time.
Furthermore, in the vicinity of a second-order phase
transition, the order parameter becomes nonvanishing
and, therefore, needs to be included in the hydrodynamic
theory as an additional state variable along with other fields
such as temperature and velocity. Consequently, the con-
ventional hydrodynamic equation must be extended to
include the dynamics of the order parameter.
The derivation of model A in terms of fluid-dynamics

considerations is mostly unknown. Therefore, we introduced
the model using entropy considerations to highlight the
similarity to the standard fluid-dynamics theory [25]. Amore
standard formulation can be found in [26] and Appendix A.
Here, we first present the hydrodynamic theory in the

presence of an order parameter in the ideal case according
to [27,28]. We then go on to discuss a more realistic case
where the conservation laws are only statistically preserved
and locally perturbed. We describe how, in such a scenario,
viscous effects enter the evolution of the spatially averaged
energy-momentum tensor and the evolution equation of the
fluid field. This modified description represents the sim-
plest effective equation of motion since the order parameter
is not conserved and does not interact with other conserved
charges.

A. Ideal fluid

We adopt a practical procedure outlined in [29] to derive
the ideal hydrodynamic equations. These equations are
obtained from the hydrodynamic action given by

S½gμν� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
pϕðT; ð∂⊥ϕÞ2;ϕÞ: ð1Þ

Here, the pressure pϕ is defined as

pϕðT; ð∂⊥ϕÞ2;ϕÞ≡ p0ðTÞ −UðϕÞ − 1

2
Δμν

∂μϕ · ∂νϕ; ð2Þ

and depends on the temperature T ≡ ð−βμgμνβμÞ−1=2, the
fluid velocity uμ ≡ Tβμ, and the order parameter field ϕ.
Here, ∂μ⊥ ¼ Δμν

∂ν, Δμν ¼ gμν þ uμuν represents the pro-
jection operator orthogonal to the fluid velocity, and p0 is
the ideal pressure for vanishing order parameter. We
have an explicit dependence on the metric gμν to derive
the stress tensor, and ultimately this source will be set to
zero. The conserved energy-momentum tensor Tμν

ideal,
derived by varying the action with respect to the metric
gμν, can be parametrized in the Landau frame as

Tμν
ideal ¼

2ffiffiffiffiffiffi−gp ∂S
∂gμν

����
g¼0

¼ ðεϕ þ pϕÞuμuν þ pϕgμν

þ ∂
μϕ · ∂νϕ − uμuνðuσ∂σϕÞ · ðuρ∂ρϕÞ: ð3Þ
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The last two terms in (3) involving the field are the
energy and momentum contributions coming from the
field, respectively. The energy density εϕ is defined through
the Legendre transform of the pressure pϕ as

εϕ ≡
�
−1þ T

∂

∂T

�
pϕ: ð4Þ

The corresponding conservation law ∂μT
μν
ideal ¼ 0 leads to

the ideal effective equation for the order parameter [27,28]

uμ∂μϕ ¼ 0; ð5Þ
provided that the field is in the minimum of the static free
energy. Therefore, the dynamics neglecting dissipation is
trivial: the field remains at its minimum and simply moves
with the fluid velocity. To introduce more complex dynam-
ics, it becomes essential to incorporate dissipative effects.
These effects enable the field to deviate from the free
energy minimum, leading to nontrivial behavior.

B. Dissipative fluid

So far, we have only considered the ideal equations
of motion. In the presence of dissipation, the energy-
momentum tensor expressed in (3) is modified as follows:

Tμν ¼ Tμν
ideal þ Πμν: ð6Þ

Here, we continue working in the Landau frame, ensuring
the stress tensor Πμν satisfies Πμνuμ ¼ 0. The stress tensor
can be decomposed as

Πμν ¼ πbulkΔμν þ πμν; ð7Þ

where πμν represents the shear stress tensor, satisfy-
ing πμμ ¼ uμπμν ¼ 0.
By utilizing the conservation of the energy-momentum

tensor, the Gibbs-Duhem relation (4), and the pressure
differential, given by

dpϕ ¼ sϕdT −
1

2
dð∂μ⊥ϕÞ2 −

∂U
∂ϕ

dϕ; ð8Þ

we can derive the entropy production as

∂μðsϕuμÞ ¼
Ξ
T
Θ − ∂μ

�
uν
T

�
Πμν; ð9Þ

where we have defined the scalar quantities

Θ≡ ∂
2⊥ϕ −

∂U
∂ϕ

; and Ξ≡ uμ∂μϕ: ð10Þ

Besides the dissipative corrections to the energy-
momentum tensor, the evolution equation of the order
parameter ϕ expressed in (5) is modified by dissipative
effects. By including the first-order corrections in the

gradient expansion of hydrodynamics, the shear stress
tensor can be written as

πμν ¼ −ησμν; ð11Þ
where η is the shear viscosity. The requirement of positive
entropy production in the tensor sector can be ensured by
imposing η ≥ 0. For the scalar sector, the terms can be
expressed as

πbulk ¼ −ζ∂μuμ − ζð1ÞϕΘ; ð12Þ

Ξ ¼ ζð1Þϕ∂μuμ þ ΓΘ; ð13Þ

where ζ denotes the well-known bulk viscosity, and Γ is the
transport coefficient regulating the dissipative effects of the
scalar field dynamics, respectively. The coefficient ζð1Þ is
an independent transport coefficient that couples the
expansion rate ∂μuμ to the relaxation equation for the field
and vice versa. To ensure the positivity of the associated
quadratic form, the following conditions must be satisfied:

ζ ≥ 0;Γ ≥ 0; and ζΓ − ðζð1ÞÞ2ϕ2 ≥ 0: ð14Þ
By specifying the dissipative fluxes, it becomes possible to
formulate the scalar field equation [25]. The scalar field
obeys a dissipation-type equation

uμ∂μϕ ¼ Γ
�
∂
2⊥ϕ −

∂U
∂ϕ

�
þ ζð1Þϕ∂μuμ: ð15Þ

In the limit of zero velocity, the equation of motion for the
field reduces to

∂tϕ ¼ Γ
�
∇2ϕ −

∂U
∂ϕ

�
: ð16Þ

This equation has to be intended as the effective evolution
equation of the expectation value of the scalar field. As
usual, in the high-temperature limit, the stochastic noise ξ
has to be introduced on the right-hand side of (16)

∂tϕ ¼ Γ
�
∇2ϕ −

∂U
∂ϕ

�
þ ξ; ð17Þ

with hξi ¼ 0 and hξðxÞξðx0Þi ¼ 2TΓδðx − x0Þ such that the
fluctuation-dissipation theorem holds [25,30].
From the previous analysis, it is clear that Γ can be

treated similarly to other first-order transport coefficients.
The main goal of this paper is to calculate a specific

transport coefficient, the dissipation rate represented as
X ¼ Γ−1, and study its dependence on both temperature
and the field expectation value. It is important to note that in
the vicinity of the phase transition, where the order
parameter ϕ approaches zero, the last term on the right-
hand side of the equation becomes negligible and can be
safely ignored. However, when the system is situated far
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from the phase transition, this term becomes substantial and
should be accounted for in the analysis.
To avoid confusion, it is important to note that the

symbol Γ is also commonly used to denote the quantum
effective action. Therefore, we will use the symbol X
exclusively to refer to the dissipation rate while reserving
the symbol Γ to denote the average effective action, cf. (22).

III. THEORETICAL SETUP

In the previous section, we presented the effective dynam-
ics of the order parameter at the mesoscopic scale within the
hydrodynamics framework derived through considerations
of entropy production. In this section, we turn towards the
description of model A within the fRG formalism.

A. Model A

In model A, the order parameter is represented by a
coarse-grained single-component real scalar field ϕðt; xÞ,
which relaxes towards its equilibrium value over time. The
nonlinear Langevin equation governs the effective dynam-
ics of the order parameter (see, e.g., [8])

∂tϕðt; xÞ ¼ −
1

X
δH½ϕ�
δϕðt; xÞ þ ξðt; xÞ; ð18Þ

whereH½ϕ� represents the Hamiltonian, and t and x denote
the time and space coordinates, respectively. The coeffi-
cient 1=X represents a constant and uniform dissipation
rate, and ξðx; tÞ is a stochastic white noise with the
following properties:

hξðt; xÞi ¼ 0;

hξðt; xÞξðt0; x0Þi ¼ 2N δðdþ1Þðx − x0Þ; ð19Þ
where N is a constant that quantifies the thermal fluctua-
tions induced by the heat bath at temperature T, and d is the
number of spatial components. In the long-time limit, the
system is stationary, and consequently, the noise is assumed
to satisfy the detailed balance condition N ¼ TX [26].
We choose the deterministic drift in the model to be the
Z2-invariant Landau-Ginzburg effective Hamiltonian

H½ϕ� ¼
Z

ddx

�
1

2
½∇ϕðxÞ�2 þ UðϕÞ

	
; ð20Þ

with the potential term given by

UðϕÞ ¼ m2

2
ϕ2 þ λ

4
ϕ4; ð21Þ

where m represents the mass parameter. When m2 < 0, the
system is in the ordered or broken phase, while when
m2 > 0, it is in the symmetric phase. The parameter λ
represents an interaction term that arises from the nearest-
neighbor interactions in the underlying lattice Ising model

that gives rise to the field theory. To ensure stability, it is
necessary to choose λ > 0.
To derive the associated field theory from the Langevin

equation, the Martin–Siggia–Rose–Janssen–De Dominicis
procedure [31–34] has been introduced and widely used
in the literature. For a pedagogical introduction to this
procedure, see, e.g., [9,26,35].
See Appendix A for a detailed description of the

Schwinger-Keldysh contour and the derivation of the flow
equations using the Schwinger-Keldysh approach in a
dynamical field theory. Conveniently, theKeldysh formalism
has the advantage that it can be successfully applied to
flowing coupling constants in the context of the renormal-
ization groupwithout significant complications.Bydoing so,
one obtains an infinite system of coupled integral-differential
equations thatmust be truncated. The action can be expanded
using the derivative expansion, i.e., at a certain order of
space-time derivatives of the fields. This work focuses on the
derivative expansion, as it captures all relevant dynamics of
interest. A detailed account of the resulting ansatz for the
effective action is given in the following subsection.

B. Ansatz for the effective action

To accurately capture the dissipation dynamics, we adopt
an expansion that includes all relevant effects for under-
standing the system. In our approach, we consider a
leading-order expansion of the effective action Γk in
gradients of the field ϕr, introduced below, and retaining
the complete field dependence. Specifically, we truncate at
order one in the time derivative and second order in space
derivatives and obtain as the ansatz for the effective action

Γk½Φ� ¼
Z
t;x
ϕaðXkðϕrÞð∂tϕr − iϕaÞ −∇2ϕr þ Uð1Þ

k ðϕrÞÞ;

ð22Þ
where now Φ is the duplet of fields Φ ¼ ðϕr;ϕaÞ, cf. (A4),
and the indices at the integral sign simply refer to an
integration over space-time. The parametrization of the
effective action is chosen such that the fluctuation-
dissipation theorem holds at all RG scales k; see
Appendix A for more details.
At this level of approximation, there are only two scale-

dependent functions, given by the first derivative of the
effective potential Uð1Þ

k ðϕÞ ¼ ∂UkðϕÞ=∂ϕ and the dissipa-
tion rate XkðϕÞ. Their flows are obtained by suitable
projections of the effective action

Uð1Þ
k ðϕÞ ¼ 1

Voldþ1

�
δΓk½Φ�
δϕaðqÞ

����
Φ¼ðϕ;0Þ

�����
ν¼0;q¼0

;

XkðϕÞ ¼
1

Voldþ1

∂iν

�
δ2Γk½Φ�

δϕrðqÞδϕað−qÞ
����
Φ¼ðϕ;0Þ

�����
ν¼0;q¼0

;

ð23Þ
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where Φðt; xÞ ¼ ðϕ; 0Þ is a uniform and stationary field
configuration.
Contrarily to perturbation theory, the couplings are

arbitrary functions of the field. This requirement is essential
if we want to study the theory in the phase with broken
symmetry and obtain the full effective potential, as it can be
nonanalytic.

C. Renormalization-group equations

The set of flow equations for the running couplings is
derived in detail in Appendix B. Their flow follows from
the flow of the one- and two-point functions, derived from
the flow equation (B1) and moments of the quantum
effective action Γk. In order to ease the notation we will,
from now on, drop the subscripts indicating the scale k.
Furthermore, the couplings exhibit field dependence, as

do their derivatives, but we will drop this dependence from
now on. The well-known flow equation for the derivative of
the effective potential is given by [from (B10)]

∂kUð1Þ ¼ Ωd

ð2πÞdd
∂

∂ϕ

�
kdþ1

Uð2Þ þ k2

�
; ð24Þ

where Ωd ¼ 2πd=2Γðd
2
Þ−1 is a factor resulting from the

angular integrations and Γ is the gamma function.
The equation for the dissipation rate X (B18) reads

∂kX ¼ −
Ωdkdþ1

2ð2πÞd ½3ð∂ϕGÞ
2X þ 4∂ϕðG2ÞXð1Þ þ 2G2Xð2Þ�;

ð25Þ
where, for the sake of convenience, we have set

G ¼ 1

k2 þ Uð2Þ : ð26Þ

Note that the dissipation rate X does not affect the equation
for the effective potential U, which is the standard
equilibrium flow equation of the Ising model. This is
not surprising because model A satisfies for any scale k the
fluctuation-dissipation relation, which is the hallmark of
thermal equilibrium. Consequently, the critical exponents ν
and η for model A are the same as in the static Ising model.
However, the converse is not valid; the equation for the
dissipation rate depends on U and its derivatives. As such,
it is necessary to solve the flow equations as a system of
coupled partial equations. Further details regarding the
numerical implementation of the flow equations can be
found in Appendix C.
To initialize the system, we specify the couplings at the

UV initial RG scale k ¼ Λ ¼ 10 as

Uð1Þ
k¼ΛðϕÞ ¼ m2ϕþ λϕ3; Xk¼ΛðϕÞ ¼ 1: ð27Þ

This allows us to use (in the UV) the mass variable
replacing the temperature. Indeed, if the mass value

exceeds a critical threshold, the system will end up in
the broken phase in the IR. In other words, this situation is
analogous to working at temperatures below a critical
temperature (T < Tc). Conversely, the system will end
up in the symmetric phase in the IR, equivalent to working
at temperatures T > Tc. Additionally, we use our freedom
to fix units to set λ ¼ 1.
The numerical implementation of the flow equations is

available on Github [36].

IV. STATIC AND DYNAMIC CRITICALITY

Having introduced the field-theory representation of the
relaxation dynamics model and presented its flow equations
in Sec. III, we analyze the second-order phase transition
of this theory. In the vicinity of the phase transition, the
system becomes strongly coupled, and the correlation
length, denoted as ξ, diverges as we tune toward criticality

ξðtrÞ ¼ ξ�jtrj−ν; ð28Þ

where tr is the reduced temperature, defined as

tr ≡m2 −m2
c

jmcj2
; ð29Þ

where mc is the critical mass.
As the correlation length increases, the characteristic

relaxation time tc diverges at the phase transition point,
leading to the phenomenon known as critical slowing down.
This behavior is typically associated with the correlation
length, ξ, through the dynamic critical exponent, z, according
to the relation (for further details, see, e.g., [37,38])

tcðtrÞ ∼ ξzðtrÞ ∼ jtrj−zν: ð30Þ

The setting presented in Sec. III provides us with the
tools to investigate static and dynamical criticality simul-
taneously. In this section, we present numerical results for
the critical behavior of the theory. This serves primarily as a
benchmark of our setup, as they have been studied
previously within the fRG formalism [39–42].

A. Static critical exponents

The static scaling relation for the order parameter, given
by the expectation value of the field ϕ0 ≡ hϕi, is described
by the following behavior:

ϕ0ðtrÞ ¼ aΘðtrÞjtrjβ; ð31Þ

where β is the critical exponent for the order parameter.
Similarly, to compute ν, we exploit the fact that the

correlation length ξ is inversely proportional to the renor-
malized mass near the phase transition

ξ ∼m−1
R ∼ t−νr : ð32Þ
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In the symmetric phase, the square of the renormalized
mass is given by

m2
R ¼ lim

k→0
Uð1Þ

k ðϕ0Þ: ð33Þ

We access the phase transition by scanning the bare mass
parameter m, which is the only free parameter at hand. We
solve the RG flow deep into the IR, where we determine the
expectation value of the field ϕ0. Our final RG scale is
chosen as

kIR ¼ Λe−9.5 ≈ 0.0007485; ð34Þ
which corresponds to an RG time of 9.5. We then extract
the critical scaling by performing ordinary χ2 minimization.
The expectation value of the field is shown as a function
of the reduced temperature in the left panel of Fig. 1. By
performing an ordinary χ2 minimization on the scaling
law (31), we find the critical bare mass parameter m2

c ¼
−0.927814 and the exponent β ¼ 0.36. In the fit (the same
reasoning applies to the discussion of ν below), we omit the
data point closest to the critical mass due to the breakdown
of our approximation near this critical point. Note that the
mass parameter has to be determined very precisely since,
in these units, the scaling window is comparably small;
cf. Fig. 1, and e.g., [43].
Our result for the exponent β agrees with the well-

known static exponents for the three-dimensional Ising
universality class. Previous fRG studies [39–41] found
β ¼ 0.3486ð59Þ in the local potential approximation (LPA)
and β ¼ 0.3263ð4Þ in the fourth-order derivative expan-
sion. State-of-the-art results from other methods include
β ¼ 0.32643ð6Þ from Monte Carlo methods [44] and
β ¼ 0.32599ð32Þ from an ϵ expansion [45].
The correlation length as a function of the reduced

temperature is shown in the right panel of Fig. 1.

Proceeding as for the exponent β, we find ν ¼ 0.67.
This is, again, in decent agreement with existing results:
fRG studies [39–41] found ν ¼ 0.634ð8Þ in the LPA and
ν ¼ 0.62989ð25Þ in the fourth-order derivative expansion.
The Monte Carlo estimate [44] is ν ¼ 0.63002ð10Þ and the
ϵ expansion estimate [45] is ν ¼ 0.6292ð5Þ.
Note that the exponents ν and β are not independent

without higher-order terms in gradients, such as a renorm-
alization of the spatial derivative term in the effective action
(in our case, the anomalous critical exponent is η ¼ 0).
Thus, the critical exponents obey the scaling relation
2β ¼ ð1þ ηÞν ¼ ν. This could be used to give a rough
estimate of the error. The error of our calculation is
influenced by several factors, two of the most prominent
ones being finite numerical precision and fit errors.
Additionally, as one approaches criticality more closely,
the system becomes increasingly sensitive to deviations
from the critical value. Using more sophisticated trunca-
tions to higher orders in the derivative expansion would be
required to obtain more precise results, which goes beyond
this work. Given that this aspect of our study serves
primarily as a benchmark, and our exponents align quali-
tatively and quantitatively with existing literature, we
refrain from estimating the error for our results in detail.

B. Dynamic critical exponent

In addition to the static properties, the dynamic univer-
sality class is further characterized in terms of the scaling
exponent z. The retarded correlation function Graðt; xÞ ¼
hϕrðt; xÞϕað0; 0Þi has the following scaling form in Fourier
space [26]:

Graðω; pÞ ¼
1

jpj2−η χðωξ
z; jpjξÞ; ð35Þ

FIG. 1. Field expectation value ϕ0 and correlation length ξ across the phase transition with critical massm2
c ¼ −0.927814, in the mass

rangem2 ∈ ½−0.927830;−0.927810�. The numerical simulation result is shown with blue triangles, and the corresponding fits are shown
by a solid line. Left: field expectation value ϕ0 as a function of the reduced temperature tr (29) fitted with the leading order scaling ansatz
ϕ0ðtrÞ ¼ aΘðtrÞjtrjβ and a ¼ 0.95, β ¼ 0.36. Right: correlation length ξ as a function of the reduced temperature tr fitted on the left
with the leading-order scaling ansatz ξ ¼ ajtrj−ν, with a ¼ 3.56, ν ¼ 0.67.
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where χ is an analytic universal function. This relation can
be used to define the dynamic critical exponent z. In our
approximation, where the effective action takes the form
(A17) with the Hamiltonian (20), the retarded function
takes the form (cf. Appendix A),

Graðω; pÞ ¼
1

−iXωþ Uð2Þ þ p2
; ð36Þ

which can be cast into the scaling form by extracting the
trivial momentum dependence,

Graðω; pÞ ¼
1

p2
p2=Uð2Þ

−iXω=Uð2Þ þ 1þ p2=Uð2Þ : ð37Þ

Now, by defining the correlation length ξ and relaxation
time tc as

ξðtrÞ≡
ffiffiffiffiffiffiffiffiffi
1

Uð2Þ

r
and tcðtrÞ≡ X

Uð2Þ ; ð38Þ

the scaling relation (35) takes the form

Graðω; pÞ ¼
1

p2
χðωtc; jpjξÞ: ð39Þ

In real space, i.e., after a Fourier transform, the retarded
function is given by [37]

Graðt; pÞ ¼
Z

dω
2π

1

−iXωþUð2Þ þ p2
expð−iωtÞ

¼ exp

�
−
Uð2Þ þ p2

X
t

�
ΘðtÞ; ð40Þ

where Θ is the Heaviside step function.
The dynamic critical exponent can now conveniently be

extracted with a finite-size scaling analysis. In fact, the size
of the system provides an additional length scale in the
system. The scaling relation of the relaxation time in a finite
volume of linear size L is given by [37]

tcðtr; LÞ ¼ LzftcðtrL1=νÞ: ð41Þ

We work sufficiently close to the critical point to
approximate ftc ≈ fð0Þ. In this case, we confine the system
in a three-dimensional box of linear size L, cf. Appendix B
for details on the modifications to the flow equations in a
finite volume. In the left panel of Fig. 2, we show the
relaxation time tc as a function of the box length L at
the critical temperature, i.e., tr ¼ 0. We obtain the fit
z ¼ 2.011, in good agreement with theoretical predictions
using the ϵ expansion z ≈ 2.02 [37,46] and from
Monte Carlo simulations where z ¼ 2.026ð56Þ [16].
The correlation function (40) collapses by rescaling the

time t by Lz, as shown in the right panel of Fig. 2, where z is
the result of the fit above.

C. Field dependence at criticality

Finally, it is insightful to gain a qualitative understanding
of the field dependence of Uð1ÞðϕÞ and XðϕÞ close to
criticality. This applies to both infinite and finite volumes.
In the left panel of Fig. 3, the derivative of the effective

FIG. 2. Left: relaxation time tcð0; LÞ cf. (41) versus linear box size L computed using the finite size RG flow at the critical mass
m2 ¼ m2

c. The solid line shows the best fit for the dynamic critical exponent z ¼ 2.011. Right: retarded correlator at vanishing spatial
momentum Graðt; p ¼ 0Þ as a function of rescaled time t=Lz for different box lengths L. The curves become independent from the size
after rescaling the time by L−z. The inset displays the retarded correlator without any rescaling applied.
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potential is shown for different finite volumes. As the
volume increases, the derivative near the origin, represent-
ing the mass term, gradually diminishes as expected at the
critical point in the limit of infinite volume (indicated by the
dashed line).
For the more intriguing case, the dissipation rate, we

present its logarithm in the right panel of Fig. 3. In this
instance, remarkably, a barrier forms gradually, exhibiting
divergence in the infinite-volume limit at the origin. A direct
consequence thereof can be inferred from (40). At criticality,
the mass termUð2Þ vanishes, leading to an infinite correlation
length at zero spatial momentum, i.e., critical slowing down.
However, due to the divergence of the dissipation rate,
critical slowing down is observed for all spatial momenta.

V. RESULTS IN THE ORDERED PHASE

In the previous section, our focus was on the critical
regime. Now, we shift our attention to the ordered phase
characterized by spontaneously broken symmetry, i.e.,
tr < 0. The example of spontaneous symmetry breaking
in a ϕ4 theory is pivotal in our current understanding of
spontaneous symmetry breaking. The dynamics of the
order parameter potential exemplify the behavior observed
in virtually all second-order phase transitions, thus under-
scoring its paramount importance.
As discussed in Sec. II, order parameter potentials of this

nature often come into play in effective descriptions. In
these descriptions, the full effective potential vanishes for
field values below the minimum. A visual representation
of this is depicted in Fig. 4. However, it is noteworthy that
the input potentials employed in nearly all cases closely
resemble the bare potential. This prompts the question of
how to reconcile the full effective potentials, which arise as

the proper results in quantum field theory calculations, with
the input used in effective theories.
This problem is less pronounced within RG flows

because convexity is only restored in the limit k → 0 when
all fluctuations are integrated out. Hereby, the dominant
contribution at the solution of the equation of motion is
generated at a finite RG scale, where the potential still
resembles a double-well.
A typical example of an effective potential in the broken

phase is shown in the left panel of Fig. 5. Additionally,
looking at different finite volumes in parallel is instructive
again. As required, the potential is convex in all cases but
only in the infinite-volume case is it truly flat. For the
following discussion, it is noteworthy that the potential is not
exactly zero in the infinite-volume case. This is due to the
finite final RG scale necessary in numerical applications.
In principle, it would be possible to extrapolate the resulting

FIG. 3. Derivative of the effective potential Uð1ÞðϕÞ and logarithm of the dissipation rate logXðϕÞ at the critical mass m2 ≈m2
c for

various box lengths L. The dashed line represents the infinite-volume limit. Left: derivative of the effective potential Uð1ÞðϕÞ as function
of the field ϕ. Increasing the size L, the derivative of the effective potential becomes flatter in the vicinity of the minimum in ϕ ¼ 0. The
dashed line represents the infinite-volume limit L → ∞, which is flat in the origin. Right: logarithm of the dissipation rate logXðϕÞ as a
function of the field ϕ. Increasing the size L, the height of the barrier increases and shifts towards ϕ ¼ 0. In the infinite-volume limit, the
barrier diverges at the origin.

FIG. 4. Sketch of the symmetry-breaking potential UðϕÞ. The
bare potential Ubare ¼ UΛ has two degenerate minima, where
the field sits and fluctuates around, separated by a potential
barrier. The corresponding effective potential Ueff ¼ Uk→0,
which incorporates all the fluctuations, is flat.
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potential to zero (see e.g. [47]), but all conclusions can be
drawn here without doing so.
The dissipation rate gives the answer to our question

regarding the field dynamics in this domain, shown in the
right panel of Fig. 5. A barrier emerges that grows
exponentially with volume. Its value for infinite volume is
only finite due to the finiteness above the final RG scale.
Consequently, plugging the combination of a flat potential
with a diverging dissipation into dynamic evolution equa-
tions such as (15) shows that the field can never enter the flat
regime of the potential.
Since the transition appears as a rigid boundary, dynami-

cally, the field will most likely be reflected and bounce
back when approaching the minimum of the potential.
However, at the minimum of the potential,Uð1Þðϕ0Þ ¼ 0 by
definition, the potential is symmetric to the leading order at

the minimum. This justifies the use of effective double-well
potentials at leading order, although it should be mentioned
that it cannot capture higher-order effects adequately.
This situation differs from the critical scenario described

in Sec. IV. There, the boundary scales towards the mini-
mum at ϕ0 ¼ 0, while in the broken phase, a rigid boundary
forms at a nonvanishing field expectation value ϕ0 ≠ 0.
The transition between different regimes of the theory is

depicted in Fig. 6. While the derivative of the potential
changes in a continuous manner, the changes in the dis-
sipation rate are much more abrupt. Its scaling at criticality
is not fully visible due to a slight numerical detuning from
criticality and the enormous size of the dissipation rate in
the broken phase, which is only restricted by the final RG
scale. For a proper visualization of the scaling at criticality,
see the right panel of Fig. 3.

FIG. 5. Derivative of the effective potential Uð1ÞðϕÞ and logarithm of the dissipation rate XðϕÞ at the initial squared mass m2 ¼
−0.9450 (broken phase) displayed for different system sizes. The dashed line represents the infinite-volume limit. Left: derivative of the
effective potential Uð1ÞðϕÞ as a function of the field ϕ. With increasing size, the derivative of the effective potential becomes flatter near
the potential minimum. Right: logarithm of the dissipation rate logXðϕÞ as a function of the field ϕ. With increasing size L, the height of
the barrier increases.

FIG. 6. Derivative of the effective potentialUð1ÞðϕÞ and logarithm of the dissipation rate for various reduced masses tr. Left: derivative
of the effective potential Uð1ÞðϕÞ as a function of the field ϕ. When tr < 0, the derivative of the effective potential exhibits a flat region
between its minima. Right: logarithm of the dissipation rate logXðϕÞ as a function of the field ϕ. In the case of tr < 0, a diverging barrier
emerges within the same field range where the potential undergoes flattening.
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The general behavior of the dissipation rate with respect
to a phase transition, i.e., its divergence in the flat part, is
generic due to the general nature of the underlying flow
equations. The fact that it is almost constant in the physical
regime of the potential and could hence be approximated by
a constant may be solely dependent on the specific model
being considered.

VI. CONCLUSIONS

In this study, we used the fRG formulated on the
Schwinger-Keldysh contour to analyze the relaxation dyna-
mics of a simpleϕ4 theory with dissipation, which reduces to
model A at its second-order phase transition. Using a deri-
vative expansion up to first order in time and second order in
space, we retained the full field dependence of the effective
potential and the dissipation rate. To validate our approach,
we first determined the static critical exponents of model A.
We confined our system to a periodic box to extract the
dynamic critical exponent and performed a scaling analysis.
Furthermore, we investigated the field dependence of the

dissipation rate in the ordered phase of the theory, away from
criticality. It diverges in the regime of field space where the
effective potential is flat, i.e., for expectation values smaller
than the physical one. This result has implications for using
full effective potentials, which must be convex, in effective
long-range theories, such as hydrodynamic simulations. The
divergence of the dissipation rate implies that this regime of
the theory is not accessible in effective nonequilibrium
descriptions in the linear response regime and is screened
by a rigid barrier. As an outlook, we want to extend our
analysis to explore other dynamic universality classes
beyond model A. One of our key objectives is to delve into
the critical dynamics of model G, which corresponds to two-
flavor QCD in the chiral limit. This broader exploration is
motivated by the potential relevance for heavy-ion collision
phenomenology.

The code used to produce the results in this work is
available on GitHub [36].
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APPENDIX A: DYNAMICAL FIELD THEORY

For the reader’s convenience, we provide here a short
introduction to the Schwinger-Keldysh functional integral
formalism [48], which provides a framework for the field-
theoretical description of real-time dynamics. This formal-
ism can be applied to the field-theoretical description of
the hydrodynamic (coarse-grained) system as described in
Sec. II (see [49] for details).
Let us consider the functional integral representation

of the so-called Schwinger-Keldysh partition function:
Zβ ¼ trðe−βHÞ. The Hamiltonian H generates the unitary
dynamics.
By introducing different sources J� for the fields on the

two branches, the partition function is

Z½Jþ; J−� ¼ trðU†
J−
ð−∞;þ∞Þe−βHUJþð−∞;þ∞ÞÞ=Zβ;

ðA1Þ
where UJ� is the unitary evolution operator with external
source J� coupled to the field. The functional derivatives of
(A1) can be used to generate time-dependent correlation
functions. In this expression, time evolution can be inter-
preted as occurring along a closed path with two branches,
the forward and the backward branch of the time path,
producing a closed-time path integral. It is convenient to
introduce φþðt; xÞ and φ−ðt; xÞ fields, where the subscripts
� indicate that the respective time arguments of the sources
are taken on the forward or backward branch of the closed
time contour, respectively. The partition function in the
path-integral representation can be written as

Z½Jþ;J−�¼
Z

DφþDφ−ρ½φþ;φ−�eiS½φþ;Jþ�−iS½φ−;J−�; ðA2Þ

where we denote the microscopic action of the field as
S½φ�;J��¼S½φ��þ i

R
x J�φ�,

R
x≡

R
∞
−∞dt

R
ddx≡R

ddþ1x,
and the density matrix ρ is a functional of φþ and φ− at the
initial time t → −∞.
It is useful to move from the � basis to the so-called

r − a basis, where the fields and external current are
defined as the symmetric and antisymmetric combinations
of fields on the forward and backward branches, respec-
tively. The components are called classical (r) and quantum
(a). Explicitly, the components are given by

φrðt; xÞ ¼
1

2
ðφþðt; xÞ þ φ−ðt; xÞÞ;

φaðt; xÞ ¼ φþðt; xÞ − φ−ðt; xÞ; ðA3Þ

and

Jrðt; xÞ ¼
1

2
ðJþðt; xÞ þ J−ðt; xÞÞ;

Jaðt; xÞ ¼ Jþðt; xÞ − J−ðt; xÞ: ðA4Þ
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We are going to use a matrix notation and define the
following vectors:

φðt;xÞ≡
�
φrðt;xÞ
φaðt;xÞ

�
and Jðt;xÞ≡

�
Jrðt;xÞ
Jaðt;xÞ

�
: ðA5Þ

The generic consequence of the double path formulation is
that if the currents are set to equal,

Z½Jþ ¼ J; J− ¼ J� ¼ 1; ðA6Þ

and in the r − a formulation Z½Jr ¼ J; Ja ¼ 0� ¼ 1.
Taking functional derivatives with respect to the Jr current
generates the n-point connected correlation functions,

ð−iÞnþ1
δn logZ½Jr; Ja�
δJr � � � δJr

¼ Ga���a ¼ 0: ðA7Þ

A system is in thermodynamic equilibrium if and only if
the corresponding Schwinger-Keldysh action is invariant
under the transformation T β, as defined in [50,51] for
scalar fields:

T βφ�ðt; xÞ ¼ φ�ð−t� iβ=2; xÞ ¼ e�iβ
2
∂tφ�ð−t; xÞ: ðA8Þ

This transformation is simpler to realize in the semiclassical

limit, where e�iβ
2
∂t ≈ 1� i β

2
∂t. The action on the fields is

explicitly given in the r − a basis by

T βφrðxÞ ¼ ΘφrðxÞ ¼ φrðtR; xÞ;
T βφaðxÞ ≃ ΘφaðxÞ þ iΘ∂tφrðxÞ

¼ φaðtR; xÞ − i∂tRφrðtR; xÞ; ðA9Þ

where the action of Θ is a time reversal Θt ¼ −t≡ tR. This
dynamical symmetry implies the Kubo-Martin-Schwinger
(KMS) condition [52,53]. Furthermore, the equilibrium
two-point correlation functions are required to satisfy a
detailed balance condition, equivalent to the fluctuation-
dissipation relation.
We are interested in the effective action Γ½Φ�, defined

by the Legendre transform of the Schwinger functional
W ¼ −i logZ½Jr; Ja�, i.e.,

Γ½Φ� ¼ sup
Ja;Jr

�
W −

Z
t;x
ðJaϕr þ JrϕaÞ

	
; ðA10Þ

in terms of the field expectation values Φ ¼ hφi. Unitarity,
i.e., (A7), leads to the fact that all monomials of the field ϕr
are zero in the effective action [49]. Given the KMS
symmetry and unitarity, a consistent ansatz for the effective
action can be organized in powers of temporal derivatives
in the semiclassical approximation as

Γ½Φ� ¼ Γ1½Φ� þ Γ2½Φ� þ… ðA11Þ

Further symmetries are parity and the Z2 invariance in the
fields.
In the following two subsections, we show explicitly

how to formulate the constraints on the allowed terms of the
action in first and second order in temporal derivatives.

1. Truncation at first order in time derivatives

At first order in time derivatives, the action can be
parametrized as

Γ½Φ� ¼
Z
t;x
fϕaFðϕr;∇ϕrÞ þ Xðϕr;∇ϕrÞϕa∂tϕr

þHðϕr;∇ϕrÞϕ2
ag: ðA12Þ

As stated above, we have two more symmetries: Z2 and
parity. Therefore, in the previous equation, we have further
constraints on the functions F, X, and H. Z2 symmetry
implies

F → −F; X → X; H → H: ðA13Þ

Moreover, F depends on odd powers of ϕr, while X, H
depend on even powers, and all those functions must be
invariant under parity transformation.
The consequence of the KMS symmetry reduces the

number of allowed terms. Applying the transformation in
(A9), the action transforms to

Γ½T βΦ� ¼
Z
tR;x

fϕaF þ iF∂tRϕr þ ð−X þ 2iβHÞϕa∂tRϕr

þHϕ2
a − ðβ2H þ iβXÞð∂tRϕrÞ2g: ðA14Þ

The action is invariant if H ¼ −iX=β and if F ¼ δH½ϕr�
δϕr

,
such as when choosing as H the Ising Hamiltonian (20),
with the quartic potential (21). The second requirement is
needed to make the monomial iF∂tϕr a total derivative,

i
δH½ϕr�
δϕr

∂tϕr ¼ i∂thðϕrÞ; ðA15Þ

where

H½ϕr� ¼
Z
t;x
hðϕr;∇ϕrÞ; ðA16Þ

such that unitarity is expected. This term can be interpreted
as the system’s entropy [23].
To summarize, we have the following consistent ansatz

for the effective action:

Γ½Φ� ¼
Z
t;x

�
ϕa

δH
δϕr

þ X

�
ϕa∂tϕr −

i
β
ϕ2
a

�	
; ðA17Þ
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where we notice that the time derivative and the noise term
have the same coefficient X. After we set without loss of
generality β ¼ 1, the resulting effective action has the form
of the response functional of the equilibrium dynamical
model A. The corresponding equation of motion for ϕr is
nothing but the Langevin evolution, given in (18).
We also state the propagator, which derives from (A17)

for completeness and later convenience. For additional
context see (B6). In Fourier space, it is given in matrix
form as

Gðω; pÞ ¼ 1

γðpÞγð−pÞ
�−2iX γð−pÞ

γðpÞ 0

�
; ðA18Þ

with γðpÞ≡Uð2Þ þ p2 − iXω.

2. Truncation at second order in time derivatives

It is possible to extend the truncation one order higher in
time derivatives using the algorithm explained in [23].
Within the semiclassical expansion, we can write the

ansatz for the action up to the third order in ϕa and two time
derivatives

Γ½Φ� ¼
Z
t;x
L ¼

Z
t;x
fEϕa þ Xϕ2

a þ Yϕ3
ag; ðA19Þ

where E, X, Y are functions of the r-field ϕr and its time
and spatial derivatives are consistent with the Z2 symmetry
of the Ising model. The KMS symmetry dictates the
number of time derivatives in each coefficient contributing
to the same order; if we include the cubic term in ϕa, to
close the KMS symmetry, we have to expand to the second
order in the time derivative of the coefficients in (A19)

E ¼ E0 þ E1 þ E2;

X ¼ X0 þ X1;

Y ¼ Y0: ðA20Þ

The subscript counts the order in time derivatives of the ϕr
terms. The action of the transformation on L is

L½T βΦ� ¼ iβE∂tϕr − β2ð∂tϕrÞ2X − iβ2ð∂tϕrÞ3Y
þ ðEþ 2iβX∂tϕr þ 3ðiβ∂tϕrÞ2YÞϕa

þ ðX þ 3iβ∂tϕrYÞϕ2
a þ ϕ3

aY: ðA21Þ

For the action to be invariant Γ½Φ� ¼ Γ½T βΦ� þ R
t;x ∂μV

μ.
We get the following relations for the coefficients. At
order zero in powers of the a field, we get the following
conditions:

iβE0∂tϕr ¼ ∂μV
μ
ð0;0Þ;

iβE1∂tϕr − β2X0ð∂tϕrÞ2 ¼ ∂μV
μ
ð0;1Þ;

iβE2∂tϕr − β2X1ð∂tϕrÞ2 − iβ3ð∂tϕrÞ3Y0 ¼ ∂μV
μ
ð0;2Þ;

ðA22Þ
with Vð0;iÞ, where i indicates the number of time deriva-
tives. At order one in the a field, the conditions are given by

E1 þ 2iβX0∂tϕr ¼ −E1;

E2 þ 2iβX1∂tϕr − 3β2ð∂tϕrÞ2Y0 ¼ E2; ðA23Þ
while at the second order

X1 þ 3iβY0∂tϕr ¼ −X1: ðA24Þ

The independent conditions are

X1 ¼ −
3iβ
2

ð∂tϕrÞY0;

E1 ¼ ið∂tϕrÞβX0;

iβE0∂tϕr ¼ ∂μV
μ
ð0;0Þ;

∂μV
μ
ð0;1Þ ¼ 0;

iβE2∂tϕr þ
i
2
β3ð∂tϕrÞ3Y0 ¼ ∂μV

μ
ð0;2Þ: ðA25Þ

In the previous section, we discussed the implications of

E1 ¼ ið∂tϕrÞβX0;

iβE0∂tϕr ¼ ∂μV
μ
ð0;0Þ; ðA26Þ

that contribute to leading order where and E0 ¼ δH
δϕr

.
The second order is specified by two additional inde-

pendent coefficients Y0 and E2. The resulting action is

Γ½Φ� ¼
Z
t;x

�
E2ϕaþY0

�
−
3iβ
2

ð∂tϕrÞϕ2
aþϕ3

a

�	
: ðA27Þ

The equation

iβE2∂tϕr þ
i
2
β3ð∂tϕrÞ3Y0 ¼ ∂μV

μ
ð0;2Þ; ðA28Þ

can be solved by noting that if one takes

Vμ
ð0;2Þ ¼ ðZtðϕrÞð∂tϕrÞ2; 0Þ; ðA29Þ

its divergence leads to

∂ϕr
Ztð∂tϕrÞ3 þ 2Zt∂tϕr∂

2
tϕr: ðA30Þ

Therefore, one can equate the coefficients to obtain

E2 ¼ −i
2

β
Zt∂

2
tϕr; ðA31Þ
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Y0 ¼ −2i
1

β3
∂ϕr

Zt; ðA32Þ

which leaves us with only one independent function of the
field. The action in terms of Zt and its derivative is

Γ½Φ� ¼
Z
t;x

�
−i

2

β
Zt∂

2
tϕrϕa − 2i

1

β3
∂ϕr

Zt

�
ϕ3
a

−
3iβ
2

ð∂tϕrÞϕ2
a −

1

2
β2ð∂tϕrÞ2ϕa

�	
: ðA33Þ

If the spatial gradients are included, then additional terms
will appear.

APPENDIX B: FLOW EQUATIONS

We work in the Keldysh basis; see (A4) for our basic
setup and, e.g., [3,54–58] for a comprehensive introduc-
tion in the context of the fRG or [49] for a more general
perspective. To keep the notation readable, we suppress the
explicit RG scale k dependence; it is implicitly understood
everywhere. In this convention, the flow of Γ under the RG
scale k is given by the Wetterich equation [59] which reads

Γ̇½Φ� ¼ i
2
tr½Ṙ · ðΓð2Þ½Φ� þ RÞ−1�

¼ i
2

Z
x;y

Ṙijðx − yÞ½Γð2Þ½Φ� þ R�−1ji ðy; xÞ; ðB1Þ

where the dot represents a derivative with respect to the
logarithm of the RG scale, R denotes the regulator and Γð2Þ
represents the two-point function. In general, the n-point
vertex functions are obtained via the functional derivatives
of Γ, defined as

ΓðnÞ
α1…αnðx1;…; xnÞ ¼

δnΓ½Φ�
δϕᾱ1ðx1Þ…δϕᾱnðxnÞ

; ðB2Þ

where the αi ∈ fr; ag indicate either a retarded or advanced
index and a bar denotes index conjugation, i.e., ā ¼ r
and r̄ ¼ a.
For simplicity, we restrict ourselves to a frequency-

independent regulator with only nonvanishing off-diagonal
components as

R ¼
�

0 RarðpÞ
RraðpÞ 0

�
: ðB3Þ

To maintain the causal structure of the Keldysh action, the
retarded and advanced parts are connected by complex
conjugation, i.e., RarðpÞ ¼ R�

raðpÞ. As the regulator, we
chose the standard spatial Litim regulator

RarðpÞ ¼ RraðpÞ ¼ rðpÞ ¼ ðk2 − p2Þθðk2 − p2Þ: ðB4Þ

This choice of regulator is compatible with the fluctuation-
dissipation relation.

1. Correlation functions and their flow

Correlation functions can be obtained via functional
derivatives of the generating functional. For example, the
matrix of connected two-point correlation functions is
given by

iGðx; x0Þ≡
� hϕrðxÞϕrðx0Þi hϕrðxÞϕaðx0Þi
hϕaðxÞϕrðx0Þi hϕaðxÞϕaðx0Þi

�

¼
�
iGrrðx; x0Þ iGraðx; x0Þ
iGarðx; x0Þ 0

�
: ðB5Þ

The propagator is, in compact matrix notation, given by

G½Φ� ¼ −ðRþ Γð2Þ½Φ�Þ−1: ðB6Þ

We are left with the projection of the flow onto the scale-
dependent couplings in the truncated quantum effective
action (22). We start by looking at the flow of the (off-shell)
one-point function

Γ̇ð1Þ
b ðzÞ ¼ δ

δϕbðzÞ
∂kΓ

¼ −
i
2

Z
x;y;w;o

Ṙjkðx; yÞGklðy; wÞΓð3Þ
blmðz; w; oÞ

× Gmjðo; xÞ; ðB7Þ

with b ¼ a, r, where the three-point function is defined as

Γð3Þ
blmðr; x; yÞ ¼

δΓð2Þ
lm ðx; yÞ
δϕbðrÞ

: ðB8Þ

Hereby, one requires the functional derivative of the
propagator with respect to the field

δ

δϕiðxÞ
Gbcðy;zÞ ¼−

Z
x0;y0

Gblðy;y0ÞΓð3Þ
ilmðx;y0; x0ÞGmcðx0; zÞ:

ðB9Þ

Assuming that the physical system under study is transla-
tionally invariant in space, it is straightforward to derive
the flow equation of the effective potential by performing
the integral over the internal frequency after the matrix
multiplications

∂kUð1Þ ¼ −
1

2

Z
p
ṙðp2Þ Uð3Þ

ðUð2Þ þ p2 þ rðp2ÞÞ2 ; ðB10Þ

after frequency integration.
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Putting all the pieces together, we arrive at the flow for
the derivative of the effective potential, given in (24).
The flow equation for the equilibration rate X is obtained

by projecting onto the flow of the two-point function and
similarly for the four-point function. The flow equation
explicitly reads

Γ̇ð2Þ
ab ðq;−qÞ ¼ i

Z
p

�
ṘijðpÞ

�
GjkðpÞΓð3Þ

aklðq; p;−q − pÞ

×Glmðpþ qÞΓð3Þ
bmnð−q; pþ q;−pÞGniðpÞ

−
1

2
GjkðpÞΓð4Þ

abklðq;−q; p;−pÞGliðpÞ
�	

;

ðB11Þ

where q ¼ ðν; qÞ is the external momentum. Now we want
to specify our ansatz for the effective action. The only
nonvanishing components of the three-point function are
given by

Γð3Þ
araðp; q; rÞ ¼ Γð3Þ

aarðp; r; qÞ
¼ ð2πÞ−2ðdþ1Þδdþ1ðpþ qþ rÞ2iXð1Þ; ðB12Þ

and

Γð3Þ
rrrðp;q;rÞ ¼ ð2πÞ−2ðdþ1Þδdþ1ðpþqþ rÞγ3ðp;qÞ; ðB13Þ

where

γ3ðp; qÞ ¼ Uð3Þ − iXð1Þðωp þ ωqÞ: ðB14Þ

Similarly, the only nonvanishing components of the four-
point function are given by

Γð4Þ
rrraðp;q;r;sÞ¼ð2πÞ−2ðdþ1Þδdþ1ðpþqþrþsÞγ4ðp;q;rÞ;

ðB15Þ

and

Γð4Þ
rraaðp; q; r; sÞ ¼ ð2πÞ−2ðdþ1Þδdþ1ðpþ qþ rþ sÞ2iXð2Þ;

ðB16Þ

where

γ4ðp; q; rÞ ¼ Uð4Þ − iXð2Þðωp þ ωq þ ωrÞ: ðB17Þ

The frequency integration can be performed analytically,
and we are only left with an integral over the spatial loop
momentum p

∂kX ¼ 1

Voldþ1

lim
ν→0

∂iν½lim
q→0

∂tΓ
ð2Þ
ra ðq;−qÞ�

¼ 1

2

Z
p

∂trðp2Þ
ðUð2Þ þ p2 þ rðp2ÞÞ2

�
3

ðUð3ÞÞ2
ðUð2Þ þ p2 þ rðp2ÞÞ2X

−
8Uð3ÞXð1Þ

ðUð2Þ þ p2 þ rðp2ÞÞ þ 2Xð2Þ
�
: ðB18Þ

Being related to a transport coefficient, the plasmon limit is
the correct choice for the equilibration rate X. The final
equation is given in (25).

2. Flow equations at finite spatial volume

In this subsection, we briefly overview how to modify
the fRG flows to suit a finite spatial volume. For a more
comprehensive understanding, we recommend referring
to, e.g., [60–64]. As commonly employed, we use a box
with an extension of L in all spatial directions, denoted by
i ¼ 1;…; d, where xi ∈ ½0; L�, and apply periodic boundary
conditions. A finite extent in a given direction with periodic
boundary conditions ϕðxþ LÞ ¼ ϕðxÞ only allows for
plane waves that are periodic under shifts xi → xi þ L,
that are exp ði2πnxi=LÞ with n∈Z. This leads to a discrete
set of momentum modes given by

pi ¼
2πni
L

; with ni ∈Z; ðB19Þ

for all spatial directions. Consequently, each spatial
momentum integral gets replaced by a sumZ

∞

−∞
dpi →

2π

L

X
ni ∈Z

: ðB20Þ

The flow equations for a system in a finite spatial volume
Ld can be implemented efficiently by introducing the
mode-counting function Bd as

BdðkLÞ ¼
ð2πÞd
Ld

X
n

Θ
��

kL
2π

�
2

− L2n⃗2
�
; ðB21Þ

where we use the shorthand notation

n⃗2 ¼ 4π2

L2

Xd
i¼1

n2i : ðB22Þ

The Heaviside step function Θ ensures that only modes
with a magnitude less than k contribute to the sum. In the
limit of infinite volume, ðL → ∞Þ the infinite-volume
result is recovered

lim
kL→∞

BdðkLÞ ¼ Ωd
kd

d
: ðB23Þ

For the derivative of the effective potential, the flow
equation at a finite volume with length L results in
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∂kUð1Þ ¼ ∂

∂ϕ

�
BdðkLÞ
ð2πÞd k

1

Uð2Þ þ k2

�
: ðB24Þ

For the dissipation rate, the result is

∂kX ¼ −
BdðkLÞk
2ð2πÞd ½3ð∂ϕGÞ2X þ 4∂ϕðG2ÞXð1Þ þ 2G2Xð2Þ�:

ðB25Þ

APPENDIX C: NUMERICAL ALGORITHM

The explicit expressions for the flow of the derivative of
the effective potentialUð1ÞðϕÞ and the dissipation rate XðϕÞ
are given by nonlinear partial differential equations in the
field variable; see (24) and (25), respectively. Solving these
numerical equations requires some attention to detail due
to the nonanalyticity of the solutions. Here, we follow the
general ideas introduced in [47], which have been devel-
oped further in [65–67]. We briefly recapitulate how the
upwinding method can stabilize spatial discretization for
the reader’s convenience.
In the case of infinite volume, we useN ¼ 800 stencils in

field space with a uniform spacing (introduced below) of
dϕ ¼ 0.02. For finite volume, we use N ¼ 400. We check
the stability against varying these parameters.
Without loss of generality, we can restrict the discussion to

the case ϕ > 0. In this case, the notion of upwind derivatives
is fixed entirely by the direction of the derivative.
The boundary condition at large field values is fixed via

extrapolation with a ghost cell. We use (anti)symmetry
around zero at the vanishing field value to fix the boundary
conditions.

1. Derivative of the potential

The flow equation for the derivative of the potential here,
abbreviated as uðt;ϕÞ ¼ Uð1Þðt;ϕÞ, where now t is the RG
time, can be expressed formally as

∂tu ¼ Ad∂ϕf; ðC1Þ

where Ad ¼ Ωd

ð2πÞd
kdþ2

d and fðt; uÞ [see (26)] represents the

flux of a single scalar field. Here, we aim at a linear upwind
scheme to discretize (C1), already given in a conservative
form. Following the linear upwind scheme in [67], we
denote cells elements by ½ϕi−1

2
;ϕiþ1

2
�, with the size of the ith

cell dϕi ¼ ϕiþ1
2
− ϕi−1

2
. Later on, we will also need the

second derivative of the potential, given by qðt;ϕÞ ¼
∂ϕuðt;ϕÞ.
The first equation (C1) takes the form of a transport

equation with a constant negative speed, thus requiring a
right derivative to incorporate the direction of transport

∂tui þ Ad
fiþ1 − fi

dϕi
¼ 0: ðC2Þ

The dissipative behavior is recovered by discretizing the
auxiliary equation for qðt;ϕÞ with a left derivative

qLi ¼ ui − ui−1
dϕi

: ðC3Þ

The resulting discretization is

∂tui ¼ Ad
fRi − fLi
dϕi

; ðC4Þ

where the fluxes are chosen according to an alternating
pattern as

fRi ¼ f

�
t;
uiþ1 − ui

dϕi

�
;

fLi ¼ f

�
t;
ui − ui−1

dϕi

�
: ðC5Þ

2. Relaxation rate

Due to the exponential growth of the dissipation rate X,
we switch variables to the logarithm thereof τ ¼ logX. Its
flow, cf. (25), is given by

∂tτ¼ αð∂ϕfÞ2þ βð∂ϕf2Þð∂ϕτÞþ γf2ð∂2ϕτþð∂ϕτÞ2Þ; ðC6Þ
where α, β and γ are time-dependent coefficients. This
equation is a nonlinear advection-diffusion equation with a
negative advection coefficient ∼β and a positive diffusion
∼γ. The quantity f is computed using a discretization that is
consistent with the derivative of the potential, i.e., using a
right derivative, such that the first term is given by

αð∂ϕfÞ2 → α

�
fRi − fLi
dϕi

�
2

: ðC7Þ

The advection term is replaced by a first-order left approxi-
mation of the upwind first derivative according to [68]

β∂ϕf2∂ϕτ → β
ðfRi Þ2 − ðfLi Þ2

dϕi

τi − τi−1
dϕi

: ðC8Þ

Since we are dealing with an upwinding discretization of
an advection-diffusion equation, the second derivative of
the diffusion term is discretized using a standard central
derivative

γf2ð∂ϕτÞ2 → γf2i

��
τi − τi−1
dϕi

�
2
�
; ðC9Þ

∂
2
ϕτ →

τiþ1 − 2τi þ τi−1
dϕ2

i
: ðC10Þ

This concludes our discussion of the spatial discretiza-
tion. The modifications in the equations when considering
the system in a finite volume, cf. Appendix B 2, do not
alter the structure of the equations. Hence, the discretiza-
tion is the same.
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