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Clothed particle representation in quantum field theory:
Fermion mass renormalization due to vector boson exchange
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We consider the fermion mass renormalization due to the vector boson exchange within mesodynamics
with nucleon and p meson fields as well as quantum electrodynamics with electron and photon fields. The
method of unitary clothing transformations is used to handle the so-called clothed particle representation
that allows us to get rid of mass counterterms directly in the Hamiltonian. Thus, they can no longer appear
in the S-matrix. Special attention is paid to the cancellation of the so-called contact terms that are inevitable
in models with vector bosons. Within this formalism, the second-order mass shifts are derived. They are
expressed through the corresponding three-dimensional integrals whose integrands depend on certain
covariant combinations of the relevant three-momenta. Our results are proved to be particle-momentum
independent and compared with ones obtained by Feynman techniques.
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I. INTRODUCTION

Starting from the instant form of relativistic quantum
dynamics for a system of interacting particles, where
amongst the ten generators of the Poincaré group II only
the Hamiltonian H and the boost operator B carry inter-
actions, we have built up in the so-called clothed particle
representation (CPR) the Hamiltonian for the interacting
nucleon and p meson fields, on the one hand, and for
interacting electron and photon fields, on the other hand. In
this connection, let as remind that the transition from the
primary “bare” particle representation (BPR) with its bare
particle states to the CPR is implemented via the method of
unitary clothing transformations (UCT) put forward by
Greenberg and Schweber [1] and developed in Refs. [2—-13]
and [14]. The corresponding clothing procedure is realized
along the chain: bare particles with bare masses — bare
particles with physical masses — physical (observable)
particles (details in [7]). Such a consideration is convenient
when drawing some parallels between the clothing
approach in quantum field theory (QFT) and the method
of canonical transformations (in particular, the mass-
changing Bogoliubov-type ones) in the theory of super-
fluidity and superconductivity. As a result, all generators of
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IT get one and the same sparse structure after normal
ordering the creation (destruction) operators of clothed
particles and removing the so-called bad terms (see survey
[4]). Doing so, the state y, of the clothed particle with
energy £}, and momentum p, being the total H eigenvector,
Hly,) = Eply,), belongs to the invariant subspace of the
Fock space Ry with mass m. The latter is determined by
relation,

= B} — p?, (1)

while in the contemporary renormalization theory the
particle mass is considered as a pole in the exact particle
propagator (see, e.g., Chaps. 10, 11 in [15]). Unlike this we
prefer to use the natural definition (1) so

H|Wp:0> = m|l//p:0>v (2)

and introduce the mass shift om = m — m, where m, is the
bare mass value (e.g., for a fermion) with inequality,

Hlyp5) # molyptt). (3)

bare

for the one-body bare state [y2G) # [wp—o)-

Recall also that within the Dyson-Feynman approach or
old-fashioned perturbation theory the mass shifts may be
expressed through the corresponding self-energy contribu-
tions to the S-matrix. Such contributions enter an expansion
of the mass shifts in the coupling constants and some of
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them give rise to undesirable divergences inherent in the
existing applications of every local field model (at least,
when employing the perturbative methods). Their removal
requires considerable efforts associated with a consequent
regularization of the divergent integrals involved. In the
S-matrix calculations they are encountered to the first
nonvanishing approximation in the coupling constants
(in particular, when evaluating the forward scattering
amplitudes, where the one-loop contributions must cancel
the occurring mass counterterms). A few instructive
examples of such a situation for the pion-nucleon and
nucleon-nucleon scattering amplitudes can be found in the
monograph [16] both in the framework of the old-fashioned
perturbation theory and the Dyson-Feynman approach.

One should note that the clothed particle approach used
here is related to an extensive topic associated with the
renormalization and dressing procedures in the QFT. First,
we mean pioneering explorations in the framework of the
so-called similarity renormalization group (SRG) method
put forward by Gtazek and Wilson (see, e.g., Ref. [17] and
Refs. therein). Second, we have seen the promising
applications of the akin approach proposed by Wegner
[18] with its flow equations for Hamiltonians. Both
approaches are aimed at softening interactions in nuclear
systems, if any, in order to improve the convergence of the
corresponding computations. In this context, we would like
to mention a few instructive applications [19-21] of the
SRG evolved procedure with the simple model for primary
interactions. Although our approach and those are imple-
mented via a similarity transformation O — UOU™!
(U™' = U") of any operator O, the objective of each of
such a transformation is completely different. Moreover, by
definition, the UCTs remain the primary Hamiltonian
intact. Being pressed in space, we can not discuss all the
attractive features of these approaches. Certainly, we are
going to do it later.

This work goes on our studies [6]. In addition, we would
like to mention work [22], where we have seen some points
similar to ours. The authors of Ref. [22] have chosen the
definition (1) to calculate the second-order mass shift of
scalar “nucleon” due to exchange of scalar meson by using
the so-called FST—Okubo method [23,24]. They have
proved that their result is equivalent to the one obtained via
the Dyson-Feynman techniques. The approach exposed
here differs from the aforementioned one, at least, in the
two aspects. First, unlike the approach [22] the clothing
procedure is not aimed, a priori, to find a UT that block
diagonalizes H. At this point one should note that such a
reduction of the Hermitian operator via a unitary trans-
formation can not be implemented, in general, in infinite-
dimensional Fock space. Instead, the aim of the multistep
clothing procedure is to express the original Hamiltonian H
in terms of the new clothed-particle operators in a form
which is different from that given for the initial bare-
particle one. Such a transition from the BPR to the CPR

introduces a new sparse structure of the original
Hamiltonian H. Second, in the framework of the CPR
the mass and vertex renormalization problem [5,6] is
considered in a natural way, in parallel with the construc-
tion of the interactions.

Since the publication of [6], a number of applications of
the UCT method have been notably extended. Currently, it
has been applied in the mesodynamics to the processes that
involve interactions of the clothed z, 7, p, w, §, 6 mesons
and nucleons [5,7,8,25-27]. The applications of this
method in QED and QCD have been shown in
[10,11,28-30]. In the present work we return to the mass
renormalization problem in the CPR to consider fermion
mass renormalization due to the vector bosons exchange.

The outline of this paper is as follows. In Sec. II, we will
take a look briefly at the underlying formalism and
structure of the Hamiltonian. A distinctive feature of the
vector coupling is that the corresponding Lorentz-invariant
Lagrangian does not necessarily have “... the interaction
Hamiltonian as the integral over space of a scalar
interaction density: we also need to add non-scalar terms
to the interaction density ...” (quoted from p. 292 of
Ref. [15]). It is the case with derivative couplings and/or
spin > 1, see Egs. (77) and (81-83) in [8] [note a typo in
Egs. (83, 91): instead of 4m?, the denominator of the
second term should be 8m2]. As shown in [8], the clothing
procedure enables us to remove the noninvariant terms
which belong to NN — NN interaction directly in the
Hamiltonian (at least, in the second order in coupling
constants). This pleasant feature of the CPR works well in
the present problem, viz., noninvariant mass renormaliza-
tion terms cancel too. In Sec. III, we will derive the mass
shifts of electron and nucleon due to photon and p meson
exchanges, respectively. This approach can be easily
carried over to the cases of exchanges with other vector
particles, for example, the @ meson. We will also consider a
way to regularize the integrals included in the expressions
for the mass shifts in Sec. I'V. Our results will be compared
with the simplest disconnected contributions to the corre-
sponding boson-fermion forward scattering amplitude in
Sec. V. They are evidently covariant and determined by the
one-loop diagrams. Section VI has been written to under-
stand better the place of the notion of clothed particles in
the framework of a popular version of the in(out) formal-
ism. In particular, there we find the touching points
between the CPR approach and Lehmann-Symanzik-
Zimmermann (LSZ) method in QFT. At last, the
Appendix is devoted to the derivation of the 2 < 2
interactions between the clothed nucleons (antinucleons).

II. UNDERLYING FORMALISM

Here the notion of clothed particles is applied to the
following model: a spinor (fermion) field y interacts
with a vector boson field ¢. The model Hamiltonian can
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be separated into the free and interaction parts H(a) =
Hp(a) + H;(a), where the interaction part,

H(@) = Moy + Vien + VI 4V, (4)
includes the mass M., and vertex V.., counterterms. The
interaction is a function of creation (destruction) operators in
the BPR, i.e., referred to the bare particles with physical
masses [7]. Formally, the latter can be introduced via the
mass-changing Bogoliubov-type transformation. We will use

the well-known Yukawa-type interactions between the
nucleon and p meson fields, namely,

v~ [ ax (g:wx)yaw(x):w(x)
bl ).

2
v =[x sp o (): o ():
b

f2

LR ). O
where 6.5 =5 (Va¥ = Vp70), 97 (X) = 0"/ (x) — P9 (x),
and symbol : denotes the normal ordering, where all the
creation operators are to the left of the destruction ones. In the
case of QED, we will work in the Coulomb gauge [see, for
example, Eq. (8.4.23) in Ref. [15] ]; therefore we should take
g=-e, f =01n (5) and the Coulomb interaction,

x g (X)yow (x) @ (Y)row(¥): = Veous (7)

with the parameter A to be put zero at the end of calculations.
Henceforth, the upper indices denote the order in coupling
constants. The set a involves the creation (destruction)
operators for the bare bosons a'(a), fermions b'(b), and
antifermions d'(d). Following a common practice, they
appear in the standard Fourier expansions of the boson
and fermion fields,

(X (eq(ko)a(ko
0u0) = s [ )
+ eq(k_o)a’(k_o))e™X, (8)
\/ 27r / PH)
+o(p_p) dT(p p))e™x, 9)
where wy = /m} + k2, E, = \/m* + p?, m;, and m are

boson (p meson) and fermion (nucleon) masses, respectively.

Hereafter, for brevity, we mean summation over dummy
polarization indices (i, o, etc.). The independent polarization
vectors e(ko) (6 = +1,0,—1) in the last expansion are
transverse k%e, (ko) = 0 and normalized as

k,k
> “eq(ko)e) (ko) = —gup +m—f = Pk).  (10)
o b

As usually, we apply the following commutation rules
[a(ko),a’ (Kd')] = oy S,,6(K —K), {b(pu),b"(p'p)} =
{d(py). d' (D)} = Eyb,1,6(0' — p).

In any case, we have the free part of H(a),

Hy(a) = / D & (6" (pu)blpp) + d (pp)d(pw)
P

+/%wkaT(k6)a(ka). (11)

Explicitly noncovariant expressions (6) and (7) reflect
the mentioned peculiarity of the interaction density in such
models. Namely, it is not a Lorentz scalar. In this con-
nection, let us recall the property of the density Vp(x) =
er'V(x)e~r! in the Dirac picture (D-picture) to be a
scalar, viz.,

Ur(MVp(x)UE!(A) = Vp(Ax), (12)
where the operators Ugp(A) realize a unitary irreducible
representation of the Poincaré group in the Hilbert space of
states for free (noninteracting) fields.

For a set of clothed operators we will use the symbol «,.. To
apply the clothing procedure exposed in [5,7] one has to
proceed to the CPR via elimination of the so-called bad

terms, which, by definition, prevent the bare vacuum and the
bare one-particle states to be H eigenvectors. Thus, we

will use the first clothing transformation WU (a)=
W (a.)= exp(R") in order to eliminate the interaction
V() linear in coupling constants. It can be done if the
generator R(!) meets the equation,

RV, Hp] + V) =0. (13)

In the CPR with the similarity transformation a =
W(a,)a.W'(a,) we have

H(a) = K(a,) = W(ac)H(ac)W+<ac)
= eR[HF<ac) + HI(“C)]e_R' (14)

By using the definition (13) it can be written as
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1
K(ac) = HF + Mren + Vren + V(z) + E [R(l)v V(l)]

1
+ [R(l)’Mren] + §

= Hp(ac) + Ki(a). (15)

[RORMW, v + ..

Keeping in the rhs of (15) only the contributions of the
second order in coupling constants we get

1
Kia) ~ K (@) = MG+ VO + SRV VL (16)

In other words, we neglect terms responsible for the processes
more complicated than 2 <> 2. All particle-conserving

ingredients of M §§3 should be canceled by the corresponding

one-body (e.g. bib,) terms K ﬁ),ody that involve components

of the commutator 1 [R1), V(1] and the operator V(?), that is
done in the next section. As shown in [6], only the particle-
conserving part of the mass counterterm (responsible for the
one to one fermion transition) may be canceled via one and the
same clothing transformation. Note that it is sufficient to
evaluate the mass shifts in the second order since the same

operator structure will appear in higher orders in the coupling

constant. The operator K§2> involves the two-body (e.g.

b:bzbcbc) interactions responsible for the physical processes
between the clothed particles,

K7 = K(ff = £) +K(FF = F 1)+ K(fF = £1) + K(bf = bf) + K(bf — b]) + K(bb — fF)

+ K(fF = bb) + K\, + M.

(17)

In Ref. [30] we have presented all the four-operator interactions in QED, while in the Appendix (cf. Ref. [8]) there are a step-by-
step derivation of these four-operators interactions, that belong to the nucleon-antinucleon subsector in the mesodynamics with
the vector coupling. One of these interactions is responsible for the nucleon-nucleon scattering,

K(NN = NN) =

P —P2)

bi(p )bl (Pous)be(prpr )b (paps)

m? / dpdp,dp,dp, 5(p| + p5 —

2(271’)3 Epr] Ep/zE

2m

p.Ep, (pll _pl)z_m%

[ { 0+ 2= 501 et na { o = L oy o

[ _
+ (Ep, +Ey, — Ey, — Ep,) =—u(phpy)y yu(papa)(pipty ) (9 + )y =

2m

m
m

L wiep) butpw|. (9

Henceforth, we omit the index c if it does not lead to confusion. It is proved (see the Appendix) that the so-called contact
interaction Ko (NN — NN) cancels the contribution V(2)(NN — NN) that stem from the non-scalar part of the interaction

density V) (x), so

N =

[RD, VIV](NN - NN) = K(NN — NN) + K¢ (NN = NN). (19)

It gives the opportunity to handle the interaction (18) that is covariant on the energy shell.

III. DERIVATION OF THE MASS SHIFTS
According to [5] the commutator [R(), V(D] = [R( Y] 4 [RMW YT] 4+ H.c. with

V) = P 4 P

n__m
2(2n)?

dk dpl dpz

wy Ep, Ep,

R —

dk dp, dp,

RO — RMT
el
2(277:)3 Dk Epl EPz

(1) =

F'(p1u1)V(pipys paba; ko) F(papta)a(ke), (20)

— ————=F"(pi1)R(p1p1; Papias ko) F(popy)a(ko). (21)
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Here, the fermion operator column F and row F' are composed of the particle and antiparticle operators (e.g.,
F'(pu) = [b"(pu),d(p_u)]), the c-number matrices,

Vll V12
V21 V22

] = 8(p1 — p2 — k)e“ (ko) [_L_‘(PI“I)

D(P1—/41)] <9}’a —zj:nik/"aﬁa> [u(popts)  0(pa_ts)]

V(pip1; papia; ko) = [

and

R( . ko) = Ry Ryp (22) where 6m?) is the fermion mass shiftin quegtion, should be
Pi#1> Pabas RO Ry, Ry | canceled by the corresponding contributions from the
commutator £ [R(, V(] and the operator V. It gives
V. us the relationship,
Ry = (23)

(_1)8’—1Ep1 _ (_1)6—1Ep2 _

1
MG+ Vi, +5 RO VO), =0, (26)
At this point we recall that such a relation is valid if

my, < 2m (see Sec. 2.4 in [5]). o . .
As mentioned above, all particle- conservmg mass  Subscript b"b means that after normal ordering we retain

renormalization counterterms in Mﬁgg _ Mbo)s + Mﬁegm i only on.e—ferl.nion terms. Note that the similar equation for
one-antifermion terms (d'd) leads to the same results for

@ antifermion mass shifts. It turns out that nondiagonal “bad”
Mgy, = 6m® / dxyp (X )y (x) b'd" and bd terms could not be canceled with the

respective terms of the operator Mg,), at least in the local

dp .
= mém®@ / E_I; F'(pp1 )M (pupa)F(ppa),  (24)  theory. In this context, let us write down all the one-fermion
p terms included in Eq. (26),

. 5/41/42 ﬁ(pﬂl)u(p—,“Z) ) B dp +
e I G Mo =mon® [ B oobioe). @7)
|
m? , Wy
Vi = 0207 dEg Eqi: qu(pp)b(pp)ﬁ(pﬂ){gz p%q [rou(qv)a(qv)re — rov(g-v)o(g-v)yo)
—fQZ [roru(qv)a(qv)yor — vorv(q-v)o(q- v)m]}u(pﬂ), (28)

1 m? dp dq
Z[RMD vy . —
2[R : ’V : ]b‘b - 4(27T)3/E12) Equ qb (pp)b(pp)
P¥(k .
X ﬁ(p'u){Ep—a)E)—Eq {9 Ya = Jnlkéaga} (qv)i(qv) {gﬂfﬁ - 2ilk oﬂr/:|
P (k
—Ep +wp(—q_:_ £, [ }'a—%ik‘f_o—aé] (q_v)o(g_v) [gyﬂ—%lk o, ]}u(p/,t). (29)

In these formulas 4 = ¢,7%, ¢ = (Eq.q), 9- = (Eq.—q), and k = (w,_q.p — q). The rhs of Eq. (28) embodies merely the
so-called contact terms in which instead of the propagators of intermediate particles we have the squares of their masses.
Keeping in mind the definition (10) of the projection operator P,z(k) we find
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1 m? dp dq .
—[RD, v)],;, = ——/ b*(pp)b(pp)
2 bib 4(27)3 | E%Eqwp—q

x ﬁ(l?ﬂ){ﬁ {ya(g +f) - % (p+ Q)a:| u(qu)a(q) [V"’(g +f) - ﬁ (p+ Q)“}

p— @p—q — Eq
1

+m la D=5 0= 4 afola 0t [ 1= L -0

+f F6m(g+f)+ f(p+q)- 7]+ P2 2 [rou(qu)i(qu)yo — rov(q-v)o(g-v)yo)

b

~ 2 () aror - rarvla_)ola. u)m]} (ow). (30)

After substituting Egs. (27), (28), and (30) to (26) we see that the last two contact terms in Eq. (30) cancels the contribution
from Eq. (28).
Doing so we get the nucleon mass shift due to the one-p-meson exchange,

sm® = 5m") (p) = 1,(p) + L(p), (31)
2
W0) =55 | B e = p 4 3arr = pa) + L = p s - p) | 2
2
Iz(P) = m/i—tm {292(’"2 - Pk) + 3gfm,2, +f2 <mi + (gn];)z ) } (33)

In the case of QED one needs to put in Egs. (26)—(29) g = e, f = 0, m;, = A (of course, now m refers to the electron
mass) and

V,(ﬁ)b = Veoul iy = 12 / dEl: Eqd(:’ » b (pp)b(pp)#mb‘t(pﬂ)
x [you(qu)a(qv)yo — rov(q-v)o(q_v)yolu( pu). (34)

The polarization vectors e(kc) (6 = 1) in (8) have the properties (in the Coulomb gauge) k - e(ko) = 0, ¢q(ko) =0,
being normalized as [15]

kong + kgn, kykg k2
> e lko)es (ko) = —gus + ko ﬁkz ba_ kzﬁ—PnanﬁEpaﬁ(k), (35)

o

with the timelike vector n = (1,0,0,0). By using this definition we come to

dq

dp 1
4(2n ) EIZ, Eqwp_

1
S[RW, v, = — «U(qu)it(qu)y”
2 — B

bt b
50 (W){Ep_wp_q

1 W, _
+————y0(q)b(q_ V) +
Ep + wp_q + Eq (p-q)°

< rou(a)a(av)ro — rov(a_0)3(g_2)r0 }uw). (36)

The important point is that the contact terms cancel again [cf. the last term in Eq. (36) with contribution from Eq. (34)].
After it the electron mass shift due to the one-photon exchange can be written as
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—5m (1 ph-exc) (p)

6

om? =

&2 / dq (o) { g+ m n g.—m } “w( pp)
= i ; u
8(27)° ) Eqwp—q P Ep—wpq—Ey Ept+opq+tEg P
e / dq { 2m* —pg  2m’+pq_ } (37)
m(2n)* | 2Eqwp_q \Ep —®p_q—Eq Ep+wp_q+Eq)

The last expression can be represented in an explicitly
covariant form by using the trick from [6] (see Appendix
therein), with help of the relation,

B(pq-) }

/ dq { Alpg)
2Eqwy_q \Ep —wpq —Eq  Ey + 0y g+ Eq
C(pk)

_[da__ Al | [dk_ COK)
_/E (P—q)2—m§+/wk(p+k)z_mz
dg_ Blpg) , [dk  D(pk)

/E (p+4q)* —mi+/wk(p_k)2_m2, (38)

where covariant numerators A(pq), B(pq), C(pk), and
D(pk) should be connected by

A(P‘I—)(Ep +wpq + Eq)
= 2EqC(pk/),
A(F‘I)(Ep —Wp_q + Eq) - B(pQ—)(Ep —Wp_q — Eq)
= 2EqD(pk), (39)

- B(PQ) (Ep + Wpiq — Eq)

with &' = (wp+q,—P —q) and k = (0p_q. P — q). Doing
so, we get

smltP" (p) = I1(p) + Iy (p). (40)
Lo € dq 2m® - pq
W0 =i B @
Lo e dk  m* - pk
Lp) _m(zﬂ)3/wk (p+ k)7 - “2)

or in the symmetrized form,

smitP) (p)

B < 2m(2x) {/dq L;mq)_p—qzz*
m? + pk

*/dk [<p P

A similar trick taken from our previous paper [6] (see
Appendix therein) has been used to get the covariant integrals
(32) and (33), i.e., | 5(p) = I, 2(Ap). The latter simplifies

2m? + pq ]
(p+q)? -2

mrrerd

the further calculations 7 ,(p) = I, ,(m,0,0,0) V p, reduc-
ing integrals (41), (42) to quadratures,

Ii(p) = 11(m,0,0,0)

e? € lim 7d 2 41 (44)
1 b
(27f) =0 VE+11 VTl
I5(p) = I5(m, 0,0, 0)
2 1=V /1
= m gy lim + (45)

2i=0 \/ %+ /1 + V4

Trying to cure the drawback of local field theories, these
divergent integrals can be regularized by introducing the
corresponding cutoff functions. We will consider such a
possibility in the next section.

By the way, it is easy to see that the integrals (32) and
(33) become equal, respectively, to (41) and (42) if we put
g=e, f=0,and m, = A

Separate contributions in the curly brackets of (37) can
be represented via the graphs (a) and (b) in Fig. 1. Such
graphs are typical of the old-fashioned perturbation theory.
In this context, the inverse energy denominators in the rhs
of Eq. (37) have the form D~!(E) = (E — E;)~! with the

(@)

(b) P P

FIG. 1. Two contributions to the mass shift within the
old-fashioned perturbation theory, with two (a) and four (b)
internal lines.
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appropriate values of the collision energy E and energy
of all permissible intermediate states E;. In other words,
(Ey —wp_q — Eq)™" and (E, + wp_q + E4)”" are related
to the propagators,

D NE=E,) = (E-wp_q—E,)™" and

DN E=E,) =(E-Ey—wy_q—Eq—E,)"", (46)
being associated with the two and four internal lines
between the dotted (the phantoms if one uses the terminol-
ogy adopted in Ref. [7]), respectively, in graphs a and b.
The graphs in Fig. 1 are topologically equivalent to the
time-ordered Feynman diagram Fig. 2. However, in the
Schrodinger picture employed here, where all events are
|

2
5m§\} ﬂ—exc)( ) 9n

m? — pq

m? + pq

p-q

FIG. 2. Self-energy Feynman diagram.

related to one and the same instant, such an analogy seems
to be misleading. In fact, the line directions in Fig. 1 are
given with the sole scope to discriminate between the
fermion and antifermion states.

At the end of this section, we would like to present the
result obtained previously [6] for the mass shift of the
nucleon due to the one-pion exchange,

{/dq m? — pgq +/dk —pk }
p = _— e —
2m(27)* \J Eq(p—q)*—m; [ ox(p+k)?—m?

_pk

:%{/Z_‘:{(p—Q)Z—m%+(p+q)2—mi} jL/j)_lZ{(10—5)]2{—"12jL

We see that it has the same denominators as in Egs. (31)—
(33) and (43) but the numerators are different. If one
considers model with interacting nucleons, pions, p mes-

ons, and other mesons, then the nucleon mass shift would

be a sum dmy = 5m,(\}”"exc) + 6m1(\}p o) 4

IV. REGULARIZATION OF THE FIELD MODELS
WITH YUKAWA-TYPE COUPLINGS VS THE
PROBLEM OF ULTRAVIOLET DIVERGENCES

Evidently, because of insufficiently fast falloff of the
integrands in Egs. (32) and (33) and (41) and (42), when the
momentum absolute value increasing, one has to handle
ultraviolet divergent quantities. Thus, it is necessary to
regularize the integrals, so they take on finite values. Trying
to overcome the divergences we would like to propose a
nonlocal extension of the field models in question.

Let us come back to the division,

H(a) = K(ac) = HF(ac) + Kl(ac)' (48)
It is the place where we would like to stress that the
interaction K;(a,) between the clothed particles does not
contain the contact terms. This suggestion is valid, at least,
in the second order in the coupling constants. In other
words, the interactions in the rhs of (17) are free from
such terms. To verify this for the case of QED, one can
refer to work [30], where we have presented the deriva-
tion of all two-particle interactions K(e~e™ — e"e”),
K(eTet = ete™), K(eTet = e7e"), K(ye~ —ye ),
K(yet - ye™), K(yy - e"e"), K(ee™ — yy), acces-
sible in our case. The derivation of K(NN — NN) and

i @

K(NN — NN) operators in the theory with nucleon-p-
meson coupling is presented in the Appendix (see
also [8]).

In this context, we recall the transformation properties of
the S-matrix (f|S|i) in the D-picture with respect to the
Lorentz group,

(fIS])) = (AfISIAD), ¥ A
[cf. the discussion on the p. 83 in Ref. [31] and, in
particular, Eq. (103) therein]. It is well known that such
property is provided if the interaction Hamiltonian density
H;(x) in the D-picture meets

(49)

Up(A)H, (x)UF (A) = Hy(Ax), (50)
In the theories with interacting fermions and scalar bosons
the property (50) of the H; density to be the Lorentz scalar
fulfills even in the BPR. But in the models with vector
bosons the operator H,(x) embodies the terms [V (x) or
Vcoul ()] that are not Lorentz scalars. These noncovariant
contributions no longer present in the Hamiltonian. It is a
distinctive feature of the CPR.

Therefore, we choose the interaction K;Z) as a starting
point for our nonlocal extension of the model. We introduce
the cutoff factors which are supposed to account for finite-
size effects. It can be achieved if in the rhs of (17) we
replace the structures,

a(piur)To(pops),
O(pip1)To(papa)

w(pyp)Tu(pops),

(P1p1)Tu(papa), (51)

<l
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(T" is some combination of the gamma matrices) with ones
multiplied by the cutoff factors g;1(p1, p2), 912(P1s P2),

921(p1.p2), and gxn(py, pa), respectively. Along the
guideline we replace the interaction Hamiltonian in the

CPR (17) by

V= K(ff = ff) + KNP F — F F)
+ K" (ff = ff) + K"(bf - bf)
+o o KT M, (52)

nloc(2
KI

In order to fulfill the property (49) it is required (see
details in the Appendix)

Gee(AP1.ADy) = gee(p1.p2) (¢,e=1,2); (53)

i.e., these cutoff factors should be dependent on the Lorentz
scalar pp,.

M) = |

my (p)o(p_p)u(pus)

2
miy (p)

HiH2

By assumption, our interactions are invariant with
respect to the space inversion P, charge conjugation C,
and time reversal 7. If the modified interaction retain such
invariance, then the following relations take place:

911(P17P2) = 922(1’27191)’
912(P17P2) = 921(p27p1)v
ge’e(p17p2) = gs’e(l’l—? pZ—)' (54)

Drawing parallels with the mass counterterm (24) in the
local field model we consider its nonlocal extension,

nloc(2 dP nloc
M = m [ B oM g F o). (55)

where one has to handle the matrix,

m'3) (p)a(puy )o(p_p>)

2
_mé; (p)éﬂlllz

Here the coefficients m.,.(p) may be momentum dependent. Of course, for simplicity, real m,(p) and m,,(p) should be

equal, to ensure the Hermiticity of the operator M?;E:f )

It is proved that a considerable part of the calculations, presented in Sec. II1 remams 1ntact w1th the modified interactions.

In particular, the corresponding regularization of the operator K i body b6 = Vi

(36)] gives

( [ ] »tp [defined by Egs. (34) and

nloc(2) em? dp dq (pq)
K o =~ | B ot oot { 2oL gt
2 Wy
+%ya v(g_v)o(g_v)y® +ﬁ[gﬁ(m)7ou(wﬁ(qvm
— & (pa)rov(a1)o(q_ u)yd}u(pm. (56)

In agreement with the first requirement to the clothing procedure proposed in (p. 6 on Ref. [5]) the latter should be

compensated by choosing the coefficient mﬁ) (p) such that M

the electron mass shift,’

2
2 e dq
m?(p) = /

m(2r)® | 2Ewp_q

(2) loc(2)
fermbb__Krllgf)

m? —
{gfl(PQ)E ° P4

p~ Wp—q q

dy b'p» SO We arrive to a nonlocal analogue of

2m? + pq_ } (57)

— g2 L

Since the structure of the integral (76) is similar to the rhs of Eq. (38), we can repeat those transformations to formula (44),
in order to find the expression with Feynman-like propagators,

lof course, @)

[ fee(p)dp/Eg = 0.

in general, each coefficient m (p) is defined with an accuracy to adding a function f..(p) such that
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e? dq | , 2m? — pg
72’"(2”)3 {/ E_q [911(1"1)7(17 AR + 331 (pq
m? — pk_ dq
mz] + /E_q (9%1(174)

Here ¢’ =(E,_x.p—k) and k' = (w0, 4.p+q). Obviously,
if one puts g7, = g3, =1 we come back to the local
result (43).

Unlike the momentum-independent mass shift (40)
obtained in the local model this coefficient may be
depended on the momentum. But the most significant
property of the integrals (57) is to take on finite values.
This pro;z)erty leads to the total cancellation of the finite
terms K' I-body b'» and M3 p7p in the Hamiltonian (52). At
the point one should realize that within our approach, the
one-particle operators cannot appear in the new form K («,.)
of the Hamiltonian.

One should stress that the integral (57) with properly
selected cutoffs g;, g»; takes on finite values for nonzero 1 in

Wp_q = /A% + (p— q)2. In other words, the two last terms

in the decomposition (52) are canceled. Thus, the pleasant
feature of the CPR with 1 # 0 takes place as before.
Otherwise, we will encounter the infrared singularity.
Indeed, the parameter A introduced in Eq. (7) has to be
put zero at the end of calculations, viz., when evaluating
some observables or matrix elements (f|S|i). But in the

theory developed here quantities like mﬁ) (p) or 6m® are
not considered as some corrections to the badly defined
bare mass m,. Instead, they are introduced as free param-
eters that should be chosen to cancel the terms in H that
prevent Eq. (2) to be valid. So, the cancellation of the one-
body terms happens in the Hamiltonian itself. Therefore,
we do not encounter infrared singularities considering the
problem of fermion mass renormalization.

There are no counterterms such as M£e3 to cancel singu-
larities present in the two-body terms of the Hamiltonian
(52). This issue will be addressed our upcoming research
where such singularities arise when evaluating the positro-
nium wave functions using the electron-positron interaction
operator K(e"e™ — e~ e™). Fortunately, Lande’s technique
[32] can be used to overcome these singularities when
solving the eigenvalue equations, e.g., for the Coulomb
problem in momentum space. The realization of the Lande’s
idea is underway.

In Ref. [9] it is shown that the removal of the mass
counterterms is closely interwoven with ensuring the
relativistic invariance of the theory as a whole. In this
connection, one should note that the supplementary con-
ditions on the choice of g-cutoffs are imposed by the
commutations of the Hamiltonian with the boost generators

2m?* + pq dk [, , . m?+pk
Vo+ar-7 */w_k MO 0 7
E m? + gk’
-¢ P : 58
g11<pq—))wp+q (q_k/)z_mz} ( )
|
[B, H] = iP. We are not going to construct some special

forms of these cutoffs here. In many applications the
parameters involved in g..(p;, p») are chosen in order
to ensure the best fit of the available data; see the example
in Ref. [8].

V. COMPARISON WITH DYSON-FEYNMAN
APPROACH: ELIMINATION OF DIVERGENCES
IN THE S-MATRIX

We have seen that the procedure developed enables us to
remove from the Hamiltonian in the CPR not only the
“bad” terms (at least, up to any given order in the coupling
constants). Simultaneously, the “good” one-body terms are
eliminated too being compensated with the corresponding
mass counterterms. By the way, it means that the corre-
sponding divergences in the conventional form of H can no
longer appear in the S-matrix. In this section we will
reproduce our results (31) and (40), relying upon the
Dyson-Feynman series for the S operator, viz.,

Sla) =1+ 8"+ 8"+

x / dr, - / di,PIH (1) Hy (1)), (59)

where H,;(1) = e'flr'H;e™ ¥ is an interaction in the D-
picture. Unlike the superscripts in S the Roman indices in
ST, S etc., denote the order of their appearance in the
series (59). The operator H; stem from the decomposition
of the total Hamiltonian H(a) = Hg(a) + H;(a) and is
determined by Eq. (4). To be definite, we consider the
matrix elements (f|S?)|i) of the second-order in the
coupling constants S operator between the initial and final
boson-fermion states. Following [33,34] one can derive

(al---Q|S(a Q) = (a"---Q|S(a)]a’ -

lac -+ Q)

since the a-algebra is isomorphic to the a,.-algebra. It
allows us to handle the operator S(e,) that is expressed in
terms of a set {a,}, unlike the operator S(a) in the BPR,
along with the clothed states,
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i) = al(ko)bi(pu)|Q).
f) = ab(Ke")bi(p'u)|Q). (60)

According to the equivalence theorem [34], we have the
relation S, = S(a.) since the UCT operator in the D-
picture,

Wp(t) = elKriwe=iKr! (61)
meets the condition,

lim Wp(r) = 1. (62)

t—+oo0

(/152 (a,)]i) = <f|{—"/_°° di e+ (Mica

where
2 1 [s+] [ee]
S(SE) :_E/dtl/dtZ [ ( (tl)V(l)(tZ)]one—body
2 2
= Sisk + Stde (64)

determines the so-called self-energy operator and
@)(bf — bf) arises from the third term (S'/) of the
Dyson-Feynman series.

At this point we will consider the interplay between the
b*b type components of the operator S). The “forward-
scattering” process associated with the latter would be
responsible for the appearance of certain infinity in the
boson-fermion scattering amplitude (f|z|i). Following a
common practice, these terms should be compensated

s@ — _i/°° dteiK”(Mgg pip+ V@ e el 4 St(”§l>3 =0

b'b
(65)
SO
27i8(Ey — E) (f| (M i, + V@ yi)|i) = (FISS5gli).  (66)

Note that the same equation would be for antifermion d'd
terms if one considered the matrix elements between
boson-antifermion states. The fermion self-energy operator
can be written in the form,

Sl =—i / dt e Kry g ek, (67)

+ V@)Kt 4 g)

So we have the equality,

(al - QSaomlac - Q) = (a - QolS(a)|a’ - Q).

Here the operator S, corresponds to the division of the
Hamiltonian H = K¢ (a.) + K;(a,).

Being taken between the states (60) only terms of the
type b'b, a'a, and a'b'ab contribute to the matrix
elements,

@ (bf - bf>}| ). (63)

[
The property,

e~ Brib(pu)e’rt = b(pu)e’™', (68)

leads to the operator,

g b / dp
fSE 2(2”)4 E2

with the integral 1,(p) for the electron self-energy,

b (pu)b(pu)(p).  (69)

_ 2e*Pos(p — q)(2p%q" + g (m* — pq))
(P)/d“q [(p—q)z—mi—kie][qz—mz—s—ie]
(70)

and for the nucleon self-energy,

. 1
Inp) = /d 7 [(p—q)* —m3; + ie|[q> — m? + i€]
, S

x {—292(31%2 = p4) =my > (3m* + pq)

2 2
g
- 6fg(p - ‘I>2 + 4(’"_% + 2m2> (EPQOmI%

+ ¢ip* + m*q* — pq(q* +m?* — pq))}- (71)

Here p = (Ey,p), g = (q0,9q), and gy # Eq = /m* + 7,
whence the matrix elements,
CIF
<f|SfSE|l> = 2(2”)3 5(Ef - E;)5(p' —p)o(k’ — k)
X Wy 8,,0551 (). (72)
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Carefully separating the part of the integral (71) that
cancels out with the contribution from (f|V® ,:,|i) to
the Eq. (66) we arrive to the nucleon mass shift,

(1p-exc) . 4 1
0 = d
N lm(27t)4/ q(p—q)z—m%—l—ie

{292(2"12 - pq)+39f(p—q)*

Xi
qz—mz—l—le
2

f
tya (m*(3m*+74%)

—pq<6m2+3m§+4pq>>}. (73)

By using the Eq. (66) for the case of QED one can proof
that the contribution to the integral (70) from the first term
|

in the definition (35) leads to the momentum independent
expression for the electron mass shift,

s (LPHexe)

22 4 1
e =1 4 d q 2 2 .
m(2rx) (p—q)*— A +ie

2m? - pq

—_— 74
q> —m?* + ie (74)

while the other terms in the definition of P.z(p —q)
tensor lead to the cancellation of the matrix elements
(fIV® yipli) = (f[Vcou yp|i). The integral (74) corre-
sponds to the self-energy Feynman diagram Fig. 2. Now
by integrating over ¢ in the rhs of Egs. (70) and (71) and

taking into account the contributions from the simple poles
Ey —ie and E, + wp_q — i€, we get

2

(Ip-exc) 1 d_q 1 2o - f_ - -
oy _m(2ﬂ)3/Eq(p—q)2 2{9 (2™ = pa) + 39/ (m™ = pa) + > (m™ = pq) (Sm” = pq)

—mjy

+ 1 /dk 1
2m(2z)* | oy (p+k)* —m?

and

2
{292(m2 — pk) +3gfm? + f? (m%, + (pk)2 ) } =1,+1, (75)

2m

m? — pk

sllered) _ € / dq 2m* - pq
¢ m(2r)3

We see that the Dyson-Feynman formalism gives the
same expressions for the mass shifts (31)-(33) and
(40)—(42). So we have found another proof of the momen-
tum independence of the integrals (32) and (33) and (41)
and (42). But note that if we used the BPR and considered
the matrix element (a'---Qy|S(a)|a’---Qy), we would
arrive to the results which have the same analytical
structure as Iy, I, I}, and I but with trial parameters
my, ey, 9o, and f, instead of the physical ones.

At this point, one should emphasize that similar steps
when dealing with the S operator become unnecessary if
from the beginning we operate with interaction K;(a,) in
the CPR of the Hamiltonian® H(a) = H(a.). This new
form of H being constructed via the sequential unitary
transformations, gives a new unitarily equivalent form S,
of the S operator [34].

VI. SOME ELEMENTS OF IN(OUT) FORMALISM.
INTERPOLATING FIELDS

As well known, when evaluating the S—-matrix in the
H picture,

*To avoid confusion one needs to keep in mind that this
relation refers to the case where functional H depends on the set a
or a. (not a single argument).

Eq(p-qP? -7

e? dk
— =0 +1. 76
m(27z)3/a)k (P + k2 —m? 1+ 1 (76)

Sy = (f:outliyin), (77)
one has to deal with the in(out) states (see, e.g., [31]),
Ky Kysin(out)) = al o (k1) -+ afy g (Ka)IQ). (78)
in particular, one-particle state,
ksin(out)|Q) = af ,, (K)|2), (79)

where |Q) is the physical vacuum. The creation (destruc-
tion) in(out) operators aiTn< ouy (@in(our)) meet the canonical
commutation relations for bosons and fermions.

By definition, the in(out) sates are eigenvectors of the

energy-momentum operator P¥ = (H, P),

PHK, - -K,;in(out)) = (K{ +---+kp) |k, --- Kk, ;in(out)),
(80)

with k* = (Ey, k).

For example, regarding an in(out) state of a particle (say,
electron or pion) and a bound system B (e.g., positronium
or deuteron) one uses the ansatz,
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|#B;in(out)) = aj , (K)|B), (81)
where |B) is the H eigenvector.

First of all, we will show some common features of the
CPR and the LSZ method in QFT with its creation
(destruction) operators al ) (@inoury)- The latter enter

in(out
the expansions in the plane waves,

ko =/ K> +u*,  (82)

of the corresponding field operators @j, ouy) (X) that meet the
source-free Klein-Gordon (KG) equation,

Fe(x) = [(27)3 2ko] /2 ek,

(Dx + ﬂz)(pin(out) (.X) =0. (83)

For instance, in case of the opposite-charged scalar
particles we have

Pnlx) = / dK A (K) f(x) + BL ()£ ()], (84)

with the creation (destruction) in operators that satisfy the
canonical commutation relations for bosons and/or fer-
mions. Note also the properties,

(fi-fe) = 0(K' —K), vV {K,k}, (85)

(fe fi) =0, ¥ {K.k}, (86)

with the respect to the definition,

(frofo) =i / dx[f1dofs— Fodofi) (8)

and the completeness condition,

/ A FL 0o g = 2%05(" —x). (88)

Using the relations we find

Ain(k) = (fi? (pin)’ Bjn(k) = ((pin»fk)' (89)

Following a common practice we introduce the inter-
polating fields, these mediators between the in (incoming)
(t - —o0) fields and the out (outgoing) (t — +o0) fields.
Recall that for a given Heisenberg H field ¢(x) (for brevity,
we restrict ourselves to a scalar field) the corresponding
interpolating field is determined by

P(x) = / Ak A (K, 0)f (%) + Bly(K. 0fi(x)].  (90)

where

An(k) = (fi.@).  Bh(k)=(p.fr) (91)

and f(x) = f4(x.1 = 0).

At the same time, in accordance with conventional
relation,

@(x) = exp (iHt)pp(x,0) exp (—iHt),  (92)
one can write
o) = [ dKAk i 0 + B Df(x.0) ©3)
It is proved that

Pin(X) = (%) (94)

One should note the following links between in(out) and
clothed particle states, viz., for the one interacting particle,

kiin(out)) =AT . (K)|Q) = EEIWAT (k,1)|Q) =AL(k)|Q).

out nt

(95)

To some extent, this relation does not seem unexpected,
since both one-particle clothed state and in(out) states,
being equally normalized, are H eigenvectors [cf. Egs. (2)
and (80)]. At the same time, for the two interacting particles
we have

|kiky;in(out)) = A:n(out) (ky )A:n(out) (ky)|€2)

= QP Al(k)AL(K)IQ).  (96)
with the Mgller operators,

O = lim exp(iKt) exp(—iK pt).

t—>Foo

Furthermore, one should keep in mind the following recipe
of practical calculations with

QH|E;¢) = QH(E)|E; ¢) = +i limoeG(E +1€)|E; ¢),
e—>+

97)
where we have introduced the notation G(z) = (z — H)™!
for the Hamiltonian resolvent. In its turn, the resolvent can
be expressed through the corresponding 7" or R operator to
make a path to known methods. Just such an approach has
been used in papers [8,25] when studying the properties of
two-nucleon systems. Evidently, the appearance of these

operators reflects the inclusion of the initial (final) state
interaction effects into entrance (exit) reaction channels.
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In general, the interpolating fields are of great importance
when constructing the S-matrix that connects the distant
past and the distant future.

As to an illustration of the approach developed (cf. the
example in Refs. [35,36]) let us consider the electron-
positron annihilation to the neutron-antineutron pair with
the S-matrix,

Syi(eTe” — nin) = (ni;outle*e”;in). (98)

Being immersed into calculations of the corresponding
amplitude we apply the relation,

- + +).
S = (T 190 = 7 li(F)se), (99)

by introducing the respective distorted waves, if one uses
the terminology adopted in the theory of nuclear reactions.
We are retaining the term “plane” waves for the two-body
clothed states b (n)d.()|Q) and bl (e”)d}(et)|Q).

In this context, we share the approach exposed in Ref. [35]:
“Rather than computing S matrix elements between usual
states of the Fock space” the authors construct “dressed states
that incorporate all long-range interactions”.

Finally, we would like to emphasize once more that
within the CPR the mass counterterms in question are
getting rid directly in the Hamiltonian and can no longer
appear in the S-matrix.

VII. SUMMARY

We have demonstrated how the mass shifts in the
systems of interacting fermion and vector boson fields
can be calculated within the CPR, where the total
Hamiltonian and other generators of the Poincaré group
take on a certain sparse structure in the Fock space. We
have chosen the two field models, viz., the interacting
nucleon and p meson fields along with the interacting
electron and photon fields, to show how the UCT method
allows us to get rid of the mass counterterms directly in the
Hamiltonian. Moreover, the contact terms that inevitably
arise in the models with vector bosons [15] are canceled
too. The respective mass counterterms are determined to
compensate the other one-body terms that enter the
Hamiltonian. These terms stem from the commutator
LRW, vW] and the operator V¥, where V(1) 4+ V() is
the model interaction and R() is the generator of the
corresponding clothing transformation. Following the
approach described above, the mass renormalization is
done simultaneously with the construction of a new family
of interactions between the physical particles (these qua-
siparticles in the CPR). Explicit expressions for the
interaction operators can be found in [8] (mesodynamics)
and [30] (QED).

We have focused on deriving the mass shift in the second
order in the coupling constants. But in general, the total

mass shift is given by the series m = m® + sm® + - ..
To evaluate the subsequent contributions to it one needs to
find the contributions from the more complicated commu-
tators in the Campbell-Hausdorff expansion that has been
employed when deriving the relationship (15). Doing so,
we provide step by step the relation (2).

It turns out that the mass shifts obtained (5m®)) are
covariant, that is not trivial because our path goes through
the three-dimensional steps. In particular, it means that
in the local models the mass shifts values are independent
of the particle momenta. The experience acquired here has
enabled, on the one hand, to reproduce the manifestly
covariant results obtained within the Feynman techniques
and, on the other hand, to derive a new representations (75)
and (76) for the one-loop Feynman integrals that can be
depicted by the fermion self-energy diagram. In this
context, one of us (A.S.) reminds of the comment by
Walter Glockle given during his visit to the Institut fiir
Theoretische Physik, Ruhr-Universitit Bochum: “Alex, our
proof of the momentum independence of the nucleon mass
shift [cf., integral (75) in Ref. [22] ] took much more effort
than yours [6]”.

APPENDIX: DERIVATIONS OF THE NN — NN
AND NN — NN INTERACTION OPERATORS IN
THE THEORY WITH VECTOR COUPLING

To get the operators K(NN — NN) and K(NN — NN)
one needs to separate out the b'b'bb- and b'd'bd-type
terms from the Hamiltonian (16), respectively, i.e., from the
commutator 1 [RW), V()] and the operator V().

Let us consider the contribution from [R(), V()] =
R, Y] 4+ [RM, Y] + H.e. According to Egs. (20)
and (21), only the commutator [R(), V] and its
Hermitian conjugate contain terms of the required type.
One can rewrite V() and R() in a convenient form,

dk dp, dp,

—————3(p1 —p> — k)
Wi Epl EPz

n__m
2(2x)?

x eq(ko){ v, (P11, pata, k)b (p1uy)b(pastr)

+ 05 (Pi#s Pa-pin, k)BT (prp)d (o)

+ 05, (P11 Patta. k)d(p1_p1)b(papa)

— 055 (P1-p1s Pa-tia, K)d (o pin)d(py_py) Ya(ko),

o) _ w)(w - Ve >
T TRy, — (1) By, — o
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v (Pif1s Pottas k) = d(pip) <QJ’ ——lkﬂf’ﬂa (Pata),

== lkﬂﬂ u(pat),

gr° ——lkﬁd v(patta)-

v, (P1rs papias k) = @(pypy) <g}"’ ——lkpa”"> v(pata),
ng(l?lﬂl’]?zﬂz, = U(Pl/h >

V3, (P1#s Patas k) = D(pipy) <97

Corresponding contributions from these operators are

2

m 1 f(1,2:1,2:k)
(27)*

RO YW =
[ VTt 2w Ey — E, — o,

/ dVd2dld2 —— 5(p, +ph —p1 — )b ()67 (2)6(1)6(2), (A1)

, 2 1 1,2/51,2:k)  £5(1,2; 1,25 k_
[R(l),V“)T]b-y-dw:—m/d]’d2’d1d2{ {f2< )+f2( )}
(2z)? 20k  Ey —Ep —ox  Ep —Ep,

; {fS(l/’z,;l’z;k/)+f4(1’,2’;1,2;k’_)
2w Ep/l +Ep/2 — Ok _EPI _Epz — Wy

H 5(p, -+ —p1 —p2)bT(1)d" (2)b(1)d(2).  (A2)

where k = (oy . Py —P1), K = (0p,p,.P1 — P2),

F1(10,251,2;k) = =Pg(k)ogy (1,1, k)04 (2,2, k),
Fo(1,251,25 ) = =Pos(k)os, (1, 1, k)05, (2,2, k),
F3(1,2151,2;k) = —=P(k) v (1,2, k)15 (1,2, k),
Fa(1,2551,25k) = =Poy(k)vs; (2, 1, k)b, (2,1, k),
and we denote tor s1mp ICIIy = Pi#)s etc. Com 1n1ngt € contributions an with their
d we denote f li =y, ""1 1) = (phu} Combining th ibutions (A1) and (A2) with thei
Hermitian counterparts, we get
1 2 1 1,2/;1,2:k 2,152, 1k
S RO, VO, = m—/ dld2dld2— {f'( ) il )}
2 2(277) 2w Wy ’ —E‘pl — Wk Ep] —Epll — Wy
x 8(p} +P5 —P1 —P2)b (1')b7(2)b(1)b(2) (A3)
and
1 2 1 1,2/:1,2:k 1,21,2:k)  f5(1,2: 17,2 k_
_ [R(l)’ V(l)]bjid'rbd N m /dl/dz/d1d2|: {fQ( ) +f2( ) +f2( )
2 2(271') 2Cl)k Eprl - EPl — Wy Epz - Ep/2 — Wy Ep/2 — Ep2 — Wk

+f§(1,2; 1, 2/;k_)} 1 {f3(1/,2/; 1,2;K)  f3(1,2),1,2,K) " Sa(1,2/51,2;kL)

Ep] — Ep/l — Wy Za)k/ Ep/l + Ep/2 — Wy’ Epl -+ Ep2 — g —Ep] - Ep2 — Wy’
F4(1,2/51,2, kL)
—Ep, = Ep, — e

}](xpa )= by - p)bT (1) (2)b(1)d(2). (Ad)

After the Gordon decompositions,
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a(1)io™ (py = p1)yu(1) = a(1')(2my* = (py + p1)*)u(1),
a(1)io™ (p + py)po(2') = a(1')(=2my* + (p| = p3)*)o(2)),
0(2)ic™ (py = ph)p0(2') = B(2)(=2my* = (p> + p3)*)o(2). (AS)

we arrive to

2

SRV = s [ dadd o) + v = i = pa)b ()8 (2)6(1)6(2)
A o M0+ D =3 0+ PO (a4 1) = (055 a2

—L(p
(g + f/>7_ 21112(111 tpl) u(l)u(Z')J/O}’M(z)
(P = p1)* —mj,

/o
+ (Ep + Ep, — Ep, = Epz)%“(ll)

2 2

) DA () = w0 raru(2) . (46)
b b

The last two terms in the curly brackets are contact, by definition. At the same time we see that these terms are canceled by
)

b'bbb* e v
the following expression for the NN — NN interaction between the clothed nucleons:

those one stem from V In such a way we come back to the result (18). Finally, a similar observation allows us to obtain

K(NN > NN) = /dl d2'd1d2 5(p}, + p, — p1 — p2)b' (1')d" (2))b(1)d(2)

2(2 )’

{-lor o W04 1o = (0] POJUDR P
A
2

)2 =my  (py—p2)’ —mj

f {ﬁ(l’ (9+f)r -4 (0} +2p1) W (152 70(2)

Py + p2)(2) = (Ey + Ey, — Ep — Ep,
(P4 )M)(2) = (Ep, + Ey, — E, p.) (P} = p1)* —mj,

2m

(g+f)r+L&m@y+p2) ., - - and5(2) <> a1
(Ph = p2)* — mj, (2)] * (Ep, < =By P2 < =P} andd(2) < il ))}'

+a(1)yu(1)p(2)
(A7)

Here we confine ourselves to the application of the UCT method to NN — NN and NN — NN interaction operators. Of
course, our calculations can be extended for deriving other interactions in the second order in the coupling constants, e.g.,
the annihilation K(NN — pp) (see Ref. [30]).

The interactions (18) and (A7) together with K(NN — NN ) can be represented in the concise form,

Kyy = K(NN — NN)+ K(NN - NN)+ K(NN - NN), (A8)
2
K(NN - NN) = %/dl’dz'dldzxn(l’, 2',1,2)8(p} +p5 —p1 —p2)b  (1)bT(2)b(1)b(2), (A9)
/3
— m2 “
K(NN — NN) = 20 / d1'd2'd1d2(X,(1',2/,1,2) + X5, (1,2/,1,2))8(p} + p5 — p1 — p2)b" (1)d"(2")b(1)d(2),
(A10)
2
K(NN—>NN) = %/ d'd2' d1d2X,,(1,2,1,2)5(p} + p5, — p1 — p2)d' (1')d(2))d(1)d(2).  (Al1)
T

Such a form is convenient for more short representation of these interaction operators, viz.,
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m2

Kyy = —m/dl’dz’dld%(p’l + P,y —P1 —P2)

x :NT(1,1)X(1',2',1,2)N(2',2):, (A12)
where one-fermion column N and row N' are composed of
the pairs of the particle and antiparticle operators,

b'(2)b(2) }

d'(2')d(2) (A13)

N(2,2) = {
and the c-number matrix,

Xll X12

X(1',2/,1,2) = [
X21 X22

}(1',2/, 1,2).  (Al4)

In the context of our nonlocal extension presented in
Sec. 1V, we would like to stress that such an extension
(K“NI?\,C) leads to the replacement of the matrix (Al4) by
Xmoe(1/,2/,1,2), which elements according to the rules,

a(1)u(2), u(1)o(2),
o(1)Tu(2), o(1)'o(2),
|
g (p1, p2)u(1)Tu(2), gi2(p1> p2)u(1)To(2),
921(p1s p2)o(1)Tu(2), 9(p1, p2)o(1)Iv(2), (AlS)
look like
Xgrlgc(l/y 2/7 L, 2) = Gge¢ (pll’ pl)gse(p,Z’ p2)
X Xp.(1,2,1,2) fore <e (Al6)

and

Xglloc(l/v 2/’ 1’ 2) = 912(p/1 ) p/2)921 (p2’ pl)X21<1/7 2/7 1’ 2)
(A17)

As mentioned above, these cutoff factors should be chosen
to satisfy the S-matrix property (49). In accordance with a
common practice to calculate the S-matrix one starts with
the Dyson-Feynman series (59). Following [34] in the CPR
we have an equivalent expansion,

s= 3O [ [ ata,plicso) Ky}

|
pry n.

(A18)

where K;(x) = e’®r'K;(x)e~'Xr! is an interaction density
in the D-picture. In our case the corresponding density can
be written as

Kyy(x) = —2(’;—;6 / dl'd2 d1d2 e Pi+P2=P1=P2)
x NT(1,1)X(1',2/,1,2)N(2',2): (A19)
and taking into account the relations,
e r'b(pp)et®rt = e™o'b(pp),
e Krtd(pu)e’™r' = e™'d(pp) (A20)
we have
m? o
Kyn(x) = —W/dlle’dle e (Prtpy=ri=p)

X NT(L1VX(1,2,1,2)N(2,2):. (A21)

Obviously, integrating Kyy(x) over x gives the delta
function 6(p| + p5 — p1 — p2). It automatically leads to
the removal of the noncovariant terms in X(1',2',1,2)
because all of them have the factor (Epr] +Ep, —Ep -
E, ) [see Egs. (18) and (A7)]. Thus, only explicitly
covariant terms will enter the S operator, that ensures
Up(A)SUZE!(A) = S and the property (49). At last, in the
case of the nonlocal interaction K%s¢, the latter property
requires gee(Ap1. Ap2) = gee(p1. pa)-
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