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We consider the fermion mass renormalization due to the vector boson exchange within mesodynamics
with nucleon and ρ meson fields as well as quantum electrodynamics with electron and photon fields. The
method of unitary clothing transformations is used to handle the so-called clothed particle representation
that allows us to get rid of mass counterterms directly in the Hamiltonian. Thus, they can no longer appear
in the S-matrix. Special attention is paid to the cancellation of the so-called contact terms that are inevitable
in models with vector bosons. Within this formalism, the second-order mass shifts are derived. They are
expressed through the corresponding three-dimensional integrals whose integrands depend on certain
covariant combinations of the relevant three-momenta. Our results are proved to be particle-momentum
independent and compared with ones obtained by Feynman techniques.
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I. INTRODUCTION

Starting from the instant form of relativistic quantum
dynamics for a system of interacting particles, where
amongst the ten generators of the Poincaré group Π only
the Hamiltonian H and the boost operator B carry inter-
actions, we have built up in the so-called clothed particle
representation (CPR) the Hamiltonian for the interacting
nucleon and ρ meson fields, on the one hand, and for
interacting electron and photon fields, on the other hand. In
this connection, let as remind that the transition from the
primary “bare” particle representation (BPR) with its bare
particle states to the CPR is implemented via the method of
unitary clothing transformations (UCT) put forward by
Greenberg and Schweber [1] and developed in Refs. [2–13]
and [14]. The corresponding clothing procedure is realized
along the chain: bare particles with bare masses → bare
particles with physical masses → physical (observable)
particles (details in [7]). Such a consideration is convenient
when drawing some parallels between the clothing
approach in quantum field theory (QFT) and the method
of canonical transformations (in particular, the mass-
changing Bogoliubov-type ones) in the theory of super-
fluidity and superconductivity. As a result, all generators of

Π get one and the same sparse structure after normal
ordering the creation (destruction) operators of clothed
particles and removing the so-called bad terms (see survey
[4]). Doing so, the state ψp of the clothed particle with
energy Ep and momentum p, being the totalH eigenvector,
Hjψpi ¼ Epjψpi, belongs to the invariant subspace of the
Fock space RF with mass m. The latter is determined by
relation,

m2 ¼ E2
p − p2; ð1Þ

while in the contemporary renormalization theory the
particle mass is considered as a pole in the exact particle
propagator (see, e.g., Chaps. 10, 11 in [15]). Unlike this we
prefer to use the natural definition (1) so

Hjψp¼0i ¼ mjψp¼0i; ð2Þ

and introduce the mass shift δm ¼ m −m0, wherem0 is the
bare mass value (e.g., for a fermion) with inequality,

Hjψbare
p¼0i ≠ m0jψbare

p¼0i; ð3Þ

for the one-body bare state jψbare
p¼0i ≠ jψp¼0i.

Recall also that within the Dyson-Feynman approach or
old-fashioned perturbation theory the mass shifts may be
expressed through the corresponding self-energy contribu-
tions to the S-matrix. Such contributions enter an expansion
of the mass shifts in the coupling constants and some of
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them give rise to undesirable divergences inherent in the
existing applications of every local field model (at least,
when employing the perturbative methods). Their removal
requires considerable efforts associated with a consequent
regularization of the divergent integrals involved. In the
S-matrix calculations they are encountered to the first
nonvanishing approximation in the coupling constants
(in particular, when evaluating the forward scattering
amplitudes, where the one-loop contributions must cancel
the occurring mass counterterms). A few instructive
examples of such a situation for the pion-nucleon and
nucleon-nucleon scattering amplitudes can be found in the
monograph [16] both in the framework of the old-fashioned
perturbation theory and the Dyson-Feynman approach.
One should note that the clothed particle approach used

here is related to an extensive topic associated with the
renormalization and dressing procedures in the QFT. First,
we mean pioneering explorations in the framework of the
so-called similarity renormalization group (SRG) method
put forward by Głazek and Wilson (see, e.g., Ref. [17] and
Refs. therein). Second, we have seen the promising
applications of the akin approach proposed by Wegner
[18] with its flow equations for Hamiltonians. Both
approaches are aimed at softening interactions in nuclear
systems, if any, in order to improve the convergence of the
corresponding computations. In this context, we would like
to mention a few instructive applications [19–21] of the
SRG evolved procedure with the simple model for primary
interactions. Although our approach and those are imple-
mented via a similarity transformation O → UOU−1

(U−1 ¼ U†) of any operator O, the objective of each of
such a transformation is completely different. Moreover, by
definition, the UCTs remain the primary Hamiltonian
intact. Being pressed in space, we can not discuss all the
attractive features of these approaches. Certainly, we are
going to do it later.
This work goes on our studies [6]. In addition, we would

like to mention work [22], where we have seen some points
similar to ours. The authors of Ref. [22] have chosen the
definition (1) to calculate the second-order mass shift of
scalar “nucleon” due to exchange of scalar meson by using
the so-called FST—Okubo method [23,24]. They have
proved that their result is equivalent to the one obtained via
the Dyson-Feynman techniques. The approach exposed
here differs from the aforementioned one, at least, in the
two aspects. First, unlike the approach [22] the clothing
procedure is not aimed, a priori, to find a UT that block
diagonalizes H. At this point one should note that such a
reduction of the Hermitian operator via a unitary trans-
formation can not be implemented, in general, in infinite-
dimensional Fock space. Instead, the aim of the multistep
clothing procedure is to express the original HamiltonianH
in terms of the new clothed-particle operators in a form
which is different from that given for the initial bare-
particle one. Such a transition from the BPR to the CPR

introduces a new sparse structure of the original
Hamiltonian H. Second, in the framework of the CPR
the mass and vertex renormalization problem [5,6] is
considered in a natural way, in parallel with the construc-
tion of the interactions.
Since the publication of [6], a number of applications of

the UCT method have been notably extended. Currently, it
has been applied in the mesodynamics to the processes that
involve interactions of the clothed π, η, ρ, ω, δ, σ mesons
and nucleons [5,7,8,25–27]. The applications of this
method in QED and QCD have been shown in
[10,11,28–30]. In the present work we return to the mass
renormalization problem in the CPR to consider fermion
mass renormalization due to the vector bosons exchange.
The outline of this paper is as follows. In Sec. II, we will

take a look briefly at the underlying formalism and
structure of the Hamiltonian. A distinctive feature of the
vector coupling is that the corresponding Lorentz-invariant
Lagrangian does not necessarily have “... the interaction
Hamiltonian as the integral over space of a scalar
interaction density: we also need to add non-scalar terms
to the interaction density ...” (quoted from p. 292 of
Ref. [15]). It is the case with derivative couplings and/or
spin ≥ 1, see Eqs. (77) and (81–83) in [8] [note a typo in
Eqs. (83, 91): instead of 4m2, the denominator of the
second term should be 8m2]. As shown in [8], the clothing
procedure enables us to remove the noninvariant terms
which belong to NN → NN interaction directly in the
Hamiltonian (at least, in the second order in coupling
constants). This pleasant feature of the CPR works well in
the present problem, viz., noninvariant mass renormaliza-
tion terms cancel too. In Sec. III, we will derive the mass
shifts of electron and nucleon due to photon and ρ meson
exchanges, respectively. This approach can be easily
carried over to the cases of exchanges with other vector
particles, for example, the ωmeson. We will also consider a
way to regularize the integrals included in the expressions
for the mass shifts in Sec. IV. Our results will be compared
with the simplest disconnected contributions to the corre-
sponding boson-fermion forward scattering amplitude in
Sec. V. They are evidently covariant and determined by the
one-loop diagrams. Section VI has been written to under-
stand better the place of the notion of clothed particles in
the framework of a popular version of the in(out) formal-
ism. In particular, there we find the touching points
between the CPR approach and Lehmann-Symanzik-
Zimmermann (LSZ) method in QFT. At last, the
Appendix is devoted to the derivation of the 2 ↔ 2

interactions between the clothed nucleons (antinucleons).

II. UNDERLYING FORMALISM

Here the notion of clothed particles is applied to the
following model: a spinor (fermion) field ψ interacts
with a vector boson field φ. The model Hamiltonian can
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be separated into the free and interaction parts HðαÞ ¼
HFðαÞ þHIðαÞ, where the interaction part,

HIðαÞ ¼ Mren þ Vren þ Vð1Þ þ Vð2Þ; ð4Þ

includes the mass Mren and vertex Vren counterterms. The
interaction is a function of creation (destruction) operators in
the BPR, i.e., referred to the bare particles with physical
masses [7]. Formally, the latter can be introduced via the
mass-changingBogoliubov-type transformation.Wewill use
the well-known Yukawa-type interactions between the
nucleon and ρ meson fields, namely,

Vð1Þ ¼
Z

dx

�
g∶ψ̄ðxÞγαψðxÞ∶φαðxÞ

þ f
4m

∶ψ̄ðxÞσαβψðxÞ∶φαβðxÞ
�
; ð5Þ

Vð2Þ ¼
Z

dx

�
g2

2m2
b

∶ψ̄ðxÞγ0ψðxÞ∶∶ψ̄ðxÞγ0ψðxÞ∶

þ f2

8m2
∶ψ̄ðxÞσ0iψðxÞ∶∶ψ̄ðxÞσ0iψðxÞ∶

�
; ð6Þ

where σαβ ¼ i
2
ðγαγβ− γβγαÞ, φαβðxÞ ¼ ∂

αφβðxÞ − ∂
βφαðxÞ,

and symbol ∶ denotes the normal ordering, where all the
creation operators are to the left of the destruction ones. In the
case of QED, we will work in the Coulomb gauge [see, for
example, Eq. (8.4.23) in Ref. [15] ]; thereforewe should take
g ¼ e, f ¼ 0 in (5) and the Coulomb interaction,

Vð2Þ ¼ e2
Z

dxdy
e−λjx−yj

4πjx − yj
× ∶ψ̄ðxÞγ0ψðxÞ∶∶ψ̄ðyÞγ0ψðyÞ∶≡ VCoul; ð7Þ

with the parameter λ to be put zero at the end of calculations.
Henceforth, the upper indices denote the order in coupling
constants. The set α involves the creation (destruction)
operators for the bare bosons a†ðaÞ, fermions b†ðbÞ, and
antifermions d†ðdÞ. Following a common practice, they
appear in the standard Fourier expansions of the boson
and fermion fields,

φαðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p

Z
dk
ωk

ðeαðkσÞaðkσÞ

þ eαðk−σÞa†ðk−σÞÞeik·x; ð8Þ

ψðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

ð2πÞ3
r Z

dp
Ep

ðuðpμÞbðpμÞ

þ υðp−μÞd†ðp−μÞÞeip·x; ð9Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b þ k2
q

, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, mb and m are

boson (ρmeson) and fermion (nucleon)masses, respectively.

Hereafter, for brevity, we mean summation over dummy
polarization indices (μ, σ, etc.). The independent polarization
vectors eðkσÞ (σ ¼ þ1; 0;−1) in the last expansion are
transverse kαeαðkσÞ ¼ 0 and normalized as

X
σ

eαðkσÞe�βðkσÞ ¼ −gαβ þ
kαkβ
m2

b

≡ PαβðkÞ: ð10Þ

As usually, we apply the following commutation rules
½aðkσÞ; a†ðk0σ0Þ� ¼ ωkδσ0σδðk0 − kÞ, fbðpμÞ; b†ðp0μ0Þg ¼
fdðpμÞ; d†ðp0μ0Þg ¼ Epδμ0μδðp0 − pÞ.
In any case, we have the free part of HðαÞ,

HFðαÞ ¼
Z

dp
Ep

Ep½b†ðpμÞbðpμÞ þ d†ðpμÞdðpμÞ�

þ
Z

dk
ωk

ωka†ðkσÞaðkσÞ: ð11Þ

Explicitly noncovariant expressions (6) and (7) reflect
the mentioned peculiarity of the interaction density in such
models. Namely, it is not a Lorentz scalar. In this con-
nection, let us recall the property of the density VDðxÞ ¼
eiHFtVðxÞe−iHFt in the Dirac picture (D-picture) to be a
scalar, viz.,

UFðΛÞVDðxÞU−1
F ðΛÞ ¼ VDðΛxÞ; ð12Þ

where the operators UFðΛÞ realize a unitary irreducible
representation of the Poincaré group in the Hilbert space of
states for free (noninteracting) fields.
For a set of clothed operatorswewill use the symbolαc. To

apply the clothing procedure exposed in [5,7] one has to
proceed to the CPR via elimination of the so-called bad
terms, which, by definition, prevent the bare vacuum and the
bare one-particle states to be H eigenvectors. Thus, we
will use the first clothing transformation Wð1ÞðαÞ¼
Wð1ÞðαcÞ¼ expðRð1ÞÞ in order to eliminate the interaction
Vð1Þ linear in coupling constants. It can be done if the
generator Rð1Þ meets the equation,

½Rð1Þ; HF� þ Vð1Þ ¼ 0: ð13Þ

In the CPR with the similarity transformation α ¼
WðαcÞαcW†ðαcÞ we have

HðαÞ≡ KðαcÞ ¼ WðαcÞHðαcÞW†ðαcÞ
¼ eR½HFðαcÞ þHIðαcÞ�e−R: ð14Þ

By using the definition (13) it can be written as
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KðαcÞ ¼ HF þMren þ Vren þ Vð2Þ þ 1

2
½Rð1Þ; Vð1Þ�

þ ½Rð1Þ;Mren� þ
1

3
½Rð1Þ; ½Rð1Þ; Vð1Þ�� þ…

¼ HFðαcÞ þ KIðαcÞ: ð15Þ
Keeping in the rhs of (15) only the contributions of the
second order in coupling constants we get

KIðαcÞ ≈ Kð2Þ
I ðαcÞ ¼ Mð2Þ

ren þ Vð2Þ þ 1

2
½Rð1Þ; Vð1Þ�: ð16Þ

In otherwords, we neglect terms responsible for the processes
more complicated than 2 ↔ 2. All particle-conserving

ingredients ofMð2Þ
ren should be canceled by the corresponding

one-body (e.g. b†cbc) terms K
ð2Þ
1-body that involve components

of the commutator 1
2
½Rð1Þ; Vð1Þ� and the operator Vð2Þ, that is

done in the next section. As shown in [6], only the particle-
conserving part of the mass counterterm (responsible for the
one to one fermion transition)maybe canceled via one and the
same clothing transformation. Note that it is sufficient to
evaluate the mass shifts in the second order since the same
operator structurewill appear in higher orders in the coupling

constant. The operator Kð2Þ
I involves the two-body (e.g.

b†cb
†
cbcbc) interactions responsible for the physical processes

between the clothed particles,

Kð2Þ
I ¼ Kðff → ffÞ þ Kðf̄ f̄ → f̄ f̄Þ þ Kðff̄ → ff̄Þ þ Kðbf → bfÞ þ Kðbf̄ → bf̄Þ þ Kðbb → ff̄Þ

þ Kðff̄ → bbÞ þ Kð2Þ
1-body þMð2Þ

ren: ð17Þ

In Ref. [30] we have presented all the four-operator interactions in QED, while in theAppendix (cf. Ref. [8]) there are a step-by-
step derivation of these four-operators interactions, that belong to the nucleon-antinucleon subsector in the mesodynamics with
the vector coupling. One of these interactions is responsible for the nucleon-nucleon scattering,

KðNN → NNÞ ¼ m2

2ð2πÞ3
Z

dp0
1dp

0
2dp1dp2

Ep0
1
Ep0

2
Ep1

Ep2

δðp0
1 þ p0

2 − p1 − p2Þ
ðp0

1 −p1Þ2 −m2
b

b†cðp0
1μ

0
1Þb†cðp0

2μ
0
2Þbcðp1μ1Þbcðp2μ2Þ

×

�
ūðp0

1μ
0
1Þ
�
ðgþ fÞγα −

f
2m

ðp0
1 þp1Þα

�
uðp1μ1Þūðp0

2μ
0
2Þ
�
ðgþ fÞγα − f

2m
ðp0

2 þp2Þα
�
uðp2μ2Þ

þ ðEp0
1
þEp0

2
−Ep1

−Ep2
Þ f
2m

ūðp0
2μ

0
2Þγ0γuðp2μ2Þūðp0

1μ
0
1Þ
�
ðgþ fÞγ − f

2m
ðp0

1 þ p1Þ
�
uðp1μ1Þ

�
: ð18Þ

Henceforth, we omit the index c if it does not lead to confusion. It is proved (see the Appendix) that the so-called contact
interaction KcontðNN → NNÞ cancels the contribution Vð2ÞðNN → NNÞ that stem from the non-scalar part of the interaction
density Vð2ÞðxÞ, so

1

2
½Rð1Þ; Vð1Þ�ðNN → NNÞ ¼ KðNN → NNÞ þ KcontðNN → NNÞ: ð19Þ

It gives the opportunity to handle the interaction (18) that is covariant on the energy shell.

III. DERIVATION OF THE MASS SHIFTS

According to [5] the commutator ½Rð1Þ; Vð1Þ� ¼ ½Rð1Þ;Vð1Þ� þ ½Rð1Þ;Vð1Þ†� þ H:c: with

Vð1Þ ¼ Vð1Þ þ Vð1Þ†;

Vð1Þ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
Z

dk
ωk

dp1

Ep1

dp2

Ep2

F†ðp1μ1ÞVðp1μ1;p2μ2; kσÞFðp2μ2ÞaðkσÞ; ð20Þ

Rð1Þ ¼ Rð1Þ −Rð1Þ†;

Rð1Þ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
Z

dk
ωk

dp1

Ep1

dp2

Ep2

F†ðp1μ1ÞRðp1μ1;p2μ2; kσÞFðp2μ2ÞaðkσÞ: ð21Þ
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Here, the fermion operator column F and row F† are composed of the particle and antiparticle operators (e.g.,
F†ðpμÞ ¼ ½b†ðpμÞ; dðp−μÞ�), the c-number matrices,

Vðp1μ1;p2μ2; kσÞ ¼
�
V11 V12

V21 V22

�
¼ δðp1 − p2 − kÞeαðkσÞ

�
ūðp1μ1Þ
ῡðp1−μ1Þ

��
gγα −

f
2m

ikβσβα

�
½ uðp2μ2Þ υðp2−μ2Þ �

and

Rðp1μ1;p2μ2; kσÞ ¼
�
R11 R12

R21 R22

�
; ð22Þ

Rε0ε ¼
Vε0ε

ð−1Þε0−1Ep1
− ð−1Þε−1Ep2

− ωk
: ð23Þ

At this point we recall that such a relation is valid if
mb < 2m (see Sec. 2.4 in [5]).
As mentioned above, all particle-conserving mass

renormalization counterterms in Mð2Þ
ren ¼ Mð2Þ

bos þMð2Þ
ferm,

Mð2Þ
ferm ¼ δmð2Þ

Z
dxψ̄ðxÞψðxÞ

¼ mδmð2Þ
Z

dp
E2
p
F†ðpμ1ÞMðpμ1μ2ÞFðpμ2Þ; ð24Þ

Mðpμ1μ2Þ ¼
�

δμ1μ2 ūðpμ1Þυðp−μ2Þ
ῡðp−μ1Þuðpμ2Þ −δμ1μ2

�
; ð25Þ

where δmð2Þ is the fermion mass shift in question, should be
canceled by the corresponding contributions from the
commutator 1

2
½Rð1Þ; Vð1Þ� and the operator Vð2Þ. It gives

us the relationship,

Mð2Þ
ren b†b þ Vð2Þ

b†b
þ 1

2
½Rð1Þ; Vð1Þ�b†b ¼ 0: ð26Þ

Subscript b†b means that after normal ordering we retain
only one-fermion terms. Note that the similar equation for
one-antifermion terms (d†d) leads to the same results for
antifermion mass shifts. It turns out that nondiagonal “bad”
b†d† and bd terms could not be canceled with the

respective terms of the operator Mð2Þ
ren, at least in the local

theory. In this context, let us write down all the one-fermion
terms included in Eq. (26),

Mð2Þ
ren b†b ¼ m δmð2Þ

Z
dp
E2
p
b†ðpρÞbðpρÞ; ð27Þ

Vð2Þ
b†b ¼

m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞūðpμÞ
�
g2

ωp−q

m2
b

½γ0uðqνÞūðqνÞγ0 − γ0υðq−νÞῡðq−νÞγ0�

− f2
ωp−q

4m2
½γ0γuðqνÞūðqνÞγ0γ − γ0γυðq−νÞῡðq−νÞγ0γ�

�
uðpμÞ; ð28Þ

1

2
½Rð1Þ; Vð1Þ�b†b ¼

m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞ

× ūðpμÞ
�

PαβðkÞ
Ep − ωp−q − Eq

�
g γα −

f
2m

ikξσξα

�
uðqνÞūðqνÞ

�
g γβ −

f
2m

ikησβη

�

þ Pαβðk−Þ
Ep þ ωp−q þ Eq

�
g γα −

f
2m

ikξ−σαξ

�
υðq−νÞῡðq−νÞ

�
g γβ −

f
2m

ikη−σηβ

��
uðpμÞ: ð29Þ

In these formulas q ¼ qαγα, q ¼ ðEq;qÞ, q− ¼ ðEq;−qÞ, and k≡ ðωp−q;p − qÞ. The rhs of Eq. (28) embodies merely the
so-called contact terms in which instead of the propagators of intermediate particles we have the squares of their masses.
Keeping in mind the definition (10) of the projection operator PαβðkÞ we find

CLOTHED PARTICLE REPRESENTATION IN QUANTUM FIELD … PHYS. REV. D 108, 125019 (2023)

125019-5



1

2
½Rð1Þ; Vð1Þ�b†b ¼ −

m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞ

× ūðpμÞ
�

1

Ep − ωp−q − Eq

�
γαðgþ fÞ − f

2m
ðpþ qÞα

�
uðqνÞūðqνÞ

�
γαðgþ fÞ − f

2m
ðpþ qÞα

�

þ 1

Ep þ ωp−q þ Eq

�
γαðgþ fÞ − f

2m
ðp − q−Þα

�
υðq−νÞῡðq−νÞ

�
γαðgþ fÞ − f

2m
ðp − q−Þα

�

þ f
Eq

m2
½6mðgþ fÞ þ fðpþ qÞ · γ� þ g2

ωp−q

m2
b

½γ0uðqνÞūðqνÞγ0 − γ0υðq−νÞῡðq−νÞγ0�

− f2
ωp−q

4m2
½γ0γuðqνÞūðqνÞγ0γ − γ0γυðq−νÞῡðq−νÞγ0γ�

�
uðpμÞ: ð30Þ

After substituting Eqs. (27), (28), and (30) to (26) we see that the last two contact terms in Eq. (30) cancels the contribution
from Eq. (28).
Doing so we get the nucleon mass shift due to the one-ρ-meson exchange,

δmð2Þ ≡ δmð1ρ-excÞ
N ðpÞ ¼ I1ðpÞ þ I2ðpÞ; ð31Þ

I1ðpÞ ¼
1

mð2πÞ3
Z

dq
Eq

1

ðp − qÞ2 −m2
b

�
g2ð2m2 − pqÞ þ 3gfðm2 − pqÞ þ f2

4m2
ðm2 − pqÞð5m2 − pqÞ

�
; ð32Þ

I2ðpÞ ¼
1

2mð2πÞ3
Z

dk
ωk

1

ðpþ kÞ2 −m2

�
2g2ðm2 − pkÞ þ 3gfm2

b þ f2
�
m2

b þ
ðpkÞ2
2m2

��
: ð33Þ

In the case of QED one needs to put in Eqs. (26)–(29) g ¼ e, f ¼ 0, mb ¼ λ (of course, now m refers to the electron
mass) and

Vð2Þ
b†b ≡ VCoul b†b ¼

e2m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞ ωp−q

ðp − qÞ2 þ λ2
ūðpμÞ

× ½γ0uðqνÞūðqνÞγ0 − γ0υðq−νÞῡðq−νÞγ0�uðpμÞ: ð34Þ

The polarization vectors eðkσÞ (σ ¼ �1) in (8) have the properties (in the Coulomb gauge) k · eðkσÞ ¼ 0, e0ðkσÞ ¼ 0,
being normalized as [15]

X
σ

eαðkσÞe�βðkσÞ ¼ −gαβ þ k0
kαnβ þ kβnα

k2
−
kαkβ
k2

−
k2

k2
nαnβ ≡ PαβðkÞ; ð35Þ

with the timelike vector n ¼ ð1; 0; 0; 0Þ. By using this definition we come to

1

2
½Rð1Þ; Vð1Þ�b†b ¼ −

e2m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞūðpμÞ
�

1

Ep − ωp−q − Eq
γαuðqνÞūðqνÞγα

þ 1

Ep þ ωp−q þ Eq
γαυðq−νÞῡðq−νÞγα þ

ωp−q

ðp − qÞ2

× ½γ0uðqνÞūðqνÞγ0 − γ0υðq−νÞῡðq−νÞγ0�
�
uðpμÞ: ð36Þ

The important point is that the contact terms cancel again [cf. the last term in Eq. (36) with contribution from Eq. (34)].
After it the electron mass shift due to the one-photon exchange can be written as
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δmð2Þ ≡ δmð1 ph-excÞ
e− ðpÞ ¼ e2

8ð2πÞ3
Z

dq
Eqωp−q

ūðpμÞγα
�

qþm
Ep − ωp−q − Eq

þ q− −m
Ep þ ωp−q þ Eq

�
γαuðpμÞ

¼ e2

mð2πÞ3
Z

dq
2Eqωp−q

�
2m2 − pq

Ep − ωp−q − Eq
−

2m2 þ pq−
Ep þ ωp−q þ Eq

�
: ð37Þ

The last expression can be represented in an explicitly
covariant form by using the trick from [6] (see Appendix
therein), with help of the relation,

Z
dq

2Eqωp−q

�
AðpqÞ

Ep − ωp−q − Eq
−

Bðpq−Þ
Ep þ ωp−q þ Eq

�

¼
Z

dq
Eq

AðpqÞ
ðp − qÞ2 −m2

b

þ
Z

dk
ωk

CðpkÞ
ðpþ kÞ2 −m2

¼
Z

dq
Eq

BðpqÞ
ðpþ qÞ2 −m2

b

þ
Z

dk
ωk

DðpkÞ
ðp − kÞ2 −m2

; ð38Þ

where covariant numerators AðpqÞ, BðpqÞ, CðpkÞ, and
DðpkÞ should be connected by

Aðpq−ÞðEp þ ωpþq þ EqÞ − BðpqÞðEp þ ωpþq − EqÞ
¼ 2EqCðpk0Þ;

AðpqÞðEp − ωp−q þ EqÞ − Bðpq−ÞðEp − ωp−q − EqÞ
¼ 2EqDðpkÞ; ð39Þ

with k0 ¼ ðωpþq;−p − qÞ and k ¼ ðωp−q;p − qÞ. Doing
so, we get

δmð1 ph-excÞ
e− ðpÞ ¼ I01ðpÞ þ I02ðpÞ; ð40Þ

I01ðpÞ ¼
e2

mð2πÞ3
Z

dq
Eq

2m2 − pq
ðp − qÞ2 − λ2

; ð41Þ

I02ðpÞ ¼
e2

mð2πÞ3
Z

dk
ωk

m2 − pk
ðpþ kÞ2 −m2

; ð42Þ

or in the symmetrized form,

δmð1 ph-excÞ
e− ðpÞ

¼ e2

2mð2πÞ3
�Z

dq
Eq

�
2m2 − pq

ðp − qÞ2 − λ2
þ 2m2 þ pq
ðpþ qÞ2 − λ2

�

þ
Z

dk
ωk

�
m2 þ pk

ðp − kÞ2 −m2
þ m2 − pk
ðpþ kÞ2 −m2

��
: ð43Þ

A similar trick taken from our previous paper [6] (see
Appendix therein) has beenused to get the covariant integrals
(32) and (33), i.e., I1;2ðpÞ ¼ I1;2ðΛpÞ. The latter simplifies

the further calculations I1;2ðpÞ ¼ I1;2ðm; 0; 0; 0Þ∀p, reduc-
ing integrals (41), (42) to quadratures,

I01ðpÞ ¼ I01ðm;0;0;0Þ

¼m
e2

ð2πÞ2 limλ→0

Z∞

0

dt
t2ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p 2−
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p

1− 1
2
λ−

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p ; ð44Þ

I02ðpÞ ¼ I02ðm; 0; 0; 0Þ

¼ m
e2

ð2πÞ2 limλ→0

Z∞

0

dt
t2ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ λ

p 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ λ

p
1
2
λþ

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ λ

p : ð45Þ

Trying to cure the drawback of local field theories, these
divergent integrals can be regularized by introducing the
corresponding cutoff functions. We will consider such a
possibility in the next section.
By the way, it is easy to see that the integrals (32) and

(33) become equal, respectively, to (41) and (42) if we put
g ¼ e, f ¼ 0, and mb ¼ λ.
Separate contributions in the curly brackets of (37) can

be represented via the graphs (a) and (b) in Fig. 1. Such
graphs are typical of the old-fashioned perturbation theory.
In this context, the inverse energy denominators in the rhs
of Eq. (37) have the form D−1ðEÞ ¼ ðE − EiÞ−1 with the

p pq

(a)

p

p

q

p

p(b)

FIG. 1. Two contributions to the mass shift within the
old-fashioned perturbation theory, with two (a) and four (b)
internal lines.
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appropriate values of the collision energy E and energy
of all permissible intermediate states Ei. In other words,
ðEp − ωp−q − EqÞ−1 and ðEp þ ωp−q þ EqÞ−1 are related
to the propagators,

D−1ðE ¼ EpÞ ¼ ðE − ωp−q − EqÞ−1 and

D−1ðE ¼ EpÞ ¼ ðE − Ep − ωp−q − Eq − EpÞ−1; ð46Þ

being associated with the two and four internal lines
between the dotted (the phantoms if one uses the terminol-
ogy adopted in Ref. [7]), respectively, in graphs a and b.
The graphs in Fig. 1 are topologically equivalent to the

time-ordered Feynman diagram Fig. 2. However, in the
Schrödinger picture employed here, where all events are

related to one and the same instant, such an analogy seems
to be misleading. In fact, the line directions in Fig. 1 are
given with the sole scope to discriminate between the
fermion and antifermion states.
At the end of this section, we would like to present the

result obtained previously [6] for the mass shift of the
nucleon due to the one-pion exchange,

δmð1π-excÞ
N ðpÞ ¼ g2π

2mð2πÞ3
�Z

dq
Eq

m2 − pq
ðp − qÞ2 −m2

π
þ
Z

dk
ωk

−pk
ðpþ kÞ2 −m2

�

¼ g2π
4mð2πÞ3

�Z
dq
Eq

�
m2 − pq

ðp − qÞ2 −m2
π
þ m2 þ pq
ðpþ qÞ2 −m2

π

�
þ
Z

dk
ωk

�
pk

ðp − kÞ2 −m2
þ −pk
ðpþ kÞ2 −m2

��
: ð47Þ

We see that it has the same denominators as in Eqs. (31)–
(33) and (43) but the numerators are different. If one
considers model with interacting nucleons, pions, ρ mes-
ons, and other mesons, then the nucleon mass shift would

be a sum δmN ¼ δmð1π-excÞ
N þ δmð1ρ-excÞ

N þ….

IV. REGULARIZATION OF THE FIELD MODELS
WITH YUKAWA-TYPE COUPLINGS VS THE
PROBLEM OF ULTRAVIOLET DIVERGENCES

Evidently, because of insufficiently fast falloff of the
integrands in Eqs. (32) and (33) and (41) and (42), when the
momentum absolute value increasing, one has to handle
ultraviolet divergent quantities. Thus, it is necessary to
regularize the integrals, so they take on finite values. Trying
to overcome the divergences we would like to propose a
nonlocal extension of the field models in question.
Let us come back to the division,

HðαÞ ¼ KðαcÞ ¼ HFðαcÞ þ KIðαcÞ: ð48Þ

It is the place where we would like to stress that the
interaction KIðαcÞ between the clothed particles does not
contain the contact terms. This suggestion is valid, at least,
in the second order in the coupling constants. In other
words, the interactions in the rhs of (17) are free from
such terms. To verify this for the case of QED, one can
refer to work [30], where we have presented the deriva-
tion of all two-particle interactions Kðe−e− → e−e−Þ,
Kðeþeþ → eþeþÞ, Kðe−eþ → e−eþÞ, Kðγe− → γe−Þ,
Kðγeþ → γeþÞ, Kðγγ → e−eþÞ, Kðe−eþ → γγÞ, acces-
sible in our case. The derivation of KðNN → NNÞ and

KðNN̄ → NN̄Þ operators in the theory with nucleon-ρ-
meson coupling is presented in the Appendix (see
also [8]).
In this context, we recall the transformation properties of

the S-matrix hfjSjii in the D-picture with respect to the
Lorentz group,

hfjSjii ¼ hΛfjSjΛii; ∀ Λ ð49Þ

[cf. the discussion on the p. 83 in Ref. [31] and, in
particular, Eq. (103) therein]. It is well known that such
property is provided if the interaction Hamiltonian density
HIðxÞ in the D-picture meets

UFðΛÞHIðxÞU−1
F ðΛÞ ¼ HIðΛxÞ: ð50Þ

In the theories with interacting fermions and scalar bosons
the property (50) of the HI density to be the Lorentz scalar
fulfills even in the BPR. But in the models with vector
bosons the operator HIðxÞ embodies the terms [Vð2ÞðxÞ or
VCoulðxÞ] that are not Lorentz scalars. These noncovariant
contributions no longer present in the Hamiltonian. It is a
distinctive feature of the CPR.
Therefore, we choose the interaction Kð2Þ

I as a starting
point for our nonlocal extension of the model. We introduce
the cutoff factors which are supposed to account for finite-
size effects. It can be achieved if in the rhs of (17) we
replace the structures,

ūðp1μ1ÞΓuðp2μ2Þ; ūðp1μ1ÞΓυðp2μ2Þ;
ῡðp1μ1ÞΓuðp2μ2Þ; ῡðp1μ1ÞΓυðp2μ2Þ ð51Þ

p pq

FIG. 2. Self-energy Feynman diagram.
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(Γ is some combination of the gamma matrices) with ones
multiplied by the cutoff factors g11ðp1; p2Þ, g12ðp1; p2Þ,
g21ðp1; p2Þ, and g22ðp1; p2Þ, respectively. Along the
guideline we replace the interaction Hamiltonian in the
CPR (17) by

Knlocð2Þ
I ¼ Knlocðff → ffÞ þ Knlocðf̄ f̄ → f̄ f̄Þ

þ Knlocðff̄ → ff̄Þ þ Knlocðbf → bfÞ
þ � � � þ Knlocð2Þ

1-body þMnlocð2Þ
ren : ð52Þ

In order to fulfill the property (49) it is required (see
details in the Appendix)

gε0εðΛp1;Λp2Þ ¼ gε0εðp1; p2Þ ðε0; ε ¼ 1; 2Þ; ð53Þ

i.e., these cutoff factors should be dependent on the Lorentz
scalar p1p2.

By assumption, our interactions are invariant with
respect to the space inversion P, charge conjugation C,
and time reversal T . If the modified interaction retain such
invariance, then the following relations take place:

g11ðp1; p2Þ ¼ g22ðp2; p1Þ;
g12ðp1; p2Þ ¼ g21ðp2; p1Þ;
gε0εðp1; p2Þ ¼ gε0εðp1−; p2−Þ: ð54Þ

Drawing parallels with the mass counterterm (24) in the
local field model we consider its nonlocal extension,

Mnlocð2Þ
ferm ¼ m

Z
dp
E2
p
F†ðpμ1ÞMnlocðpμ1μ2ÞFðpμ2Þ; ð55Þ

where one has to handle the matrix,

Mnlocðpμ1μ2Þ ¼

2
64 mð2Þ

11 ðpÞδμ1μ2 mð2Þ
12 ðpÞūðpμ1Þυðp−μ2Þ

mð2Þ
21 ðpÞῡðp−μ1Þuðpμ2Þ −mð2Þ

22 ðpÞδμ1μ2

3
75:

Here the coefficients mε0εðpÞ may be momentum dependent. Of course, for simplicity, real m12ðpÞ and m21ðpÞ should be

equal, to ensure the Hermiticity of the operator Mnlocð2Þ
ferm .

It is proved that a considerable part of the calculations, presented in Sec. III, remains intact with the modified interactions.
In particular, the corresponding regularization of the operatorKð2Þ

1-body b†b ≡ Vð2Þ
b†b þ 1

2
½Rð1Þ; Vð1Þ�b†b [defined by Eqs. (34) and

(36)] gives

Knlocð2Þ
1-body b†b ¼ −

e 2m2

4ð2πÞ3
Z

dp
E2
p

dq
Eqωp−q

b†ðpρÞbðpρÞūðpμÞ
�

g211ðpqÞ
Ep − ωp−q − Eq

γαuðqνÞūðqνÞγα

þ g221ðpq−Þ
Ep þ ωp−q þ Eq

γαυðq−νÞῡðq−νÞγα þ
ωp−q

ðp − qÞ2 ½g
2
11ðpqÞγ0uðqνÞūðqνÞγ0

− g221ðpq−Þγ0υðq−νÞῡðq−νÞγ0�
�
uðpμÞ: ð56Þ

In agreement with the first requirement to the clothing procedure proposed in (p. 6 on Ref. [5]) the latter should be

compensated by choosing the coefficientmð2Þ
11 ðpÞ such thatMð2Þ

ferm b†b ¼ −Knlocð2Þ
1-body b†b, so we arrive to a nonlocal analogue of

the electron mass shift,1

mð2Þ
11 ðpÞ ¼

e2

mð2πÞ3
Z

dq
2Eqωp−q

�
g211ðpqÞ

2m2 − pq
Ep − ωp−q − Eq

− g221ðpq−Þ
2m2 þ pq−

Ep þ ωp−q þ Eq

�
: ð57Þ

Since the structure of the integral (76) is similar to the rhs of Eq. (38), we can repeat those transformations to formula (44),
in order to find the expression with Feynman-like propagators,

1Of course, in general, each coefficient mð2Þ
ε0ε ðpÞ is defined with an accuracy to adding a function fε0εðpÞ such thatR

fε0εðpÞdp=E2
p ¼ 0.
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mð2Þ
11 ðpÞ ¼

e2

2mð2πÞ3
�Z

dq
Eq

�
g211ðpqÞ

2m2 − pq
ðp − qÞ2 − λ2

þ g221ðpqÞ
2m2 þ pq

ðpþ qÞ2 − λ2

�
þ
Z

dk
ωk

�
g211ðpq0Þ

m2 þ pk
ðp − kÞ2 −m2

þ g221ðpq0−Þ
m2 − pk−

ðpþ k−Þ2 −m2

�
þ
Z

dq
Eq

ðg221ðpqÞ − g211ðpq−ÞÞ
Ep

ωpþq

m2 þ qk0

ðq − k0Þ2 −m2

�
: ð58Þ

Here q0 ¼ðEp−k;p−kÞ and k0 ¼ðωpþq;pþqÞ. Obviously,
if one puts g211 ¼ g221 ¼ 1 we come back to the local
result (43).
Unlike the momentum-independent mass shift (40)

obtained in the local model this coefficient may be
depended on the momentum. But the most significant
property of the integrals (57) is to take on finite values.
This property leads to the total cancellation of the finite
terms Kð2Þ

1-body b†b and Mð2Þ
ren b†b in the Hamiltonian (52). At

the point one should realize that within our approach, the
one-particle operators cannot appear in the new formKðαcÞ
of the Hamiltonian.
One should stress that the integral (57) with properly

selected cutoffs g11, g21 takes on finite values for nonzero λ in
ωp−q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ðp − qÞ2

p
. In other words, the two last terms

in the decomposition (52) are canceled. Thus, the pleasant
feature of the CPR with λ ≠ 0 takes place as before.
Otherwise, we will encounter the infrared singularity.
Indeed, the parameter λ introduced in Eq. (7) has to be

put zero at the end of calculations, viz., when evaluating
some observables or matrix elements hfjSjii. But in the

theory developed here quantities like mð2Þ
11 ðpÞ or δmð2Þ are

not considered as some corrections to the badly defined
bare mass m0. Instead, they are introduced as free param-
eters that should be chosen to cancel the terms in H that
prevent Eq. (2) to be valid. So, the cancellation of the one-
body terms happens in the Hamiltonian itself. Therefore,
we do not encounter infrared singularities considering the
problem of fermion mass renormalization.
There are no counterterms such as Mð2Þ

ren to cancel singu-
larities present in the two-body terms of the Hamiltonian
(52). This issue will be addressed our upcoming research
where such singularities arise when evaluating the positro-
nium wave functions using the electron-positron interaction
operator Kðe−eþ → e−eþÞ. Fortunately, Lande’s technique
[32] can be used to overcome these singularities when
solving the eigenvalue equations, e.g., for the Coulomb
problem in momentum space. The realization of the Lande’s
idea is underway.
In Ref. [9] it is shown that the removal of the mass

counterterms is closely interwoven with ensuring the
relativistic invariance of the theory as a whole. In this
connection, one should note that the supplementary con-
ditions on the choice of g-cutoffs are imposed by the
commutations of the Hamiltonian with the boost generators

½B; H� ¼ iP. We are not going to construct some special
forms of these cutoffs here. In many applications the
parameters involved in gε0εðp1; p2Þ are chosen in order
to ensure the best fit of the available data; see the example
in Ref. [8].

V. COMPARISON WITH DYSON-FEYNMAN
APPROACH: ELIMINATION OF DIVERGENCES

IN THE S-MATRIX

We have seen that the procedure developed enables us to
remove from the Hamiltonian in the CPR not only the
“bad” terms (at least, up to any given order in the coupling
constants). Simultaneously, the “good” one-body terms are
eliminated too being compensated with the corresponding
mass counterterms. By the way, it means that the corre-
sponding divergences in the conventional form ofH can no
longer appear in the S-matrix. In this section we will
reproduce our results (31) and (40), relying upon the
Dyson-Feynman series for the S operator, viz.,

SðαÞ ¼ 1þ SI þ SII þ � � � ¼
X∞
n¼0

ð−iÞn
n!

×
Z∞

−∞
dt1 � � �

Z∞

−∞
dtnP½HIðt1Þ � � �HIðtnÞ�; ð59Þ

where HIðtÞ ¼ eiHFtHIe−iHFt is an interaction in the D-
picture. Unlike the superscripts in SðnÞ the Roman indices in
SI , SII , etc., denote the order of their appearance in the
series (59). The operator HI stem from the decomposition
of the total Hamiltonian HðαÞ ¼ HFðαÞ þHIðαÞ and is
determined by Eq. (4). To be definite, we consider the
matrix elements hfjSð2Þjii of the second-order in the
coupling constants S operator between the initial and final
boson-fermion states. Following [33,34] one can derive

ha†c � � �ΩjSðαcÞja†c � � �Ωi ¼ ha† � � �Ω0jSðαÞja† � � �Ω0i

since the α-algebra is isomorphic to the αc-algebra. It
allows us to handle the operator SðαcÞ that is expressed in
terms of a set fαcg, unlike the operator SðαÞ in the BPR,
along with the clothed states,
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jii ¼ a†cðkσÞb†cðpμÞjΩi;
jfi ¼ a†cðk0σ0Þb†cðp0μ0ÞjΩi: ð60Þ

According to the equivalence theorem [34], we have the
relation Scloth ¼ SðαcÞ since the UCT operator in the D-
picture,

WDðtÞ ¼ eiKFtWe−iKFt ð61Þ

meets the condition,

lim
t→�∞

WDðtÞ ¼ 1: ð62Þ

So we have the equality,

ha†c � � �ΩjSclothja†c � � �Ωi ¼ ha† � � �Ω0jSðαÞja† � � �Ω0i:

Here the operator Scloth corresponds to the division of the
Hamiltonian H ¼ KFðαcÞ þ KIðαcÞ.
Being taken between the states (60) only terms of the

type b†b, a†a, and a†b†ab contribute to the matrix
elements,

hfjSð2ÞðαcÞjii ¼ hfj
�
−i

Z
∞

−∞
dt eiKFtðMð2Þ

ren þ Vð2ÞÞe−iKFt þ Sð2ÞSE þ Sð2Þðbf → bfÞ
�
jii; ð63Þ

where

Sð2ÞSE ¼ −
1

2

Z∞

−∞

dt1

Z∞

−∞

dt2 P½Vð1Þðt1ÞVð1Þðt2Þ�one-body

¼ Sð2ÞfSE þ Sð2ÞbSE ð64Þ

determines the so-called self-energy operator and
Sð2Þðbf → bfÞ arises from the third term (SII) of the
Dyson-Feynman series.
At this point we will consider the interplay between the

b†b type components of the operator Sð2Þ. The “forward-
scattering” process associated with the latter would be
responsible for the appearance of certain infinity in the
boson-fermion scattering amplitude hfjτjii. Following a
common practice, these terms should be compensated

Sð2Þ
b†b

¼−i
Z

∞

−∞
dteiKFtðMð2Þ

ren b†bþVð2Þ
b†bÞe−iKFtþSð2ÞfSE ¼ 0

ð65Þ

so

2πiδðEf−EiÞhfjðMð2Þ
ren b†bþVð2Þ

b†bÞjii¼ hfjSð2ÞfSEjii: ð66Þ

Note that the same equation would be for antifermion d†d
terms if one considered the matrix elements between
boson-antifermion states. The fermion self-energy operator
can be written in the form,

Sð2ÞfSE ≡ −i
Z∞

−∞
dt eiKFtUð2Þ

fSEe
−iKFt: ð67Þ

The property,

e−iKFtbðpμÞeiKFt ¼ bðpμÞeiEpt; ð68Þ

leads to the operator,

Uð2Þ
fSE ¼ i

2ð2πÞ4
Z

dp
E2
p
b†ðpμÞbðpμÞIfðpÞ; ð69Þ

with the integral IfðpÞ for the electron self-energy,

Ie−ðpÞ ¼
Z

d4q
2e2Pαβðp − qÞð2pαqβ þ gαβðm2 − pqÞÞ
½ðp − qÞ2 −m2

b þ iϵ�½q2 −m2 þ iϵ� ;

ð70Þ

and for the nucleon self-energy,

INðpÞ ¼
Z

d4q
1

½ðp − qÞ2 −m2
b þ iϵ�½q2 −m2 þ iϵ�

×

�
−2g2ð3m2 − pqÞ −m2

b
f2

2m2
ð3m2 þ pqÞ

− 6fgðp − qÞ2 þ 4

�
g2

m2
b

þ f2

2m2

�
ðEpq0m2

b

þ q20p
2 þm2q2 − pqðq2 þm2 − pqÞÞ

�
: ð71Þ

Here p ¼ ðEp;pÞ, q ¼ ðq0;qÞ, and q0 ≠ Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

p
,

whence the matrix elements,

hfjSð2ÞfSEjii ¼
1

2ð2πÞ3 δðEf − EiÞδðp0 − pÞδðk0 − kÞ

× ωkδμ0μδσ0σIfðpÞ: ð72Þ
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Carefully separating the part of the integral (71) that
cancels out with the contribution from hfjVð2Þ

b†bjii to
the Eq. (66) we arrive to the nucleon mass shift,

δmð1ρ-excÞ
N ¼ i

1

mð2πÞ4
Z

d4q
1

ðp−qÞ2−m2
bþ iϵ

×
1

q2−m2þ iϵ

�
2g2ð2m2 −pqÞþ 3gfðp−qÞ2

þ f2

4m2
ðm2ð3m2þ 7q2Þ

−pqð6m2þ 3m2
bþ 4pqÞÞ

�
: ð73Þ

By using the Eq. (66) for the case of QED one can proof
that the contribution to the integral (70) from the first term

in the definition (35) leads to the momentum independent
expression for the electron mass shift,

δmð1 ph-excÞ
e− ¼ i

2e2

mð2πÞ4
Z

d4q
1

ðp − qÞ2 − λ2 þ iϵ

×
2m2 − pq

q2 −m2 þ iϵ
; ð74Þ

while the other terms in the definition of Pαβðp − qÞ
tensor lead to the cancellation of the matrix elements
hfjVð2Þ

b†bjii≡ hfjVCoul b†bjii. The integral (74) corre-
sponds to the self-energy Feynman diagram Fig. 2. Now
by integrating over q0 in the rhs of Eqs. (70) and (71) and
taking into account the contributions from the simple poles
Eq − iϵ and Ep þ ωp−q − iϵ, we get

δmð1ρ-excÞ
N ¼ 1

mð2πÞ3
Z

dq
Eq

1

ðp − qÞ2 −m2
b

�
g2ð2m2 − pqÞ þ 3gfðm2 − pqÞ þ f2

4m2
ðm2 − pqÞð5m2 − pqÞ

�

þ 1

2mð2πÞ3
Z

dk
ωk

1

ðpþ kÞ2 −m2

�
2g2ðm2 − pkÞ þ 3gfm2

b þ f2
�
m2

b þ
ðpkÞ2
2m2

��
¼ I1 þ I2 ð75Þ

and

δmð1 ph-excÞ
e− ¼ e2

mð2πÞ3
Z

dq
Eq

2m2 − pq
ðp − qÞ2 − λ2

þ e2

mð2πÞ3
Z

dk
ωk

m2 − pk
ðpþ kÞ2 −m2

¼ I01 þ I02: ð76Þ

We see that the Dyson-Feynman formalism gives the
same expressions for the mass shifts (31)–(33) and
(40)–(42). So we have found another proof of the momen-
tum independence of the integrals (32) and (33) and (41)
and (42). But note that if we used the BPR and considered
the matrix element ha† � � �Ω0jSðαÞja† � � �Ω0i, we would
arrive to the results which have the same analytical
structure as I1, I2, I01, and I02 but with trial parameters
m0, e0, g0, and f0 instead of the physical ones.
At this point, one should emphasize that similar steps

when dealing with the S operator become unnecessary if
from the beginning we operate with interaction KIðαcÞ in
the CPR of the Hamiltonian2 HðαÞ ¼ HðαcÞ. This new
form of H being constructed via the sequential unitary
transformations, gives a new unitarily equivalent form Scloth
of the S operator [34].

VI. SOME ELEMENTS OF IN(OUT) FORMALISM.
INTERPOLATING FIELDS

As well known, when evaluating the S–matrix in the
H picture,

Sfi ¼ hf; outji; ini; ð77Þ

one has to deal with the in(out) states (see, e.g., [31]),

jk1 � � �kn; inðoutÞi ¼ a†inðoutÞðk1Þ � � � a†inðoutÞðknÞjΩi; ð78Þ

in particular, one-particle state,

jk; inðoutÞjΩi ¼ a†inðoutÞðkÞjΩi; ð79Þ

where jΩi is the physical vacuum. The creation (destruc-
tion) inðoutÞ operators a†inðoutÞ (ainðoutÞ) meet the canonical

commutation relations for bosons and fermions.
By definition, the inðoutÞ sates are eigenvectors of the

energy-momentum operator Pμ ¼ ðH;PÞ,

Pμjk1 � � �kn; inðoutÞi¼ ðkμ1þ���þkμnÞjk1 � � �kn; inðoutÞi;
ð80Þ

with kμ ¼ ðEk;kÞ.
For example, regarding an inðoutÞ state of a particle (say,

electron or pion) and a bound system B (e.g., positronium
or deuteron) one uses the ansatz,

2To avoid confusion one needs to keep in mind that this
relation refers to the case where functionalH depends on the set α
or αc (not a single argument).
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jπB; inðoutÞi ¼ a†inðoutÞðkÞjBi; ð81Þ

where jBi is the H eigenvector.
First of all, we will show some common features of the

CPR and the LSZ method in QFT with its creation
(destruction) operators a†inðoutÞ (ainðoutÞ). The latter enter
the expansions in the plane waves,

fkðxÞ ¼ ½ð2πÞ3 2k0�−1=2e−ikx; k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

q
; ð82Þ

of the corresponding field operators φinðoutÞðxÞ that meet the
source-free Klein-Gordon (KG) equation,

ð□x þ μ2ÞφinðoutÞðxÞ ¼ 0: ð83Þ

For instance, in case of the opposite-charged scalar
particles we have

φinðxÞ ¼
Z

dk½AinðkÞfkðxÞ þ B†
inðkÞf�kðxÞ�; ð84Þ

with the creation (destruction) in operators that satisfy the
canonical commutation relations for bosons and/or fer-
mions. Note also the properties,

ðf�k0 ; fkÞ ¼ δðk0 − kÞ; ∀ fk0; kg; ð85Þ

ðfk0 ; fkÞ ¼ 0; ∀ fk0; kg; ð86Þ

with the respect to the definition,

ðf1; f2Þ≡ i
Z

dx½f1∂0f2 − f2∂0f1�; ð87Þ

and the completeness condition,

Z
dk f�kðxÞfkðx0Þjx0¼x0

0
¼ 1

2k0
δðx − x0Þ: ð88Þ

Using the relations we find

AinðkÞ ¼ ðf�k;φinÞ; B†
inðkÞ ¼ ðφin; fkÞ: ð89Þ

Following a common practice we introduce the inter-
polating fields, these mediators between the in (incoming)
(t → −∞) fields and the out (outgoing) (t → þ∞) fields.
Recall that for a given HeisenbergH field φðxÞ (for brevity,
we restrict ourselves to a scalar field) the corresponding
interpolating field is determined by

φintðxÞ ¼
Z

dk½Aintðk; tÞfkðxÞ þ B†
intðk; tÞf�kðxÞ�; ð90Þ

where

AintðkÞ ¼ ðf�k;φÞ; B†
intðkÞ ¼ ðφ; fkÞ ð91Þ

and fkðxÞ≡ fkðx; t ¼ 0Þ.
At the same time, in accordance with conventional

relation,

φðxÞ ¼ exp ðiHtÞφDðx; 0Þ exp ð−iHtÞ; ð92Þ

one can write

φðxÞ ¼
Z

dk½Aðk; tÞfkðx; tÞ þ B†ðk; tÞf�kðx; tÞ�: ð93Þ

It is proved that

φintðxÞ ¼ φðxÞ: ð94Þ

One should note the following links between in(out) and
clothed particle states, viz., for the one interacting particle,

jk; inðoutÞi≡A†
inðoutÞðkÞjΩi≡ lim

t→∓∞
A†
intðk;tÞjΩi¼A†

cðkÞjΩi:
ð95Þ

To some extent, this relation does not seem unexpected,
since both one-particle clothed state and in(out) states,
being equally normalized, are H eigenvectors [cf. Eqs. (2)
and (80)]. At the same time, for the two interacting particles
we have

jk1k2; inðoutÞi≡ A†
inðoutÞðk1ÞA†

inðoutÞðk2ÞjΩi
¼ lim

t→∓∞
A†
intðk1; tÞA†

cðk2ÞjΩi

¼ Ωð∓Þ
c A†

cðk1ÞA†
cðk2ÞjΩi; ð96Þ

with the Møller operators,

Ωð∓Þ
c ≡ lim

t→∓∞
expðiKtÞ expð−iKFtÞ:

Furthermore, one should keep in mind the following recipe
of practical calculations with

Ωð�ÞjE; ci ¼ Ωð�ÞðEÞjE; ci ¼ �i lim
ϵ→þ0

ϵGðE� {ϵÞjE; ci;
ð97Þ

where we have introduced the notation GðzÞ ¼ ðz −HÞ−1
for the Hamiltonian resolvent. In its turn, the resolvent can
be expressed through the corresponding T or R operator to
make a path to known methods. Just such an approach has
been used in papers [8,25] when studying the properties of
two-nucleon systems. Evidently, the appearance of these
operators reflects the inclusion of the initial (final) state
interaction effects into entrance (exit) reaction channels.
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In general, the interpolating fields are of great importance
when constructing the S-matrix that connects the distant
past and the distant future.
As to an illustration of the approach developed (cf. the

example in Refs. [35,36]) let us consider the electron-
positron annihilation to the neutron-antineutron pair with
the S-matrix,

Sfiðeþe− → nn̄Þ ¼ hnn̄; outjeþe−; ini: ð98Þ

Being immersed into calculations of the corresponding
amplitude we apply the relation,

Sfi ¼ hΨð−Þ
f;c jΨðþÞ

i;c i; jΨð�Þ
iðfÞ;ci ¼ Ωð�Þ

c jiðfÞ; ci; ð99Þ

by introducing the respective distorted waves, if one uses
the terminology adopted in the theory of nuclear reactions.
We are retaining the term “plane” waves for the two-body
clothed states b†cðnÞd†cðn̄ÞjΩi and b†cðe−Þd†cðeþÞjΩi.
In this context,we share the approach exposed inRef. [35]:

“Rather than computing S matrix elements between usual
states of the Fock space” the authors construct “dressed states
that incorporate all long-range interactions”.
Finally, we would like to emphasize once more that

within the CPR the mass counterterms in question are
getting rid directly in the Hamiltonian and can no longer
appear in the S-matrix.

VII. SUMMARY

We have demonstrated how the mass shifts in the
systems of interacting fermion and vector boson fields
can be calculated within the CPR, where the total
Hamiltonian and other generators of the Poincaré group
take on a certain sparse structure in the Fock space. We
have chosen the two field models, viz., the interacting
nucleon and ρ meson fields along with the interacting
electron and photon fields, to show how the UCT method
allows us to get rid of the mass counterterms directly in the
Hamiltonian. Moreover, the contact terms that inevitably
arise in the models with vector bosons [15] are canceled
too. The respective mass counterterms are determined to
compensate the other one-body terms that enter the
Hamiltonian. These terms stem from the commutator
1
2
½Rð1Þ; Vð1Þ� and the operator Vð2Þ, where Vð1Þ þ Vð2Þ is

the model interaction and Rð1Þ is the generator of the
corresponding clothing transformation. Following the
approach described above, the mass renormalization is
done simultaneously with the construction of a new family
of interactions between the physical particles (these qua-
siparticles in the CPR). Explicit expressions for the
interaction operators can be found in [8] (mesodynamics)
and [30] (QED).
We have focused on deriving the mass shift in the second

order in the coupling constants. But in general, the total

mass shift is given by the series δm ¼ δmð2Þ þ δmð4Þ þ � � �.
To evaluate the subsequent contributions to it one needs to
find the contributions from the more complicated commu-
tators in the Campbell-Hausdorff expansion that has been
employed when deriving the relationship (15). Doing so,
we provide step by step the relation (2).
It turns out that the mass shifts obtained (δmð2Þ) are

covariant, that is not trivial because our path goes through
the three-dimensional steps. In particular, it means that
in the local models the mass shifts values are independent
of the particle momenta. The experience acquired here has
enabled, on the one hand, to reproduce the manifestly
covariant results obtained within the Feynman techniques
and, on the other hand, to derive a new representations (75)
and (76) for the one-loop Feynman integrals that can be
depicted by the fermion self-energy diagram. In this
context, one of us (A.S.) reminds of the comment by
Walter Glöckle given during his visit to the Institut für
Theoretische Physik, Ruhr-Universität Bochum: “Alex, our
proof of the momentum independence of the nucleon mass
shift [cf., integral (75) in Ref. [22] ] took much more effort
than yours [6]”.

APPENDIX: DERIVATIONS OF THE NN → NN
AND NN̄ → NN̄ INTERACTION OPERATORS IN

THE THEORY WITH VECTOR COUPLING

To get the operators KðNN → NNÞ and KðNN̄ → NN̄Þ
one needs to separate out the b†b†bb- and b†d†bd-type
terms from the Hamiltonian (16), respectively, i.e., from the
commutator 1

2
½Rð1Þ; Vð1Þ� and the operator Vð2Þ.

Let us consider the contribution from ½Rð1Þ; Vð1Þ� ¼
½Rð1Þ;Vð1Þ� þ ½Rð1Þ;Vð1Þ†� þ H:c: According to Eqs. (20)
and (21), only the commutator ½Rð1Þ;Vð1Þ†� and its
Hermitian conjugate contain terms of the required type.
One can rewrite Vð1Þ and Rð1Þ in a convenient form,

Vð1Þ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
Z

dk
ωk

dp1

Ep1

dp2

Ep2

δðp1 − p2 − kÞ

× eαðkσÞfvα11ðp1μ1; p2μ2; kÞb†ðp1μ1Þbðp2μ2Þ
þ vα12ðp1μ1; p2−μ2; kÞb†ðp1μ1Þd†ðp2−μ2Þ
þ vα21ðp1−μ1; p2μ2; kÞdðp1−μ1Þbðp2μ2Þ
− vα22ðp1−μ1; p2−μ2; kÞd†ðp2−μ2Þdðp1−μ1ÞgaðkσÞ;

and

Rð1Þ ¼ Vð1Þ
�
vαε0ε ↦

vαε0ε
ð−1Þε0−1Ep1

− ð−1Þε−1Ep2
− ωk

�
;

where
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vα11ðp1μ1; p2μ2; kÞ ¼ ūðp1μ1Þ
�
gγα −

f
2m

ikβσβα
�
uðp2μ2Þ;

vα12ðp1μ1; p2μ2; kÞ ¼ ūðp1μ1Þ
�
gγα −

f
2m

ikβσβα
�
υðp2μ2Þ;

vα21ðp1μ1; p2μ2; kÞ ¼ ῡðp1μ1Þ
�
gγα −

f
2m

ikβσβα
�
uðp2μ2Þ;

vα22ðp1μ1; p2μ2; kÞ ¼ ῡðp1μ1Þ
�
gγα −

f
2m

ikβσβα
�
υðp2μ2Þ:

Corresponding contributions from these operators are

½Rð1Þ;Vð1Þ†�b†b†bb ¼
m2

ð2πÞ3
Z

d10d20d1d2
1

2ωk

f1ð10; 20; 1; 2; kÞ
Ep0

1
− Ep1

− ωk
δðp0

1 þ p0
2 − p1 − p2Þb†ð10Þb†ð20Þbð1Þbð2Þ; ðA1Þ

½Rð1Þ;Vð1Þ†�b†d†bd ¼−
m2

ð2πÞ3
Z

d10d20d1d2
�

1

2ωk

�
f2ð10;20;1;2;kÞ
Ep0

1
−Ep1

−ωk
þf�2ð1;2;10;20;k−Þ

Ep0
2
−Ep2

−ωk

�

−
1

2ωk0

�
f3ð10;20;1;2;k0Þ
Ep0

1
þEp0

2
−ωk0

þ f4ð10;20;1;2;k0−Þ
−Ep1

−Ep2
−ωk0

��
δðp0

1þp0
2−p1−p2Þb†ð10Þd†ð20Þbð1Þdð2Þ; ðA2Þ

where k ¼ ðωp0
1
−p1

;p0
1 − p1Þ, k0 ¼ ðωp1−p2

;p1 − p2Þ,

f1ð10; 20; 1; 2; kÞ ¼ −PαβðkÞvα11ð10; 1; kÞvβ�11ð20; 2; kÞ;
f2ð10; 20; 1; 2; kÞ ¼ −PαβðkÞvα11ð10; 1; kÞvβ�22ð20; 2; kÞ;
f3ð10; 20; 1; 2; kÞ ¼ −PαβðkÞvα12ð10; 20; kÞvβ�12ð1; 2; kÞ;
f4ð10; 20; 1; 2; kÞ ¼ −PαβðkÞvα�21ð20; 10; kÞvβ21ð2; 1; kÞ;

and we denote for simplicity
R
d10 ≡P

μ0
1

R dp0
1

Ep0
1

, ð10Þ≡ ðp0
1μ

0
1Þ, etc. Combining the contributions (A1) and (A2) with their

Hermitian counterparts, we get

1

2
½Rð1Þ; Vð1Þ�b†b†bb ¼

m2

2ð2πÞ3
Z

d10d20d1d2
1

2ωk

�
f1ð10; 20; 1; 2; kÞ
Ep0

1
− Ep1

− ωk
þ f1ð20; 10; 2; 1; kÞ

Ep1
− Ep0

1
− ωk

�

× δðp0
1 þ p0

2 − p1 − p2Þb†ð10Þb†ð20Þbð1Þbð2Þ ðA3Þ

and

1

2
½Rð1Þ; Vð1Þ�b†d†bd ¼ −

m2

2ð2πÞ3
Z

d10d20d1d2
�

1

2ωk

�
f2ð10; 20; 1; 2; kÞ
Ep0

1
− Ep1

− ωk
þ f2ð10; 20; 1; 2; kÞ

Ep2
− Ep0

2
− ωk

þ f�2ð1; 2; 10; 20; k−Þ
Ep0

2
− Ep2

− ωk

þ f�2ð1; 2; 10; 20; k−Þ
Ep1

− Ep0
1
− ωk

�
−

1

2ωk0

�
f3ð10; 20; 1; 2; k0Þ
Ep0

1
þ Ep0

2
− ωk0

þ f3ð10; 20; 1; 2; k0Þ
Ep1

þ Ep2
− ωk0

þ f4ð10; 20; 1; 2; k0−Þ
−Ep1

− Ep2
− ωk0

þ f4ð10; 20; 1; 2; k0−Þ
−Ep0

1
− Ep0

2
− ωk0

��
δðp0

1 þ p0
2 − p1 − p2Þb†ð10Þd†ð20Þbð1Þdð2Þ: ðA4Þ

After the Gordon decompositions,
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ūð10Þiσαβðp0
1 − p1Þβuð1Þ ¼ ūð10Þð2mγα − ðp0

1 þ p1ÞαÞuð1Þ;
ūð10Þiσαβðp0

1 þ p0
2Þβυð20Þ ¼ ūð10Þð−2mγα þ ðp0

1 − p0
2ÞαÞυð20Þ;

ῡð2Þiσαβðp2 − p0
2Þβυð20Þ ¼ ῡð2Þð−2mγα − ðp2 þ p0

2ÞαÞυð20Þ; ðA5Þ

we arrive to

1

2
½Rð1Þ; Vð1Þ�b†b†bb ¼

m2

2ð2πÞ3
Z

d10d20d1d2 δðp0
1 þ p0

2 − p1 − p2Þb†ð10Þb†ð20Þbð1Þbð2Þ

×

�
1

ðp0
1 − p1Þ2 −m2

b

ūð10Þððgþ fÞγα −
f
2m

ðp0
1 þ p1ÞαÞuð1Þūð20Þððgþ fÞγα − f

2m
ðp0

2 þ p2ÞαÞuð2Þ

þ ðEp0
1
þ Ep0

2
− Ep1

− Ep2
Þ f
2m

ūð10Þ ðgþ fÞγ − f
2m ðp0

1 þ p1Þ
ðp0

1 − p1Þ2 −m2
b

uð1Þūð20Þγ0γuð2Þ

þ g2

m2
b

ūð10Þγ0uð1Þūð20Þγ0uð2Þ −
f2

4m2
b

ūð10Þγ0γuð1Þūð20Þγ0γuð2Þ
�
: ðA6Þ

The last two terms in the curly brackets are contact, by definition. At the same time we see that these terms are canceled by

those one stem from Vð2Þ
b†b†bb

. In such a way we come back to the result (18). Finally, a similar observation allows us to obtain
the following expression for the NN̄ → NN̄ interaction between the clothed nucleons:

KðNN̄ → NN̄Þ ¼ m2

2ð2πÞ3
Z

d10d20d1d2 δðp0
1 þ p0

2 − p1 − p2Þb†ð10Þd†ð20Þbð1Þdð2Þ

×

�
−
�

1

ðp0
1 − p1Þ2 −m2

b

þ 1

ðp0
2 − p2Þ2 −m2

b

�
ūð10Þððgþ fÞγα −

f
2m

ðp0
1 þ p1ÞαÞuð1Þῡð2Þððgþ fÞγα

þ f
2m

ðp0
2 þ p2ÞαÞυð20Þ − ðEp0

1
þ Ep0

2
− Ep1

− Ep2
Þ f
2m

�
ūð10Þ ðgþ fÞγ − f

2m ðp0
1 þ p1Þ

ðp0
1 − p1Þ2 −m2

b

uð1Þῡð2Þγ0γυð20Þ

þ ūð10Þγ0γuð1Þῡð2Þ ðgþ fÞγ þ f
2m ðp0

2 þ p2Þ
ðp0

2 − p2Þ2 −m2
b

υð20Þ
�
þ ðEp2

↔ −Ep0
1
;p2 ↔ −p0

1; and ῡð2Þ ↔ ūð10ÞÞ
�
:

ðA7Þ

Here we confine ourselves to the application of the UCT method to NN → NN and NN̄ → NN̄ interaction operators. Of
course, our calculations can be extended for deriving other interactions in the second order in the coupling constants, e.g.,
the annihilation KðNN̄ → ρρÞ (see Ref. [30]).
The interactions (18) and (A7) together with KðN̄ N̄ → N̄ N̄Þ can be represented in the concise form,

KNN ≡ KðNN → NNÞ þ KðNN̄ → NN̄Þ þ KðN̄ N̄ → N̄ N̄Þ; ðA8Þ

KðNN → NNÞ ¼ m2

2ð2πÞ3
Z

d10d20d1d2X11ð10; 20; 1; 2Þδðp0
1 þ p0

2 − p1 − p2Þb†ð10Þb†ð20Þbð1Þbð2Þ; ðA9Þ

KðNN̄ → NN̄Þ ¼ m2

2ð2πÞ3
Z

d10d20d1d2ðX12ð10; 20; 1; 2Þ þ X21ð10; 20; 1; 2ÞÞδðp0
1 þ p0

2 − p1 − p2Þb†ð10Þd†ð20Þbð1Þdð2Þ;

ðA10Þ

KðN̄ N̄ → N̄ N̄Þ ¼ m2

2ð2πÞ3
Z

d10d20d1d2X22ð10; 20; 1; 2Þδðp0
1 þ p0

2 − p1 − p2Þd†ð10Þd†ð20Þdð1Þdð2Þ: ðA11Þ

Such a form is convenient for more short representation of these interaction operators, viz.,
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KNN ¼ −
m2

2ð2πÞ3
Z

d10d20d1d2δðp0
1 þ p0

2 − p1 − p2Þ

× ∶N†ð1; 10ÞXð10; 20; 1; 2ÞNð20; 2Þ∶; ðA12Þ

where one-fermion column N and row N† are composed of
the pairs of the particle and antiparticle operators,

Nð20; 2Þ ¼
�
b†ð20Þbð2Þ
d†ð20Þdð2Þ

�
; ðA13Þ

and the c-number matrix,

Xð10; 20; 1; 2Þ ¼
�
X11 X12

X21 X22

�
ð10; 20; 1; 2Þ: ðA14Þ

In the context of our nonlocal extension presented in
Sec. IV, we would like to stress that such an extension
(Knloc

NN ) leads to the replacement of the matrix (A14) by
Xnlocð10; 20; 1; 2Þ, which elements according to the rules,

ūð1ÞΓuð2Þ; ūð1ÞΓυð2Þ;
ῡð1ÞΓuð2Þ; ῡð1ÞΓυð2Þ;

↓

g11ðp1; p2Þūð1ÞΓuð2Þ; g12ðp1; p2Þūð1ÞΓυð2Þ;
g21ðp1; p2Þῡð1ÞΓuð2Þ; g22ðp1; p2Þῡð1ÞΓυð2Þ; ðA15Þ

look like

Xnloc
ε0ε ð10; 20; 1; 2Þ ¼ gε0ε0 ðp0

1; p1Þgεεðp0
2; p2Þ

× Xε0εð10; 20; 1; 2Þ for ε0 ≤ ε ðA16Þ

and

Xnloc
21 ð10; 20; 1; 2Þ ¼ g12ðp0

1; p
0
2Þg21ðp2; p1ÞX21ð10; 20; 1; 2Þ:

ðA17Þ

As mentioned above, these cutoff factors should be chosen
to satisfy the S-matrix property (49). In accordance with a
common practice to calculate the S-matrix one starts with
the Dyson-Feynman series (59). Following [34] in the CPR
we have an equivalent expansion,

S ¼
X∞
n¼0

ð−iÞn
n!

Z
d4x1 � � �

Z
d4xnP½KIðx1Þ � � �KIðxnÞ�;

ðA18Þ
where KIðxÞ ¼ eiKFtKIðxÞe−iKFt is an interaction density
in the D-picture. In our case the corresponding density can
be written as

KNNðxÞ ¼ −
m2

2ð2πÞ6
Z

d10d20d1d2 e−ix·ðp0
1
þp0

2
−p1−p2Þ

× ∶N†ð1; 10ÞXð10; 20; 1; 2ÞNð20; 2Þ∶ ðA19Þ
and taking into account the relations,

e−iKFtbðpμÞeiKFt ¼ eiEptbðpμÞ;
e−iKFtdðpμÞeiKFt ¼ eiEptdðpμÞ ðA20Þ

we have

KNNðxÞ ¼ −
m2

2ð2πÞ6
Z

d10d20d1d2 eix·ðp0
1
þp0

2
−p1−p2Þ

× ∶N†ð1; 10ÞXð10; 20; 1; 2ÞNð20; 2Þ∶: ðA21Þ
Obviously, integrating KNNðxÞ over x gives the delta
function δðp0

1 þ p0
2 − p1 − p2Þ. It automatically leads to

the removal of the noncovariant terms in Xð10; 20; 1; 2Þ
because all of them have the factor ðEp0

1
þ Ep0

2
− Ep1

−
Ep2

Þ [see Eqs. (18) and (A7)]. Thus, only explicitly
covariant terms will enter the S operator, that ensures
UFðΛÞSU−1

F ðΛÞ ¼ S and the property (49). At last, in the
case of the nonlocal interaction Knloc

NN , the latter property
requires gε0εðΛp1;Λp2Þ ¼ gε0εðp1; p2Þ.
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