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We discuss the generalization of the local renormalization group approach to theories in which Weyl
symmetry is gauged. These theories naturally correspond to scale-invariant—rather than conformal-
invariant—models in the flat-space limit. We argue that this generalization can be of use when discussing
the issue of scale vs conformal invariance in quantum and statistical field theories. The application of Wess-
Zumino consistency conditions constrains the form of the Weyl anomaly and the beta functions in a
nonperturbative way. In this work, we concentrate on two-dimensional models including also the
contributions of the boundary. Our findings suggest that the renormalization group flow between
scale-invariant theories differs from the one between conformal theories because of the presence of a
new charge that appears in the anomaly. It does not seem to be possible to find a general scheme for which
the new charge is zero, unless the theory is conformal in flat space. Two illustrative examples involving flat
space’s conformal- and scale-invariant models that do not allow for a naive application of the standard local
treatment are given.
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I. INTRODUCTION

In essence, the local renormalization group (RG) is a
generalization of the standard renormalization group to
local couplings in curved space [1]. The local approach has
the advantage that the position-dependent couplings and
the metric act as sources for the expectation values of the
interaction operators and the energy-momentum tensor,
assuming of course the existence of a finite and renormal-
ized effective action from the path integral.
One of the main achievements of the local RG comes by

combining it with the analysis of the Wess-Zumino con-
sistency conditions [2] to Weyl transformations [3]. By
simply requiring that local scale transformations are
Abelian, it is in fact possible to rederive the famous
Zamolodchikov result of irreversibility of the RG in two
dimensions (the famous C theorem) [4] in an elegant way
by constraining the flow of local charges of the Weyl
anomaly and the beta functions of marginal couplings [3]. It
is also possible to generalize some of the same results to
four dimensions [5], resulting in a perturbative proof of
irreversibility, i.e., a perturbative A theorem [6].

In this paper, we generalize the two-dimensional local
RG approach to the case in which Weyl symmetry is
realized as a gauge symmetry, so there is an additional
vector gauge potential Sμ which has affine behavior under
Weyl transformations, Sμ → Sμ − ∂μσ. The new potential is
a source for the dilation current [7], which we denote asDμ.
Classically, the gauge symmetry implies that the trace of
the energy-momentum tensor is related to the divergence of
Dμ as

Tμ
μ ¼ ∇μDμ; ð1Þ

implying that the gauged theory is scale invariant, rather
than conformal invariant, in the flat-space limit. While the
standard local RG approach is particularly useful for
discussing the properties of the renormalization flow
between two conformal field theories (CFTs), we deduce
that the gauged counterpart considered in this paper is
relevant for theories that are simply scale invariant, given
the natural identification that can be made in the limit of flat
space between the dilation current Dμ and the virial current
that characterizes scale-invariant theories [8].
The Wess-Zumino consistency of the gauged Weyl

group is structurally interesting because dilatations do
not commute with the local Lorentz group in curved space,
so the gauge-covariant derivative includes a departure from
the standard Christoffel components that depends on Sμ [9],
which is known as a special type of “disformation” in the
metric-affine literature [10]. This results in a “mixture”
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between the structures of the standard local RG and those
of the application of Wess-Zumino conditions to an Abelian
gauge theory. The most important result of this paper is that
in two dimensions it is possible to find a quantity, denoted
β̃Ψ, which on renormalization group trajectories behaves as

μ
d
dμ

β̃Ψ ¼ χijβ
iβj þ βS2; ð2Þ

where μ is the renormalization group scale, χij can be
interpreted as a metric in the space of couplings, βi are the
beta functions of the marginal couplings, and βS2 is an extra
contribution associated to a new charge that appears in the
Weyl anomaly only for gauged symmetry. The quantity
β̃Ψ generalizes β̃Φ considered by Osborn to rederive
Zamolodchikov’s theorem [3]. However, irreversibility of
the renormalization group flow is not possible for an
arbitrary value of βS2 , unless there exists a scheme for
which βS2 is zero, which is not true in general, and the metric
χij is positive definite, which is guaranteed for unitary
theories. Using two nonunitary theories as examples, we
confirm that βS2 is in general nonzero, and we show that it is
zero in two specific examples of interest for CFT (including
a special case of the theory of elasticity).
As for the organization of the paper, we discuss the

symmetries of interest in the remaining parts of Sec. I, both
from the classical and quantum points of view. Section II
contains the aforementioned main result for the consistency
of the anomaly, including geometric conditions on how to
set βS2 ¼ 0 consistently on the flow of models that do allow
it and on the structure of the boundary terms. Section III
shows the application of the result to two examples,
including a special higher-derivative CFT which does not
allow the standard local RG treatment, and the theory of
elasticity, which is known to be scale but not conformal
invariant in flat space. Section IV discusses qualitatively
the interplay of the anomaly with diffeomorphism invari-
ance and some consequence. A brief comparison between
Riemannian and Weylian geometries is reported in
Appendix A, while some details on the examples’ compu-
tations of the anomalies are given in Appendix B.
Throughout the paper, we adopt the Euclidean conven-

tion and discuss everything in terms of the effective action
Γ rather than the generator of connected correlators W.
Furthermore, all formulas can be generalized to Lorentzian
signature with very little additional work.

A. Classical conformal and scale vs gauged
Weyl symmetries

Consider a classical action S½Φ; g� of some field Φ on a
Riemannian manifold with metric gμν. Standard Weyl
transformations are defined as

gμν → g0μν ¼ e2σgμν; Φ → Φ0 ¼ ewΦσΦ; ð3Þ

where the metric and field are rescaled by a local
positive function, σ ¼ σðxÞ, according to their Weyl
weights wðgμνÞ ¼ 2 and wΦ. Invariance of S½Φ; g� under
conformal transformations implies that the variational
energy-momentum tensor, Tμν ¼ − 2ffiffi

g
p δS

δgμν
, is traceless,

T ¼ gμνTμν ¼ 0, when Φ is on shell, i.e., when δS
δΦ ¼ 0.

Assuming also invariance under diffeomorphisms, we have
that Weyl symmetry implies flat space’s conformal sym-
metry in the limit gμν → δμν, and therefore Weyl symmetry
can be regarded as the natural extension of conformal
symmetry to curved space [11].1

Constant scale transformations are the subgroup of Weyl
transformations such that σ is constant and, as such, they
constrain the trace of energy-momentum tensor much less.
In particular, we have that the integral of T is zero,R ffiffiffi

g
p

T ¼ 0, implying that T ¼ ∇μJμ, for some vector Jμ
known as the virial current [8]. If the virial current satisfies
some properties, for example, if it is the divergence of a
symmetric tensor Jμ ¼ ∇νXμν, we have that a scale
invariance action can be “improved” to a Weyl-invariant
one by including off-shell couplings among the curvatures
and the tensor Xμν in d > 2 [12]. A stronger condition is
needed in d ¼ 2 to have full Virasoro invariance [13].
Weyl symmetry is a local symmetry, but it is not a gauge

symmetry in the traditional sense [7]. In fact, it is not a
straightforward task to write down a Weyl-symmetric
action for an arbitrary field; conversely, it is generally
simple to write a scale-invariant one by just applying
dimensional analysis. The main reason for the difficulty
is that the Levi-Civita covariant derivative ∇μ does not
transform covariantly under Weyl transformations because
it depends on the derivatives of the metric gμν, so spurious
terms in the transformation of ∇μΦ must be canceled by
opportune couplings with the curvatures. The construction
of Weyl-covariant connections requires in general addi-
tional geometrical structures [14].
There is, however, a gauged version of Weyl symmetry,

which we refer to as gauged Weyl symmetry. It includes a
vector potential Sμ that has an affine transformation [15] so
that (3) are replaced by

gμν → g0μν ¼ e2σgμν; Sμ → S0μ ¼ Sμ − ∂μσ;

Φ → Φ0 ¼ ewΦσΦ; ð4Þ

and there also exists a gauged Weyl-covariant derivative ∇̂,
which we show below. In a classical action S ¼ S½Φ; g; Sμ�
(we use the same symbol for the action and the gauge

1More precisely, the group of conformal isometries which
leave a given metric gμν invariant is a subgroup of the semidirect
product of the diffeomorphisms and Weyl groups, which is finite
in d > 2. So, the flat-space limit of a Weyl-invariant theory must
be a CFT, and we can construct currents with the energy-
momentum tensor.
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potential; hopefully, it does not generate confusion since
the latter always has an index), the field Φ couples to the
new vector through the dilation current, Dμ ¼ 1ffiffi

g
p δS

δSμ
.

The main consequence of gauged Weyl symmetry is that
the trace of the energy-momentum tensor equals the
divergence of the dilation current, T ¼ ∇μDμ. This
obviously implies that, in the flat-space limit gμν → δμν
and Sμ → 0, gauged Weyl-invariance reduces scale invari-
ance [7] and also suggests the identification of Dμ with the
virial current in the same limit [10].
To see that gaugedWeyl invariance is actually the natural

generalization of scale invariance to curved space, it is
important to understand the underlying geometry. Using
the gauge potential Sμ, we can construct a covariant
derivative which is covariant both under diffeomorphisms
and gauged Weyl transformations [9,10],

∇̂μΦ ¼ ∇μΦþ Lμ ·Φþ wΦSμΦ: ð5Þ

The new connection consists of three contributions: the
Levi-Civita connection ∇μ, which is the unique symmetric
connection such that ∇μgνρ ¼ 0, a second term with
components ðLμÞαβ ¼ Lα

βμ ¼ 1
2
ðSβδαμ þ Sμδαβ − SαgβμÞ,

and a final multiplicative (gauge) term weighed by the
charge wΦ. The new connection is Abelian, like a standard
Maxwell potential, but, structurally, differs fromMaxwell’s
because of the contribution Lμ, known in the metric-affine
literature as a special type of disformation. In fact, the
disformation encodes the fact that local dilatations and
Lorentz transformations do not commute [16,17]. The
contributions are seen as coming from the noncommuta-
tivity of the generators of the subgroup D1 ⋉ SOðdÞ with
the rest of GLðdÞ [18], where D1 are the gauged Abelian
dilatations.
The gauged connection is also compatible with the

metric, ∇̂μgνρ ¼ 0, because wðgμνÞ ¼ 2. It can also be

integrated by parts using the density
ffiffiffi
g

p
, i.e.,

ffiffiffi
g

p ∇̂μvμ ¼
∂μð ffiffiffi

g
p

vμÞ if and only if the weight of the vector satisfies
wv ¼ −d, i.e., it is a Weylian density as well [10]. Most
importantly, the derivative of a field transforms like the
field itself,

∇̂μΦ → ∇̂0
μΦ0 ¼ ewΦσ∇̂μΦ; ð6Þ

thanks to the fact that the transformation of Sμ cancels
precisely the noncovariant contributions coming from the
Christoffel connection. For these reasons, any scale-
invariant action can immediately be promoted to a gauged
Weyl-invariant action through the replacements of ∇μ →

∇̂μ and of Riemannian curvatures with curvatures of ∇̂
[19]. There is, in addition, a new gauge-invariant field
strength Wμν ¼ ∂μSν − ∂νSμ ¼ 2∂½μSν� [10], similar to
Maxwell’s. With all the above properties, it becomes trivial

to write down Weyl-invariant actions; for example,R ffiffiffi
g

p ∇̂μφ∇̂μφ is manifestly invariant in any dimension d
for a scalar field φ that weighs wφ ¼ 2−d

2
. More details on

the geometry of gauged Weyl symmetry and spacetime are
given in Appendix A.

B. Quantum symmetry and Wess-Zumino consistency

It is well known that quantum symmetries can be
anomalous for an effective action Γ coming from a path-
integral construction. Schematically, we have

e−Γ ¼
Z

½dΦ�e−S; ð7Þ

where at the exponent on the lhs we have the finite and
renormalized generating functional of connected Green’s
functions and Φ is some bare field over which we are
integrating. The functional Γ is assumed to be a finite
functional of the couplings λi, the metric gμν, and the gauge
potential Sμ, i.e., Γ ¼ Γ½λi; gμν; Sμ�. It satisfies a Callan-
Symanzik equation,

�
μ
∂

∂μ
þ βi

∂

∂λi

�
Γ ¼ 0; ð8Þ

which defines the beta functions βi ¼ μ d
dμ λ

i with RG scale
μ. We assume a dimensionless regularization scheme, such
as dimensional regularization, and concentrate on marginal
couplings λi.
Symmetries involving transformations of the local scale

are naturally anomalous because of the presence of RG beta
functions. However, conformal symmetry has intrinsic
anomalies that are most easily seen by considering the
theory in curved space [11,13]. We want to generalize the
analysis based on local RG by Osborn [3] to gauged Weyl
symmetry, so we assume that the path integral (7) can be
consistently renormalized for local couplings λi ¼ λiðxÞ. In
general, the procedure requires additional counterterms
involving derivatives of the coupling themselves [3], and
the specific form of the additional counterterms in some
examples will become clearer below. The metric, the gauge
potential, and the local couplings are sources for the bare
energy-momentum tensor, dilation current, and interaction
operators, respectively. By construction, derivatives of Γ
give their expectation values

hTμνi ¼ −
2ffiffiffi
g

p δΓ
δgμν

; hDμi ¼ 1ffiffiffi
g

p δΓ
δSμ

;

hOii ¼ −
1ffiffiffi
g

p δΓ
δλi

; ð9Þ

where Oi are the interaction operators associated to the
couplings λi.

CONSEQUENCES OF GAUGING THE WEYL SYMMETRY AND THE … PHYS. REV. D 108, 125018 (2023)

125018-3



To begin with, we slightly generalize the construction of
Ref. [3] and define the operator

ΔW
σ ¼

Z �
2σgμν

δ

δgμν
− ∂μσ

δ

δSμ

�
: ð10Þ

It should be obvious that ΔW
σ S ¼ 0 on shell for an invariant

classical action S with constant couplings, as discussed in
the previous section. In fact, it straightforwardly implies the
classical relation T ¼ ∇μDμ. In general, for the quantum
action Γ of (7), we must have

ΔW
σ Γ ¼ Δβ

σΓþ Aσ; ð11Þ

where the first term accounts for scale dependence caused
by the renormalization’s beta functions and the second term
is the “true” anomaly caused by the curved geometry as
well as the additional counterterms to the local couplings.
The above relation can be rearranged as

ΔσΓ≡ ðΔW
σ − Δβ

σÞΓ ¼ Aσ; ð12Þ

and the transformationΔσ ¼ ΔW
σ − Δβ

σ now accounts for all
contributions to the change of the local scale, both classical
and quantum [20]. Since the original transformation is
Abelian, it must be that also its quantum counterpart Δσ

remains Abelian, even if it is anomalous because of the
presence of Aσ. Therefore, we can impose the Wess-
Zumino consistency condition [2]

½Δσ;Δσ0 �Γ ¼ 0; ð13Þ

which enforces the Abelian nature of Δσ and translates into
a consistency condition for the anomaly

ðΔW
σ − Δβ

σÞAσ0 − ðσ ↔ σ0Þ ¼ 0: ð14Þ
The consistency condition constrains the local structures of
the integrand of the anomaly with the beta functions of the
renormalized action [3].
For example, in the case of only marginal couplings λi to

local operators Oi, for the procedure to work consistently,
then the couplings λi must be local functions [20] and
Γ ⊃ −

R ffiffiffi
g

p
λihOii. In this case, we have

Δβ
σ ¼ −

Z
σβi

δ

δλi
; ð15Þ

which includes the beta functions βi of the marginal
couplings λi. The beta functions are functions of λi and
can be thought of as the components of a vector in the space
of couplings. For consistency of the local approach, we
must have that Aσ is a local functional of gμν and Sμ and
also of covariant tensors constructed from λi and their
derivatives. Essentially, this was tacitly assumed when
declaring renormalizability [3]. The number of derivatives

in Aσ depends on the dimensionality of spacetime, and the
case d ¼ 2 is worked out in the next section under the
assumption of a dimensionless RG scheme. For a much
more thorough discussion on how to pass from a standard
to a local RG scheme and a comprehensive view on the
topic, we refer to Ref. [20], Sec. II (cautioning that we use
slightly different conventions).

II. CONSISTENCY CONDITIONS
IN TWO DIMENSIONS

In d ¼ 2, the curvature scalar of ∇̂ becomes R̂ ¼
R − 2∇μSμ, where R ¼ R½g� is the curvature scalar of
the Levi-Civita connection ∇ and depends only on the
metric (see the discussion of Appendix A), so it is a natural
term to parametrize the anomaly because, for a dimension-
less regularization scheme, we must have that the anomaly
Aσ is the integral of local dimension-2 operators con-
structed with the available sources [3].2 We choose to
parametrize the anomaly as

Aσ ¼
1

2π

Z
d2x

ffiffiffi
g

p �
σ
βΦ
2
R̂ − σ

χij
2
∂μλ

i
∂
μλj

− ∂μσwi∂
μλi þ σβΨ∇μSμ þ σ

βS2
2
SμSμ

− ∂μσβ
S
3S

μ þ σzi∂μλiSμ
�
: ð16Þ

The above parametrization includes all possible terms
constructed with up to two derivatives of the sources.3

We have included the following general functions of λi:
βΦ, βΨ, βS2 , βS3, wi, zi, and χij, all of which can be
interpreted as “tensors” in the space of couplings (scalars,
vectors, and a rank-2 symmetric tensor, respectively).4 In
the first line of (16), there are all the “standard” local RG
contributions (for a nongauged symmetry), and in the
second line, there are all the new contributions due to
the presence of the source Sμ. The scalars βΦ, βΨ, and βSm
(for m ¼ 2; 3) are scalar functions of λi; the vectors wi and
zi also depend on λi; and χij could be interpreted as a metric
in the space of couplings [22]. We colloquially refer to the
scalar functions as “charges” in the following.

2Our approach based on a dimensionless scheme differs from
the one of Ref. [21], which uses an infrared cutoff.

3Having in mind a fundamental field realization, we have also
neglected possible terms that are zero on shell; in fact, there
would be a contribution proportional to the equations of motion
off shell [20].

4Whether these quantities are scalars, vectors, and tensors is
decided here by their latin indices as in Refs. [3,22]. This
statement could be made more precise by adopting a framework
in which the anomaly is manifestly invariant under couplings
reparametrizations λ0 ¼ λ0ðλÞ, such as the one of Ref. [23], which
requires a further modification of the covariant derivative
generated by the pullback of the Levi-Civita connection of χij.
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The computation of the Wess-Zumino consistency con-
dition (13), with Δσ ¼ ΔW

σ − Δβ
σ defined in (12), requires

only the infinitesimal gauged Weyl transformations

δσgμν ¼ 2σgμν; δσR ¼ −2σR − 2∇μ
∂μσ;

δσ∇μSμ ¼ −σ∇μSμ −∇μ
∂μσ; ð17Þ

from which it is easy to see that δσR̂ ¼ −2σR̂, so ffiffiffi
g

p
R̂ is

invariant. Integrating some derivatives by part, we find

½Δσ;Δσ0 �Γ ¼ 1

2π

Z
d2x

ffiffiffi
g

p ðσ∂μσ0 − σ0∂μσÞZμ ¼ 0: ð18Þ

The vector Zμ is a relatively long function of all the
involved currents and the tensors of (16) that we give in a
moment after having discussed its structure.
Using the chain rule ∂μ ¼ ∂μλ

i
∂i on all the tensors in the

space of the couplings, it is easy to argue that Zμ must have
the form

Zμ ¼ ∂μλ
iYi þ SμX ; ð19Þ

so for arbitrary ∂μλ
i and Sμ, we have that Zμ ¼ 0 implies

Yi ¼ 0 and X ¼ 0 independently. The explicit forms of the
two contributions to Zμ are

Yi ¼ −∂iβΨ þ χijβ
j − βj∂jwi − wj

∂iβj þ zi;

X ¼ βS2 − βi∂iβ
S
3 − ziβi; ð20Þ

and they are the first main result of this section.
To understand the implications of the consistency con-

ditions, we define a new charge:

β̃Ψ ¼ βΨ þ wiβ
i þ βS3: ð21Þ

In the definition, we see that the charge βΨ is shifted by a
term proportional to the beta functions and the vector wi in
a way familiar to the traditional local RG [3] but also by the
term βS3 which is included for future convenience. From
Yi ¼ 0, we see that the gradient

∂iβ̃Ψ ¼ χijβ
j þ ð∂iwj − ∂jwiÞβj þ ∂iβ

S
3 þ zi ð22Þ

has symmetric and antisymmetric terms contracting βi like
in the standard local RG, besides two additional contribu-
tions. The flow of β̃Ψ is almost gradientlike, and the local
scale derivative μ d

dμ β̃Ψ ¼ βi∂iβ̃Ψ becomes

μ
d
dμ

β̃Ψ ¼ βi∂iβ̃Ψ ¼ χijβ
iβj þ βi∂iβ

S
3 þ βizi: ð23Þ

Crucially, we can now use the solution of X ¼ 0, that is,
βS2 ¼ βi∂iβ

S
3 þ ziβi, to simplify further

μ
d
dμ

β̃Ψ ¼ χijβ
iβj þ βS2: ð24Þ

We deduce that the function β̃Ψ is monotonic if χij is
positive definite and, importantly, if βS2 > 0. For a proof of
monotonicity of the RG, it would be sufficient to find at
least one scheme for which β̃Ψ is monotonic. For example,
a scheme in which χij > 0 and βS2 ¼ 0 gives a correspond-
ing β̃Ψ which is a candidate C function [4]. We thus return
on the analysis of (24) after having addressed how the
quantities actually transform under a change of renorma-
lization scheme, to see if it is possible to find a general
scheme in which βS2 ¼ 0, but we anticipate now that it is
actually not possible.

A. Scheme change transformations

A change in the renormalization prescription can be
encoded in the redefinition of the renormalized couplings
of the effective action Γ of the local theory. This corre-
sponds to Γ → Γþ δΓ, that we parametrize as

δΓ ¼ 1

2π

Z
d2x

ffiffiffi
g

p �
bΦ
2
R̂ −

cij
2
∂μλ

i
∂
μλj þ bΨ∇μSμ

þ bS2
2
SμSμ þ ei∂μλiSμ

�
; ð25Þ

and all the newly introduced tensors are functions of λi.
From Γ → Γþ δΓ, we have a corresponding change in
the anomaly Aσ → Aσ þ δAσ, where δAσ ¼ ðΔW

σ − Δβ
σÞδΓ.

Comparing with the structure of the original anomaly (16),
we can read how the anomaly coefficients change with the
scheme. Some tensors transform as Lie derivatives in the
space of couplings

βΦ → βΦ þ βi∂ibΦ ¼ βΦ þ LβbΦ

βΨ → βΨ þ LβbΨ

χij → χij þ βl∂lcij þ ∂iβ
lclj þ ∂jβ

lcil ¼ χij þ Lβcij

βS2 → βS2 þ LβbS2

zi → zi þ βj∂jei þ ej∂iβj ¼ zi þ Lβei; ð26Þ

where Lβ is the Lie derivative in the “direction” of the
vector βi acting on scalars, a symmetric tensor, and a form.
The others transform with “shifts”

wi → wi þ ei þ cijβj − ∂ibΨ

βS3 → βS3 þ bS2 − eiβi: ð27Þ

It is easy to check that the consistency equations, Yi ¼ 0
and X ¼ 0, are invariant under the combination of the
transformations (26) and (27). As for the quantity of
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interest, using the definition β̃Ψ ¼ βΨ þ wiβ
i þ βS3 , we

have

β̃Ψ → β̃Ψ þ cijβiβj þ bS2; ð28Þ

that transforms similarly to the local RG counterpart [3],
except for the additional contribution bS2 .
The transformations induced by the choice of scheme

cannot be used to set the charge βS2 to zero, because
βS2 → βS2 þ LβbS2 , unless β

S
2 has the form of the gradient of a

function contracted with the beta functions. In other words,
we cannot find a general scheme for an arbitrary model in
which βS2 is zero, and this fact will be confirmed by the
explicit examples of Sec. III. Nevertheless, we discuss the
self-consistency of the special case βS2 ¼ 0 along the RG
flow in the next subsection.

B. Setting the charge βS2 = 0 consistently

We can investigate the interplay of the special case
βS2 ¼ 0 along the flow with the Wess-Zumino consistency
conditions. If we impose βS2 ¼ 0, we have from Eq. (20)
that βi∂iβS3 ¼ −ziβi, which implies, for general βi, that

zi ¼ −∂iβS3 − Ni; ð29Þ

where Ni is a form in the cotanget space to the couplings
orthogonal to βi, i.e., Niβ

i ¼ 0. Using this relation, we see
that the last two terms of the anomaly (16) become

Aσ ⊃
1

2π

Z
d2x

ffiffiffi
g

p f−∂μσβS3Sμ − σ∂iβ
S
3∂μλ

iSμ − σNi∂μλ
iSμg

¼ −
1

2π

Z
d2x

ffiffiffi
g

p f∂μðσβS3ÞSμ þ σNi∂μλ
iSμg: ð30Þ

Integrating the first term by parts, we thus have that in the
case βS2 ¼ 0 the complete anomaly becomes

Aσ ¼
1

2π

Z
d2x

ffiffiffi
g

p �
σ
βΦ
2
R̂− σ

χij
2
∂μλ

i
∂
μλj

þ σðβΨþ βS3Þ∇μSμ− ∂μσwi∂
μλi− σNi∂μλ

iSμ
�
: ð31Þ

The anomaly term ∇μSμ has the additional additive con-
tribution βS3 , which reproduces the term included in the
previous definition of β̃Ψ given in (21). In fact, βS3 is no
longer necessary, and we could define β0Ψ ¼ βΨ þ βS3 so
that the anomaly becomes

Aσ ¼
1

2π

Z
d2x

ffiffiffi
g

p �
σ
βΦ
2
R̂ − σ

χij
2
∂μλ

i
∂
μλj

þσβ0Ψ∇μSμ − ∂μσwi∂
μλi − σNi∂μλ

iSμ
�
: ð32Þ

Following the analysis of Sec. II, we can see that the charge
β̃Ψ ¼ β0Ψ þ wiβ

i is now such that

μ
d
dμ

β̃Ψ ¼ χijβ
iβj ð33Þ

and has the same structure of the RG flow given for the
charge β̃Φ by Osborn in Ref. [3]. At this stage, for
monotonicity, one wound only need to find a scheme in
which χij > 0, which is possible only if the underlying
theory is unitary.
The choice βS2 ¼ 0 must be consistent with the choice of

scheme, so the available changes of scheme given in (25)
must also be such that bS2 ¼ 0, implying that we always
remain in a scheme without SμSμ anomaly. As a conse-
quence, if we remain in such schemes with bS2 ¼ 0, we have
that the transformation (28) becomes

β̃Ψ → β̃Ψ þ cijβiβj; ð34Þ

which also agrees with the transformation of β̃Φ given in
Ref. [3]. Using (26) and (27), we see that choice βS2 ¼ 0

also implies

zi → zi þ βj∂jei þ ej∂iβj ¼ zi þ Lβei;

βS3 → βS3 − eiβi: ð35Þ

Recall now that the case βS2 ¼ 0 implies that zi ¼
−∂iβS3 − Ni, so the two transformations above cannot
actually be independent. In fact, from their combination,
we can deduce a transformation for the Ni. From the
transformation of βS3 , we infer ∂iβ

S
3 → ∂iβ

S
3 − ∂iðejβjÞ ¼

∂iβ
S
3 − βj∂iej − ej∂iβj. We thus have

Ni ¼ −zi − ∂iβ
S
3 → Ni þ βj∂iej − βj∂jei: ð36Þ

Geometrically, N ¼ Nidλi is a 1-form in the space of
coupling, and the transformation on the rhs of (36) depends
on the exterior differential de of e ¼ eidλi, which is a
2-form. In this notation, we can write

N → N þ deðβ; ·Þ; ð37Þ

where β ¼ βi∂i is a vector in the space of couplings and the
2-form is evaluated on only one argument. By construction,
NðβÞ ¼ Niβ

i remains zero along a scheme transformation
because deðβ; βÞ ¼ 0, as expected. Using Cartan’s formula,

N → N þ Lβe − dðeiβiÞ: ð38Þ

This is telling us that the part of ei that is orthogonal
to βi transforms the vectors Ni homogeneously, like the
transformations (26), while the rest transforms the ni
inhomogeneously, like the transformations (27).
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C. Comparison with the standard local RG

As a consequence of the analysis of Sec. II A and, in part,
of Sec. II B, we now know that it is not possible to find a
general scheme in which βS2 ¼ 0. This result is somehow
expected because we know that conformal invariance and
unitarity imply irreversibility of the RG flow, but there is no
reason to expect that scale invariance alone implies
irreversibility. Since conformal invariance is a special case
of scale invariance, our discussion points to the fact that the
“signature” of pure scale invariance in the RG flow is
precisely the charge βS2 . We thus expect that βS2 is nonzero
for models that are scale invariant, but not conformal
invariant, which is confirmed by the examples of the next
sections.
The standard results of the local RG can be reproduced

“trivially” by decoupling the gauge potential Sμ from the
anomaly. This is achieved by requiring βΨ ¼ βΦ, which
cancels the divergence in Aσ , βSm ¼ 0 for m ¼ 2; 3, and
zi ¼ 0 in (16). In this case, there must be no change in the
renormalization of the S-independent contributions, so a
different scheme can be achieved only for bΨ ¼ bΦ and for
bS2 ¼ ei ¼ 0 in (25). With this in mind, we see that β̃Ψ
becomes β̃Φ ¼ βΦ þ wiβ

i considered in Ref. [3].
Then, if and only if Sμ is decoupled, one could follow

the proof of Ref. [3] that β̃Φ is monotonic or, more
precisely, that there exists at least one scheme for which
χij is positive definite for unitary theories. The scheme of
choice is the one in which χij is Zamolodchikov’s metric,
Gij¼jxj4hOiðxÞOjð0Þi, and β̃Φ becomes Zamolodchikov’s
monotonic C function up to a constant, completing the
elegant proof of irreversibility of Ref. [3]. In general, βΦ
itself differs from the C function by terms proportional to βi

modulo a normalization, so the two quantities coincide at
fixed points of the renormalization group.5

Returning to the case of nonzero gauge potential Sμ,
things become more complicated. There is still the freedom
of changing the scheme, but there is no general scheme in
which βS2 is zero as seen in Sec. II A, so monotonicity is not
guaranteed because of the extra contribution in (24), even if
the underlying theory is unitary. The simplest solution
would be to find some scheme for which βS2 ¼ 0, but this
can only be done with a specific model in mind, though we
discussed the consistency of this choice along the flow in
Sec. II B. In this case, from (24), we could deduce μ d

dμ β̃Ψ ¼
χijβ

iβj and eventually develop a proof to monotonicity that
could apply to special models following the steps of Ref. [3],
assuming that such models are also unitary (i.e., such that

there is a scheme in which χij > 0). Notice, however, that all
the famous examples of scale-but-not-conformal theories
are nonunitary theories [24], which leaves little hope for a
generalization of Zamolodchikov’s theorem to even a
subclass of scale-invariant theories. That said, the consis-
tency of the choice βS2 ¼ 0 involves normal terms to the beta
functions in the anomaly, but they do not seem to havemuch
effect in the form of the flow.
For a final remark, notice that there is no consistency

condition involving βΦ because βΦ is coupled to a Weyl-
invariant density (see also the discussion of Appendix A).
This may be counterintuitive since the local RG without the
gauging of the Weyl potential constrains the coefficient of
the scalar curvature anomaly, but it actually happens
because of our parametrization, having coupled βΦ to
R̂ ¼ R − 2∇μSμ, which now plays the role of a type-B
anomaly, instead of R which is a type-A anomaly [25].

D. Boundary terms in two dimensions

We now want to succinctly add to the considerations of
Sec. II the effects of a finite boundary in the Weyl anomaly.
We are still working in two dimensions, meaning that the
boundary is a one-dimensional submanifold with some
coordinate τ orthogonal to a vector nμ of unit norm, which
we assume to exist in a neighbor of the boundary itself. The
intrinsic geometry of the boundary is characterized by an
“induced” metric from projecting gμν dxμ

dτ
dxν
dτ , and it is

convenient to parametrize the measure on the boundary
with dτ ¼ ds, where s is the arc length measured using gμν.
There is also an extrinsic component to the geometry,
given here by the trace of the extrinsic curvature tensor,
K ¼ gμν∇μnν. Using the covariant derivative ∇̂, it is natural
to define K̂ ¼ K þ nμSμ, which has the meaning of
extrinsic curvature of the gauged connection. Under infini-
tesimal Weyl transformations, we have

δσnμ ¼ −σnμ; δσds ¼ σds;

δσK ¼ −σK − nμ∂μσ; ð39Þ

from which it is easy to see that δσK̂ ¼ −σK̂, so K̂
transforms covariantly, and the combination dsK̂ is invari-
ant similarly to

ffiffiffi
g

p
R̂ in Sec. II.

In the presence of a finite boundary, the effective action
must contain a new boundary contribution Γtot ¼ Γþ Γbd.
For consistency, to the anomaly (16), we must add a
boundary term, which we parametrize as

Abd;σ ¼
1

2π

Z
dsfσβ̂ΦK̂ þ σωinμ∂μλi

þ εnμ∂μσ − σβ̂ΨnμSμg: ð40Þ

For parametrizing the boundary, we have made similar
choices as we have done for the bulk in (16), particularly

5The fact that χij can be related to Zamolodchikov’s metric
hOiOji is a luxury of the two-dimensional case. In four
dimensions, there is a consistency condition that leads to a result
similar to (24), but in that case, the symmetric tensor relates to the
correlator hOiOjTi, for which it is not obvious to establish
positivity [3,20].
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with regard to the use of K̂ as monomial. Similarly to the
bulk, we have that β̂Φ, β̂Ψ, and ε are scalar functions of λi

and that ωi is a vector form in the space of the couplings.
An anomaly of the form ∂μσSμ is not included because it
can be integrated by parts and, by construction, it does not
have any additional effect given that the boundary of the
boundary is empty.
New terms appear when applying the Wess-Zumino

consistency condition to Atot;σ ¼ Aσ þ Abd;σ . The new
contributions come from applying Δσ directly to the
boundary terms but also from the total derivatives in the
bulk that have been neglected in Sec. II. Structurally,
the Wess-Zumino condition becomes

½Δσ;Δσ0 �Γtot ¼
1

2π

Z
d2x

ffiffiffi
g

p ðσ∂μσ0 − σ0∂μσÞZμ

þ 1

2π

Z
dsnμðσ∂μσ0 − σ0∂μσÞB ¼ 0; ð41Þ

where Zμ is the same vector computed in Sec. II, and

B ¼ βΨ − β̂Ψ − ωiβ
i þ βi∂iε: ð42Þ

Consequently, B ¼ 0 is the new consistency condition that
is intrinsic to the boundary. As happened for βΦ in Sec. II,
there is no condition on β̂Φ because it couples to a type-B
anomaly. The interesting point is that the charges βΨ and β̂Ψ
are equal at fixed points, i.e., β̂Ψ ¼ βΨ from B ¼ 0 for
βi ¼ 0. We can also recover the original local RG result of
Ref. [3] when decoupling Sμ, which, in this case, corre-
sponds to the requirement β̂Ψ ¼ β̂Φ and the relation B ¼ 0
then reproduces the boundary consistency condition given
in Ref. [3].
The boundary terms of the anomaly can be parametrized

in a new scheme by changing Γbd → Γbd þ δΓbd, where

δΓbd ¼
1

2π

Z
dsfb̂ΦK̂ þ nμdi∂μλi − b̂ΨnμSμg; ð43Þ

and, similarly to Sec. II D, we have chosen conventions that
simplify the final form of the transformations below. To
obtain how the tensors of (40) transform, we must use the
definition, Aσ ¼ ΔσΓ, which induces the transformation
Abd;σ → Abd;σ þ δAbd;σ . Notice also that the transformation
of the bulk does not affect the boundary in the general case.
Finally, the tensors of (40) transform as

β̂Φ → β̂Φ þ Lβb̂Φ β̂Ψ → β̂Ψ þ Lβb̂Ψ

ωi → ωi þ Lβdi ε → ε − b̂Ψ þ diβi; ð44Þ

and it is easy to see that B is invariant under the above
transformations. Arguably, we could use the freedom of the
choice of the scheme to parametrize the anomaly so that
ε ¼ 0. The analysis of this section could be relevant to open

string theory, should the need for the gauged version of
Weyl symmetry arise.

III. EXAMPLES

Wewant to consider nontrivial yet simple examples to tie
things together. We choose two that are motivated in part by
the analysis of the charge βS2 , since it is the main actor in
differentiating (24) from the standard local RG result of
Ref. [3]. The first example is a higher-derivative free scalar
theory that does not admit a standard Weyl-covariant
description in curved space because of a geometrical
obstruction, yet it is a CFT in flat space [26]. The second
one is the theory of elasticity, which is scale invariant but
not conformal invariant in flat space as discussed by Riva
and Cardy [27]. The two examples display zero and
nonzero values for βS2, which, we argue, occur in relation
to their conformal properties.

A. Free higher-derivative scalar and βS2 = 0

To begin with, we restrict our attention to “generalized
free” fields with quadratic actions coupled to a Weylian
geometry, playing the role of “Gaussian” fixed points. A
standard scalar with a two-derivatives action is not par-
ticularly interesting for us because the scalar has canonical
dimension ðd − 2Þ=2, so its Weyl weight is zero in d ¼ 2,
and it does not couple minimally with Sμ. A standard Dirac
spinor does not work either, because even if it does couple
to Sμ through =̂∇, we have that, due to the (anti-)Hermiticity
of the Dirac Lagrangian, Sμ cancels in a symmetrized
action.6

The above considerations motivate the simplest non-
trivial example that works for our purpose, i.e., a higher-
derivative scalar φ, with canonical dimension d−4

2
→ −1 and

thus Weyl weight wφ ¼ 4−d
2

→ 1. We first concentrate on
the computation of the anomaly and then discuss its
relevance more pragmatically. The Weyl gauged classical
action

S½φ; gμν; Sμ� ¼ −
1

2

Z
ddx

ffiffiffi
g

p
φð∇̂2Þ2φ ð45Þ

is manifestly invariant under (4) and φ → ewφσφ in any d,
including d ¼ 2, given the covariant derivative ∇̂ that is
defined in (5). We set on d ¼ 2 for the explicit computation
below but notice that the field has then negative scaling

6The simple curved space action with Lagrangian L ∼ −φ∇2φ
is already conformally invariant in d ¼ 2 because −∇2 is
conformally covariant in d ¼ 2. Furthermore, the presence of
Sμ in the Dirac operator can be interpreted as a contribution of the
vector part of the torsion up to a factor 1=ðd − 1Þ [10,17], which
decouples from a Dirac spinor. In other words, also =∇ is a
conformally covariant operator, and this is true in any d. For a
complete discussion of the degrees of freedom of the torsion
tensor, see Ref. [28].
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dimension, signaling that it is related to a special type of
CFT [26].
Manifest gauge invariance is lost if the covariant

derivative is expressed in terms of the Levi-Civita con-
nection. We have that the “kinetic” operator is of the form

ð∇̂2Þ2φ ¼ ð∇2Þ2φþ Bμν∇μ∂νφþ Cμ
∂νφþDφ; ð46Þ

with relatively simple tensor coefficients in d ¼ 2,

Bμν ¼ 2gμνSρSρ − 4SμSν þ 4∇ðμSνÞ;

Cμ ¼ 2RμνSν − 4Sμ∇νSν þ 4SνWμν

þ 2∇2Sμ þ 2∇μ∇νSν; ð47Þ

and D ¼ ðSμSμÞ2 þ � � �, where the dots hide several terms
involving Sμ and its derivatives that we do not report for
indolence. Crucially, there is no term with three derivatives.
Classically, the energy-momentum tensor and the dila-

tion current are complicated functions of the field φ and the
sources. We have computed them in general, but for brevity,
we give them off shell in the flat-space limit

Tμν ¼ 2∂2∂ðμφ∂νÞφ − δμν∂2∂λφ∂λφ −
1

2
δμνð∂2φÞ2;

Dμ ¼ −∂2φ∂μφþ φ∂2∂μφ; ð48Þ

and it is straightforward to check that T ¼ ∂μDμ using the
flat-space limit of the equations of motion ð∂2Þ2φ ¼ 0. Off
shell, the relation becomes T − ∂μDμ ¼ φð∂2Þ2φ, where on
the rhs we have the flat-space limit of δ

δσ

R
wφσφ

δS
δφ, in

agreement with the Nöther theorem. Notice that it is the
contribution of the dilation current, and not the one of the
trace of the energy-momentum tensor, that brings the term
proportional to the equations of motion of φ on the rhs. It is
also easy to deduce that Dμ is not the gradient of a scalar,
nor the divergence of a symmetric tensor on shell, because
such a symmetric tensor would have two derivatives and
the equations of motion cannot help in its construction.
This is consistent with the fact that the energy-momentum
tensor does not admit an improvement to tracelessness and
is related to a geometrical obstruction that we mention
below.
Using heat kernel methods [29], we can easily compute

the anomaly without having to introduce further external
sources; e.g., we compute what is occasionally referred to
as the vacuum functional. More details of the procedure,
which is based on heat kernel methods, can be found in
Appendix B. The computation is greatly simplified by the
fact that we work in d ¼ 2; in fact, we can use the results of
Ref. [30], Sec. VI, to show that the anomaly depends only
on the trace of the tensor Bμν and on the curvature scalar R,

Aσ ¼
1

2π

Z
d2x

ffiffiffi
g

p
σ

�
R
6
þ 1

4
Bμ

μ

�

¼ 1

2π

Z
d2x

ffiffiffi
g

p
σ

�
R
6
þ∇μSμ

�
: ð49Þ

By comparison with (16), we deduce the nonzero values of
the charges βΦ ¼ 1

3
and βΨ ¼ 4

3
, which should be under-

stood as Gaussian fixed-point values of some RG flow.
There is no S2 anomaly, i.e., βS2 ¼ 0, so it is consistent to
discuss schemes without such charge for this model as in
Sec. II B. Furthermore, we have that βΦ ¼ 1

3
is twice as

much the contribution of a simple scalar (which would be
βΦ ¼ 1

6
), and this is what one could expect from a simple

higher-derivative scalar and a one-loop analysis.
A practical reason why the action (45) is interesting

is because in even dimensions there are obstructions to
extending some flat space’s CFTs to fully Weyl- and
diffeomorphism-invariant models. The simplest example
of obstruction is seen by considering the conformally
invariant four-derivatives scalar in general d. In curved
space, its action is governed by a Weyl-covariant
operator [31,32], sometimes known as the Paneitz operator
in arbitrary d [33]. The Paneiz operator depends on the
Schouten tensor

Pμν ¼
1

d − 2

�
Rμν −

1

2ðd − 1ÞRgμν
�
; ð50Þ

which is required to balance the Weyl transformations of
termswith two ormore covariant derivatives of the field [34].
However, the tensor has a pole in d ¼ 2, signaling the
presence of a geometrical obstruction to Weyl invariance.
Amusingly, in this section’s example, we obtain βS2 ¼ 0,
which is what we would expect from any ordinary CFT, and
this is probably related to the fact that in flat space the model
is known to be a generalized free CFT [26].

B. Gauging the theory of elasticity and βS2 ≠ 0

Now, we want to address an example of scale-but-not-
conformal theory. The two best-known examples are the
Aharony-Fisher model of dipolar ferromagnets [35] and the
theory of elasticity, as originally pointed out by Riva and
Cardy [27]. For both theories, the virial current cannot be
expressed as a total divergence, so the models have the
virial current as a special vector operator of dimension
d − 1 in their spectra [24].
We concentrate on the model discussed by Riva and

Cardy. The action in flat space is

S½u� ¼ 1

2

Z
d2xf2l1uμνuμν þ l2uμμuννg; ð51Þ

where uμν ¼ ∂ðμuνÞ and uμ is a vector describing the local
deformation of some material. The coefficients l1 and l2 are
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related to shear and bulk stresses of the underlying
material.7 The model is a scale-invariant theory that, for
general li is not conformally invariant. In fact, there is no
way to write down an improved (traceless and conserved)
energy-momentum tensor because the virial current cannot
be written as the divergence of a scalar field [27]. It is also
not unitary.
However, in the special case 3l1 þ l2 ¼ 0, which we call

the “global conformal limit” (in the sense of Ref. [38]),
a finite subgroup of the infinite-dimensional conformal
symmetry (the Virasoro group) survives. The implication of
this is seen below.
Using the connection ∇̂ defined in Sec. I A, it becomes

trivial to write an action that generalizes (51) to curved
space and that is invariant under gauged Weyl trans-
formations. The “gauged” elasticity model is

S½u; gμν; Sμ� ¼
1

2

Z
d2x

ffiffiffi
g

p f2l1ûμνûμν þ l2ûμμûννg; ð52Þ

where now ûμν ¼ ∇̂ðμuνÞ with ∇̂ defined in (5). We assign
the Weyl weight wu ¼ wðuμÞ ¼ −1, which is also the
natural Weyl weight that one would expect for a coordinate
displacement with units of length (besides being the
necessary choice for Weyl invariance).
According to the definitions (9), we can find a symmetric

energy-momentum tensor and a dilation current satisfying
T ¼ ∇μDμ when going on shell using the equations of
motion of the field uμ. For simplicity, we give them in the
flat-space limit, i.e., for gμν → δμν and Sμ → 0,

Tμν ¼ 4l1∂ρuμ∂ρuν − 8l1∂ρuρuμν − 4l1∂μuρ∂νuρ

þ 4l1δμνuρσuρσ − 8l1uρ∂ρuμν − 4l2δμνuρ∂ρuσσ

− 2l2δμνuρρuσσ;

Dμ ¼ −4ð2l1 þ l2Þuμuρρ þ 8l1uνuμν; ð53Þ

but they can be computed with minimal effort in the general
case. It is easy to check that T ¼ ∇μDμ in general on shell.
In the global conformal limit, 3l1 þ l2 ¼ 0, the virial

current is the divergence of a symmetric tensor,

Dμ ¼ ∂
νXμν; Xμν ¼ 4l1uμuν þ 2l1δμνuρuρ; ð54Þ

having identified the virial current with the dilation current in
the flat-space limit. In d > 2, this would imply that scale
invariance could be extended to conformal invariance by
appropriately improving the variational energy-momentum
tensor introducing a coupling between the symmetric tensor
and the Schouten tensor [defined in (50)] of the formR ffiffiffi

g
p

XμνPμν in the original action among other terms [12].
However, the improvement of an energy-momentum tensor
based on Xμν truly works only in d > 2 because of the same
obstruction discussed in the example of Sec. III A. In fact, in
d ¼ 2, one needs the stronger condition that Dμ ¼ ∂μX,
whereX is some scalar operator. In other words,Xμν ¼ δμνX
must only have a trace part on shell [13].
We can compute the anomaly (16) of the gauged

action of elasticity. The simplest way to approach the
computation is to use the curved space generalization of a
trick applied by Nakayama in a similar context [38], by
which we define

uμ ¼ ∇μϕþ ϵμν∇νχ; ð55Þ

so we decompose the vector uμ in a scalar and a pseudo-
scalar using the covariant ϵ tensor. The decomposition
assumes implicitly that there is no global zero mode
(a harmonic form) and neglects the constant shift of uμ,
which would not contribute to the energy balance of the
statistical system anyway.
The use of (55) and integration by parts brings the action

(52) in a form that is more useful for the computation of the
anomaly

S½u; gμν; Sμ� ¼
1

2

Z
d2x

ffiffiffi
g

p �
ϕ χ

�� Δ̂ϕϕ Δ̂ϕχ

Δ̂χϕ Δ̂χχ

��
ϕ

χ

�
;

ð56Þ

where Δ̂IJ are rank-4 differential operators with the same
general structure as (46), but different normalization of the
∇4 term. In particular,

Δ̂ϕϕ¼ð2l1þ l2Þð∇2Þ2þ��� ; Δ̂χχ ¼4l1ð∇2Þ2þ��� ; ð57Þ

with the dots hiding lower-derivative terms of rank 2, so the
method of Appendix B applies after appropriately rescaling
the two fields. A significant simplification comes from the
fact that the two scalars have different parity, so the off-
diagonal terms Δ̂ϕχ and Δ̂χϕ do not contribute, which can
be checked explicitly. In practice, the anomaly is the same
as that of two decoupled scalars with action

1

2

Z
d2x

ffiffiffi
g

p fϕΔ̂ϕϕϕþ χΔ̂χχχg: ð58Þ

7The coefficients l1 and l2 are generally denoted μ and λ,
respectively; however, here we do not want them confused with
scale and couplings in this paper. The action S½u� is quadratic, but
an interacting version describes the crystalline/tethered membrane
model, which is also an example of scale-but-not-conformal
model [36]. Interestingly, all these models can be understood as
coming from cosets that involve spacetime symmetries in the
breaking process [37]. The fact that the field variables share the
indices of spacetime is what allows for more than one independent
contraction in (51), and it would be interesting to investigate this
property in relation to the existence of a virial current.
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After integrating out ϕ and χ using the method sketched
in Appendix B, a somewhat lengthy computation that uses
twice the same formula as (49) gives the anomaly

Aσ ¼
1

2π

Z
d2x

ffiffiffi
g

p �
13l1 þ 5l2
6ð2l1 þ l2Þ

R −
3l1 þ l2
2l1 þ l2

∇μSμ

−
ð3l1 þ l2Þ2
4l1ð2l1 þ l2Þ

SμSμ
�
: ð59Þ

The nontrivial “denominators” 2l1 þ l2 and 4l1 are caused
by the fact that, for the application of the heat kernel
methods of Appendix B to the differential operators (57),
we have to rescale the fields ϕ and χ, respectively.
Comparing the anomaly with (16), we find the following

values of the charges:

βΦ ¼ 5

3
þ l1
ð2l1 þ l2Þ

; βΨ ¼ 2

3
;

βS2 ¼ −
ð3l1 þ l2Þ2
4l1ð2l1 þ l2Þ

: ð60Þ

The important difference from the example of Sec. III A is
that βS2 ≠ 0 unless the global conformality condition
3l1 þ l2 ¼ 0 is satisfied. This result is somewhat expected;
in the global conformal limit, the charge βS2 , that represents
a departure from the flow μ d

dμ βΨ ¼ χijβ
iβj, is zero. Instead,

when the theory is only scale invariant, we have that βS2 is
different from zero. The global conformal limit has the
additional property that βΦ ¼ βΨ ¼ 2

3
. The general con-

dition βΦ ¼ βΨ was observed as a consequence of the
decoupling of Sμ for conformal theories, so it further
confirms that the limit is globally conformally invariant.

IV. INTERPLAY BETWEEN WEYL AND
DIFFEOMORPHISMS SYMMETRIES

In this section, we want to discuss some points that may
be of relevance for the application of the Weyl gauged local
RG to quantum gravity. It is known that, as a result of the
path-integral procedure, one can choose to either have a
conformal or a diffeomorphism anomaly. Classically, the
energy-momentum tensor can be made traceless at the price
of its conservation. For a quantum example, see Ref. [39]
with a discussion of the case d ¼ 2, which becomes very
relevant when studying two-dimensional quantum gravity
because the Einstein action is not dynamical in the limit
[40,41]. The presence of the Weyl anomaly discussed in the
previous sections assumes tacitly that diffeomorphism
invariance is not anomalous.
The gauged Weyl transformations (4) for infinitesimal

σ are

δWσ gμν ¼ 2σgμν; δWσ Sμ ¼ −∂μσ;

δWσ Φ ¼ 2wΦσΦ ð61Þ

and, as discussed in Sec. I, imply classically T ¼ ∇μDμ

(the label W is for “Weyl”). The classical relation between
the currents is subject to the anomaly (16) coming from the
quantization, as we discussed in Sec. II.
As stressed above, we have been working under the

assumption that the classical action Γ is diffeomorphism
invariant. Infinitesimal diffeomorphisms are generated by a
vector ξμ,

δEξ gμν¼ðLξgÞμν¼ 2∇ðμξνÞ;

δEξ Sμ ¼ðLξSÞμ ¼ ξν∇μSνþSν∇μξν; δEξΦ¼LξΦ; ð62Þ

where we used the fact that∇μ is symmetric and compatible
(the label E is for “Einstein”). The tensor structure of Φ is
unspecified, so the Lie derivative of Φ depends on its
holonomic indices, while it is insensitive to other indices,
which could be gauge and local Lorentz ones, and it is also
insensitive to the Weyl weight. Consequently, δEξΦ might
not transform covariantly under the other local transforma-
tions [9]. On-shell, classical invariance under diffeomor-
phisms implies that

∇μTμν þ∇μDμSν þDμWμν ¼ 0; ð63Þ

and the energy-momentum tensor is conserved in the limit
Sμ ¼ Wμν ¼ 0. This equation is not anomalous if diffeo-
morphism invariance is preserved during quantization.
With a bit of work, it is possible to rewrite the relation

(63) in a gauged Weyl-covariant form,

∇̂μTμν þDμWμν ¼ 0; ð64Þ

where we used the fact that wðTμνÞ ¼ −d − 2 (which can be
deduced from its definition, given that the Weyl weight is
multiplicative), but also, importantly, we used the relation
T ¼ ∇μDμ coming from classical gauged Weyl invariance.
Classically, the energy-momentum tensor is thus gauge-
covariantly conserved also for integrable Weyl geometries
in which Wμν ¼ 0 (i.e., when Sμ is locally the gradient of
some scalar function).
A more direct way to prove the gauge-covariant relation

(64) is to consider “modified” diffeomorphism transforma-
tions, which combine diffeomorphisms and Weyl trans-
formations as

δ̃Eξ ¼ δEξ þ δWξ·S; ð65Þ

where ξ · S ¼ ξμSμ. This transformation makes it such that
δ̃EξO is Weyl covariant if O is also Weyl covariant, for an
arbitrary operator O with some weight and holonomic
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indices. The operatorO could be the basic fieldΦ, or any of
the Oi. A generalization to other anholonomic and gauge
indices is possible by including in (65) further contributions
of the form δGξ·A, where Aμ ¼ tIAI

μ is the potential of some
gauge group G and algebra generators tI . In practical
applications, the transformation δ̃Eξ is the so-called covari-

ant Lie derivative [42], sometimes denoted δ̃Eξ ¼ L̃ξ [10].
It is interesting to study the algebras, in view of the

application of Wess-Zumino consistency conditions. We
have for the original transformations

½δWσ ; δWσ0 � ¼ 0; ½δEξ ; δEξ0 � ¼ δE½ξ;ξ0�; ð66Þ

where ½ξ; ξ0�μ are the Lie brackets. The algebra of diffeo-
morphisms is isomorphic to the algebra of Lie brackets, as
expected. Using the definition of δ̃Eξ , one can show

½δ̃Eξ ; δ̃Eξ0 � ¼ δ̃E½ξ;ξ0� þ δWWðξ;ξ0Þ; ð67Þ

where Wðξ; ξ0Þ ¼ Wμνξ
μξ0ν (W ¼ 1

2
Wμνdxμ ∧ dxν is the

Weyl curvature 2-form). The above algebra extends cor-
rectly to sources and connections, including Sμ, even if it
has an affine transformation [10]. We have that δ̃Eξ does not
form a closed subalgebra, except for integrable Weyl
geometries when Wðξ; ξ0Þ ¼ 0. The algebra satisfies a
Jacobi identity, but it does not generate a group in the
traditional sense because it depends on Sμ through Wμν.
The relation (67) makes it clear that if one chooses to

preserve diffeomorphisms invariance (i.e., one assumes that
diffeomorphisms invariance is preserved by the underlying
path integral’s measure, but Weyl transformation are
anomalous) then the modified diffeomorphisms are anoma-
lous because of the presence of the anomaly in δWWðξ;ξ0Þ. We
deduce the quantum version of (64) using the anomaly

h∇̂μTμνi þ hDμiWμν þ hSνAi ¼ 0; ð68Þ

where A ¼ δ
δσ ðΔβ

σΓþ AσÞ is the anomalous part of the
trace of the energy-momentum tensor, using the definitions
give in Eqs. (16) and (15). Therefore, even at a fixed point
βi ¼ 0 and even for integrable Weyl geometries, we expect
an anomalous contribution to the gauge-covariant conser-
vation of the energy-momentum tensor. Using the explicit
form of the anomaly, we can inspect the limit βi ¼ 0 for
constant (traditional) couplings λi; we find

h∇̂μTμνi þ hDμiWμν þ βΦ
4π

R̂Sν

þ β̃Ψ
2π

∇μSμSν þ
βS2
2π

SμSμSν ¼ 0; ð69Þ

which depends, as one might have expected, on the charge
β̃Ψ that can be monotonic if βS2 ¼ 0 and χij > 0 (the scalar

functions of the couplings are regarded here as constant
numbers set at their fixed-point values). We are treating the
sources as classical fields, so further expectation values, for
example, those including insertions of Oi, could be
obtained using functional derivatives of the local couplings.

V. CONCLUSIONS

The generalization of the local RG approach to theories
involving thegaugedversionofWeyl transformations reveals
interesting similarities, but also several differences, when
compared to the nongauged case developed in the past [3]. In
practice, the generalization consists of coupling the finite and
renormalized quantum theory with local couplings to a
Weylian geometry, rather than aRiemannian one. The former
is characterized by the presence of an additional gauge
potential Sμ that acts as a source of the dilation current and
that has an affine transformation under local rescalings of the
metric. The dilation current is naturally interpreted as the
virial current of scale-invariant models in the flat-space limit.
We have restricted our attention to the application of the

Wess-Zumino consistency condition to the anomaly in the
two-dimensional case, although several considerations can
be straightforwardly extended to four or higher dimensions.
Our results indicate that a new charge, denoted βS2 in themain
text, is responsible for the differences between scale and
conformal invariance. While we see that it is not possible to
set the value of the new charge to zero in an arbitrary
renormalization scheme of a general model, we also realize
that, if for some specific theory βS2 ¼ 0, then it should be
possible to find consistent RG trajectories such that the new
charge remains zero along the flow. However, we do not
expect a generalization of Zamolodchikov’s irreversibility
theorem [4] on such consistent trajectories; the theorem
requires the positivity of the metric in the space of the
couplings, χij > 0, which in turn requires the underlying
model to be unitary [8], but to our knowledge, all examples of
scale-but-not-conformal theories are nonunitary [24].
The natural extension of our work is to repeat the analysis

in the four-dimensional case, which is certainly going to be
much more complicated since we already know that the four-
dimensional local RG requires the inclusion of several more
tensor structures in the space of the marginal couplings [3].
Nevertheless, we think that the four-dimensional analysis
is certainly within reach. The discussion of the four-
dimensional casewould also lead tomore interesting example
applications as compared to the ones shown in the present
paper. The four-dimensional case could also be important for
the study of completions of “Standard Modelþ Gravity” that
requiregaugedWeyl symmetry [19]. For these completionsof
the StandardModel, it has been shown that theWeyl anomaly
cancels (for standard constant couplings), also thanks to the
fact that Sμ couples only to the Higgs sector [43]. The
four-dimensional anomaly with local couplings that general-
izes (16) can nevertheless offer nonperturbative insights on
the RG flow.
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APPENDIX A: RIEMANN
AND WEYL GEOMETRIES

Geometrically, a Riemannian geometry consists of a pair
ðM; gμνÞ, where M is a manifold and gμν a metric. In
contrast, a Weylian geometry can be seen as a triple
ðM; gμν; SμÞ such that the geometrical information depends
on the equivalence ðgμν; SμÞ ∼ ðe2σgμν; Sμ − ∂μσÞ.
We can associate local curvatures to the connection ∇̂

defined in (5) [10]. The simplest curvature is the gauge-
invariant field strength, Wμν ¼ ∂μSν − ∂νSμ. To work out
the others, consider a holonomic vector field vμ with zero
Weyl weight wðvμÞ ¼ 0.8 We have the commutator

½∇̂μ; ∇̂ν�vα ¼ R̂α
βμνvβ ðA1Þ

and R̂α
βμν ¼ Rα

βμν þ � � �, where the dots hide several
additional structures that depend on Sμ and its covariant
derivatives, which we do not report for brevity. We can
define a Ricci tensor as R̂μν ¼ R̂α

μαν, so

R̂μν ¼Rμν− gμν∇αSα

− ðd− 2Þf∇ðμSνÞ−SμSνþ gμνSαSαg−
d
2
Wμν; ðA2Þ

which is not symmetric due to the presence ofWμν (as seen
from the last term). The contraction leading to R̂μν is not
unique, but alternative choices differ by the above only by
the coefficient of the antisymmetric part. Consequently, the
Ricci scalar R̂ ¼ gμνR̂μν is unambiguous,

R̂ ¼ R − 2ðd − 1Þ∇μSμ − ðd − 1Þðd − 2ÞSμSμ: ðA3Þ

Let us also note that the gauged Weyl geometry admits an
ambient space construction [44], in analogy to the one of
conformal geometry [14].

APPENDIX B: HEAT KERNEL

The heat kernel of an elliptic differential operator Δ̂ is
defined as the solution of the diffusion equation

ð∂t þ Δ̂xÞHΔ̂ðs; x; x0Þ ¼ 0; ðB1Þ

with initial conditionHΔ̂ð0; x; x0Þ ¼ δðx; x0Þ, where δðx; x0Þ
is the covariant Dirac delta [29]. Formally, we have the
representation HΔ̂ðt; x; x0Þ ¼ hxj expð−tΔ̂Þjx0i. For the
computations of Sec. III, Δ̂ is a rank-2p scalar operator
of the form Δ̂ ¼ ð−∇2Þp þ � � �, where the dots include
lower-order terms in the covariant derivatives, and we only
need the coincidence limit x ¼ x0 of the heat kernel, which
admits an asymptotic expansion in s,

HΔ̂ðs; x; xÞ ¼
1

ð4πÞd=2t1=p
�
1þ

X
n≥1

tn=panðxÞ
�
: ðB2Þ

The coefficients anðxÞ are local functions depending on
metric, potentials, curvatures, and tensor structures of Δ̂.
The anðxÞ can be computed with various algorithms [29]
and are known also for the general case p ¼ 2 [30], which
includes the operator (46) given in Sec. III A. Similar
operators are needed in Sec. III B.
The heat kernel is directly related to the zeta function of

the differential operator by ζΔ̂ðs; x; x0Þ ¼ ΓðsÞ−1 R∞
0 dt×

ts−1HΔ̂ðt; x; x0Þ and the asymptotic expansion is used to
evaluate ζΔ̂ð0; x; xÞ ¼ ð4πÞ−d=2ad=2ðxÞ. Using the zeta
function and considering a bare action of the form
S ∼

R
φΔ̂φ, we can formally express the nonrenormalized

effective action as

Γ ¼ −
1

2
Tr

d
ds

ζΔ̂ðs; x; x0Þ
���
s¼0

; ðB3Þ

where the trace includes an integration over spacetime for
x ¼ x0. For Weyl- and diffeomorphism-covariant differ-
ential operators, such as the ones considered in the main
text in Sec. III, it is straightforward to show that the scale
transformation of the renormalized action is

δσΓ ¼ 1

ð4πÞd=2
Z

ddx
ffiffiffi
g

p
σad=2ðxÞ; ðB4Þ

and therefore we have a formal way to obtain the anomaly.
From the above computation, the standard result that shows
the relation of the anomaly with the coefficient of the
dimensional pole of divergent part of the regulated effective
action follows. The case d ¼ 2 requires the heat kernel
coefficient a1ðxÞ, which, for a self-adjoint differential
operator of rank 4 acting on a scalar, Δ̂ ¼ ð∇2Þ2 þ
Bμν∇μ∂ν þ Cμ

∂ν þD such as (46), is given in completely
general form in Ref. [30],

8A nonzero weight would just give additional structures
involving Wμν, so what follows is only one possible convention
to define the Riemann and Ricci tensors of ∇̂ [10]. It is also
important to realize that the charge of Weyl transformation, i.e.,
the weight, is multiplicative, so it depends on whether the indies
are raised or lowered with the metric. For example, the weight of
vμ is different than that of vμ. In our convention, wðvμÞ ¼
wðgμνÞ þ wðvμÞ ¼ wg ¼ 2 ≠ 0 if wðvμÞ ¼ 0.
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a1ðxÞ ¼
Γðd=4 − 1=2Þ
Γðd=2 − 1Þ

�
1

2d
Bμ

μ þ
1

6
R

�
: ðB5Þ

Notice that heat kernel coefficients of differential operators of rank greater than 2 depend on d nontrivially, so it is necessary
to take the limit d ¼ 2, which appears in Eq. (49) of the main text.
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